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Abstract 

There are an infinite number of possible word-to-world 
pairings in naturalistic learning environments. Previous 
proposals to solve this mapping problem focus on linguistic, 
social, representational constraints at a single moment. This 
paper investigates a cross-situational learning strategy based 
on computing distributional statistics across words, across 
referents, and most importantly across the co-occurrences of 
these two at multiple moments. We briefly exposed adults to a 
set of trials containing multiple spoken words and multiple 
pictures of individual objects with no information about word-
picture correspondences within a trial. Nonetheless, subjects 
learned over trials the word-picture mappings through cross-
trial statistical relations. Different learning conditions 
compared the degree of within-trial reference uncertainty, the 
number of trials and the length of trials. We also propose and 
implement a computational model and feed it with the same 
training data used in different learning conditions in 
experimental studies, to shed light on the possible underlying 
mechanism of statistical learning. Overall, these results 
suggest that statistical cross-situational learning may be one 
of fundamental mechanisms to tackle the word-to-world 
mapping problem.  

Introduction 
Children learn words in ambiguous contexts, with multiple 
word candidates for any referent and multiple referent 
candidates for any word.   For example, a child may see a 
boy, a bat, a ball, and a dog and hear “Look at the boy. The 
dog wants his ball.”  This is the word-to-world mapping 
problem (e.g. Gleitman, 1990; Bloom, 2000; Smith, 2000). 
How could a learner who knows no words associate object 
names with the right referents?  Developmentalists have 
studied a number of solutions to this problem, including 
ways in which the mature partner limits words and referents 
and directs attention to the relevant referent (Baldwin, 1993; 
Tomassalo, 2000), and internal perceptual and conceptual 
constraints (Genter, 1982).   This paper is concerned with an 
additional solution, cross-situational statistical learning, a 
process in which statistics are calculated across different 
learning instances to determine across multiple experiences, 
the most likely word-referent mappings.  We are also 
interested in how internal constraints, such as whole object 
assumption or mutual exclusivity, may be realized or 
embedded in these mechanisms.  
     Prior research has concentrated on in-the-moment 
solutions to the mapping problem.  For example, the mutual 
exclusivity constraint (Markman, 1990) is hypothesized to 
direct children to map novel words to unnamed referents. If 

there are two objects present and one has a known name, the 
child should map a novel name to the second object, solving 
the word-referent mapping problem in that moment. Does 
this kind of constraint also contribute, perhaps in a graded 
way, over multiple encounters with words and potential 
referents? Children could use broader statistical regularities, 
keeping track of the associations among many words and 
referents across trials, using these, and adjusting these, as 
they encounter potential words and referents.  The idea that 
the learning system may effectively calculate broad cross-
situational statistics is suggested by recent findings on 
statistical learning in infants (Saffran, Aslin, & Newport, 
1996). Infants (and children, adults, and nonhuman 
primates) readily learn transitional probabilities among 
segments in a temporal stream of syllables, tones, or  visual 
events (Saffran, Johnson, Aslin, & Newport, 1999; Hauser, 
Newport, & Aslin, 2001; Newport & Aslin, 2004; Conway 
& Christiansen, 2005). All these studies concerned 
sequential statistics in streams of repeating segments. Here 
we examine a different kind of statistical learning – the 
mapping of units between a word and a referent stream. 
      Because this is the first investigation of this kind of 
statistical learning, we chose to study adult language 
learners, asking whether they could compute such statistics 
over many potential words and referents and asking the 
nature of the mechanisms that underlie such learning.  We 
first present 2 experiments examining the capacities and 
limits of this learning.  We then present a simulation study 
that explicitly examines how internal constraints such as the 
proposed mutual exclusivity assumption may be embedded 
in these statistical mechanisms. 

Experiment 1 
The power of statistical learning to overcome the mapping 
problem rests on the calculation of cross-situational 
statistics -- not just tracking, for example, the co-
occurrences of ``ball" with ball or ``cup" with cup but the 
co-occurrences of ``ball" with a scene containing balls and 
dogs, balls alone, cups, cups and dogs, and so forth.  Is this 
kind of computational mechanism at all feasible for 
humans? To answer this question, adult subjects were 
exposed to multiple trials wherein they heard multiple 
spoken words while looking at multiple pictures of objects.  
There is a perfect one-to-one mapping of words to referents 
such that each of the heard words maps to one of the 
objects. However, each trial consists of multiple words and 
multiples pictures of objects and there is no information 
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within a trial about the associations between words and 
referents (including no spatial or temporal cues). We 
manipulated the degree of ambiguity of each learning trial,  
presenting in one condition 4 words and 4 possible referents 
on each trial (16 potential associations), 3 words and 3 
possible referents on each trial (9 potential associations), or 
2 words and 2 possible referents (4 possible associations).  

Method 
Participants. 38 undergraduate and graduate students at 
Indiana University were tested in the experiment.  Subjects 
received course credits or $7 for their participation.  
Stimuli. Subjects were exposed to three learning conditions, 
each of which included 18 novel word-object pairs. In total, 
stimuli consisted of 54 visual-audio pairs in three 
conditions. The potential words were generated from a 
computer program to sample broadly from the space of 
phonotactically probable English. These artificial words 
were then produced by a synthetic female voice, presented 
in a monotone.   54 pictures of uncommon objects served as 
the visual input. The training trials were generated by 
pairing each word with a single picture.  For each training 
trial, some number (depending on condition) of word-
referent pairs were selected. Specifically, on each trial the 
referents were simultaneously presented on the screen. The 
names were then presented; however, the temporal order of 
the spoken names was not related in any systematic way to 
the spatial location of the referents. This is illustrated for a 
condition with 2 word-referent pairs and for a condition 
with 4 word-referent pairs in Figure 1. A 1000 ms silence 
was inserted between spoken words. 

  In total, there were three conditions determined by the 
number of words and referents presented on each trial:  2× 2 
(2 words and their corresponding referents), 3× 3 (3 words 
and their corresponding referents), and 4× 4 (4 words and 
their corresponding referents). In each condition, there were 
18 unique word-picture pairs, and each unique word and 
corresponding unique referent were presented on a total of 6 
training trials. This means, as shown in Table 1, that the 
total number of trials (of 2 pairs, 3 pairs or 4 pairs) is 
different over the three conditions.  In order to keep the total 

training time (summed over all trials) constant, we also 
varied, as shown in Table 1, the length of time of each trial.  
Table 1: three learning conditions in Experiment 1. 

condit
ion 

# of 
total 
words 

 # of occ. 
per words 

# # of      
trials 

time per 
trial 
(sec) 

 total  
 time 

2 ×  2 18 6 54 6  324 
3 ×  3  18 6 36 9  324 
4 ×  4 18 6 27 12 324 

Procedure. Visual stimuli were presented by 17 inch LCD 
flat panel screen and the sound was played by a pair of 
speakers connected to the same Windows PC. Subjects were 
instructed to map the pictures of objects showed on the 
computer screen onto the spoken words in a “nonsense” 
language. They were told that multiple words and pictures 
co-occurred on each individual trial and their task was to 
figure out which word went to which picture across multiple 
trials. Subjects were asked to participate in three sessions 
sequentially that corresponded to the three learning 
conditions. The order of sessions was counterbalanced. 
After each training session, subjects received a four-
alternative forced-choice test consisting of 18 trials. For 
each testing question, subjects heard one word and were 
asked to select the corresponding picture from four options 
on the computer screen. 

Figure 2: The results of three learning conditions in Experiment 1. 
Error bars reflect standard errors. 

Results and Discussion 
The three conditions present learners with different degrees 
of in-trial ambiguity but the same across trial (for a perfect 
statistical learner) certainty of word-referent pairings.  The 
4× 4 condition –with four labels and four candidate 
referents for each learning moment (and thus 16 potential 
associations)– presents the greatest in-trial uncertainty, the 
3× 3 condition next, and the 2× 2 condition least.  As shown 
in Figure 2, in-trial uncertainty appears a relevant factor 
(ANOVA test, F(2,74)=76.069, p<0.001):  Learners were 
better able to discover the correct word-referent in the 2× 2 
condition (M=15.897, SD=2.506) and least able in the 4× 4 
condition (M=9.461, SD=2.907) with performance in the 
3× 3 condition falling in between (M=13.692, SD=3.507).  
However, the most important result is that in all conditions, 
including 4× 4, subjects performed reliably above chance 
(t(37)=8.785,p<0.001, one-tailed, for 4× 4).  Given the in-
trial ambiguity, they must be calculating statistics across 
trials.   

spati      heca      pid      gidibispit      bofe

       (a) 2 ×  2 condition            (b) 4 ×  4 condition 
Figure 1: Subjects saw multiple pictures while hearing multiple 
words on each trial, and were asked to find which spoken word 
is paired with which picture. 
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There are a number of potential explanations of the 
differences among the three conditions, including the central 
variability of degree of in-trial uncertainty but also the 
additional necessary confoundings of numbers of trials and 
length of trial. We investigate these factors in Experiment 2.  

Experiment 2 
Experiment 2 was designed to replicate the findings in 
Experiment 1 and further investigate under what 
circumstances, subjects would be able to achieve 
significantly better performance in the most ambiguous 
condition of Experiment 1, the 4× 4 condition in which each 
trial offered 16 possible word-referent associations.  In 
contrast to Experiment 1, and as summarized in Table 3, we 
probe the nature of statistical learning by manipulating two 
aspects of the training regime: : (1) the number of 
repetitions of each word-referent pair and (2) the total 
number of word-referent pairs to be learned. 

Method 
Participants. 28 undergraduate students at Indiana 
University were tested in this experiment.  None of them 
participated in Experiment 1.  
Stimuli. all three conditions in Experiment 2 use the 4× 4 
presentation of 4 words and 4 pictures on each trial. 
However, in the 9 words, 8 repetitions condition, subjects 
attempt to discover a total of 9 word-referent pairs each 
repeated 8 times over the course of training.  In the 9 words, 
12 repetitions condition, subjects attempt to discover 9 
word-referent pairs but are given 4 additional repetitions of 
each word-referent pair. Finally, the third condition is a 
replication of the 4× 4 condition of Experiment 1; there are 
18 word-referent pairs to be learned and 6 repetitions of 
each.  In contrast to Experiment 1, total viewing time per 
slide was kept constant and thus the total number of trials 
and total length of the experiment varied across conditions.  
Table 2 The statistics of the stimuli in 3 learning conditions. 

learning 
condition 

# of 
total 
words 

 # of occ. 
per 
word 

# # of      
trial 

time 
per 
trial 

 total  
 time 

9 words/ 
8 repetitions 9 8 18 12  216 
9 words/ 
12 repetitions  9 12 27 12  324 
18 words/  
6 repetitions 18 6 27 12 324 

Procedure. The procedure is the same with that of Exp. 1.  

Results and Discussion 
There were 4 words and 4 pictures in a single trial in the 
three conditions, which contained a high degree of 
ambiguity at each individual moment (trial). However, 
subjects in all conditions again discover more pairs than 
expected by chance as shown in Figure 3 (t(27) > 6.4 in all  
three conditions). In addition, the results in 18 
words/6repetions condition of this experiment (M=9.629, 
SD=3.076) are very similar to the same condition in 
Experiment 1, suggesting that our results are reliable and 

duplicable. The above two observations are quite in line 
with what we expected.  
However, as shown in Figure 3, in all three conditions, 
subjects –in terms of the proportion of word-referent pairs 
to be discovered – performed equivalently (F(2,54) = 0.052; 
p<0.001). A direct comparison between 18 words/6 
repetions (M=0.534, SD=0.232) and 9 words/12 repetitions 
(M=0.609, SD=0.176) conditions shows that they have the 
same number of trials, the same training time and the same 
within-trial ambiguity. The only two different factors are: 
(1) the number of unique pairs and (2) the number of 
occurrences per pair, which was expected to make one 
condition easier than the other. However, the results in these 
two conditions are quite similar. An intuitive explanation is 
that the number of co-occurring pairs plays a dominant role 
in statistical word learning and other factors are not so 
important conditioned on that factor. But why is that? Our 
following computational study provides a plausible answer 
to these behavioural data.  

Simulation 
The above two experiments document the performances of 
adults in statistical word learning. We demonstrated what 
they can do given cross-situational observations. The next 
question to ask is how they do that -- the underlying 
computational mechanisms that support statistical word 
learning. Since there is no information at the beginnings to 
guide them to discover correct word-referent pairs among 
all possibilities, they must start with randomly selecting 
some hypothesized pairs and then gradually justify the 
correctness of those pairs later. Following this general 
principle, the specific questions in statistical word learning 
are (1) how hypothesized pairs are selected and stored from 
a trial? (2) how subjects justify whether a word-object pair 
is correct? (3) whether they use the mutual exclusivity 
constraint if two working hypothesized pairs are not 
compatible? and (4) whether they would use previously 
learned pairs to help the learning of new pairs in subsequent 
trials? The following simulation study attempts to answer 
those questions by showing a dynamic picture of the real-
time learning when the simulated learner is fed with the 
same stimuli that subjects were exposed.  
 
 

Figure 3: the results in three conditions in Experiment 2. Error 
bars reflect standard errors.  
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Figure 4: Statistical cross-situational learning algorithm.  

Training: 
-- Randomly select one pair from Trial #1 and store it in the 
memory as the first hypothesized pairing. 
-- Repeat the following steps for Trial #i ( 272 ≤≤ i ): 
a. Check the pairs in the memory M and use those with a high 
confidence score 

jjmnc to filter the input of the current trial
iT .  

  b. Randomly selection a new pair ),( newnew wp from
iT .  

c. Comparing ),( newnew wp with the parings in M: 

  if Mwp newnew ∈),(  

       Increase the confidence score of the corresponding 
pairing

jjmnc . 

   else if },......,,{
21 knnnnew pppp ∉ and },......,,{

21 knnnnew wwww ∉  

       Add the pair into M as ),,(
1111 ++++ kkkk mnmn cwp  and 1

11
=

++ kk mnc . 

   else if },......,,{
21 knnnnew pppp ∉ and },......,,{

21 knnnnew wwww ∈  

       Finding the pairing ),(
jj mn wp in M while 

newm ww
j

= . 

          If },,,{
4321 iiiin ppppp

j
∈  then increase 

jjmnc by 1, 

          Otherwise replace ),,(
jjjj mnmn cwp  with )1,,( newnew wp . 

    else if: },......,,{
21 knnnnew pppp ∈ and },......,,{

21 knnnnew wwww ∉  

       Finding the pairing ),(
jj mn wp in M while 

newn pp
j

= . 

       If },,,{
4321 iiiim wwwww

j
∈  then increase 

jjmnc by 1, 

       Otherwise replace ),,(
jjjj mnmn cwp  with )1,,( newnew wp . 

Testing: 
    For ith question },,,{

43211 , iiiii ppppw ,  

If },......,,{
211 knnni wwww ∈ , find the corresponding pair 

),(
jj mn wp in M while 

1im ww
j

= and check whether  
1in pp

j
== ; 

Otherwise, among },,,{
4321 iiii pppp , remove those 

},......,,{
2141 knnni pppp ∈

−
and randomly select an answer from 

the left items. 

Fig 5: A comparison of human subjects and simulated learners. 

Method 
The 4× 4 condition has been tested in both experiments and 
therefore is used as an example to show how the model 
works. The simulations on other conditions can be achieved 
by applying the corresponding stimuli to the same model. In 
the 4× 4 condition, the 18 novel word-picture pairs can be 
represented as )},),......(,(),,{( 18182211 wpwpwp . In the ith trial, 

the stimuli are },,,,,,,{
43214321 iiiiiiiii wwwwppppT =  while 

321 ,, iii and 4i can be selected from 1 to 18. And there is no 
information as to which picture goes with which name. We 
also assume that the simulated learner maintains a list of 
hypothesized pairings as learned results from previous trials. 
Moreover, the learner assigns a confidence score for each 
pair in his memory to indicate the likelihood that the pair is 
correct. His lexical knowledge at the ith trial can be then 
represented as a list of pairs ),,,{(

1111 mnmn cwpM =  

)},,(),......,,,(
2222 kkkk mnmnmnmn cwpcwp while 

jn and 
jm can be 

selected separately from 1 to 18, and 
jjmnc is the confidence 

score of a pair. Thus, the equivalence of 
jn and 

jm indicates 

a correct pairing.  
   At the beginnings, the model randomly picks one word 
and one picture from a trial and builds a hypothesized 
pairing. With more trials, more pairings are built and stored 
in the memory. Two additional mechanisms are utilized to 
make this learning process more effective. First, one 
important constraint in adding new pairs is to maintain the 
consistency of hypothesized pairings so that one word can 
be associated with only one picture. This constraint 
explicitly encodes the proposals such as mutual exclusivity 
(Markman, 1990) and contrast (Clark, 1987) into the 
learning machinery and by doing so makes the learning 
more efficient because the simulated learner would 
randomly select many conflicting (and therefore incorrect) 
word-picture pairs across multiple trials without this 
constraint. Second, the model keeps track of the confidence 
score of each pair. When the confidence score of a pair is 
above a certain threshold, this pair will be treated as a 
learned lexicon and then used to filter out the input in 
subsequent trials, which can significantly simplify the 
learning task. For instance, if a learned pair occurs in a new 
trial, it will be removed from the stimuli to reduce a 4-4 
condition into a 3-3 condition. More importantly, subjects in 
empirical studies informed experimenters that they used the 
similar filtering strategy in the later part of the training 
phase when they were confident that some word-picture 
pairs were correct. The detailed learning algorithm is 
described in Figure 4.  

Results and Discussion 
We applied the same training and testing data in the 
previous experiments to the simulated learner. For each 
condition, the simulation was run for 5000 times. Thus, we 
had 5000 simulated subjects (with the same set of 
parameters) for each condition.  Note that the fundamental 
mechanism encoded in our model is to randomly select and 
store hypothesized pairs. Therefore, quite different results 
were obtained on each run depending on what pairs were 
selected from trial to trial. We used 5000 simulated subjects 
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to ensure the statistical power of this simulation study and 
the results are shown in Figure 5.  
We observed that in general the results in simulation are 
quite in line with those of human subjects, suggesting that if 
subjects apply a simple statistical learning machinery like 
the one in our model, then that could explain their superior 
performances. Admittedly, different subjects may apply 
different learning strategies and there is no way to encode 
all the possible strategies that they applied to the stimuli in a 
single model. Nonetheless, the current model intends to 
implement one learning device based on general principles. 
The similarities of the results between human subjects and 
simulated subjects are consistent not only in one condition 
but among multiple conditions, indicating that the learning 
principles encoded in our model are plausible to be similar 
with those guiding the learning of human subjects. We will 
discuss why simulated learners couldn’t achieve a better 
performance in the 9 pairs/12 repetitions condition in the 
next section.  
We also note that one reason for individual differences in 
this type of learning task is that if learners just randomly 
select pairs and justify them later based on distributional 
information, then the results obtained from different trials of 
running the same model could be quite different.  In some 
cases, simulated learners may happen to pick correct pairs in 
the first trials which will help subsequent learning through 
the filtering mechanism. In other cases, they might pick the 
wrong ones and have to justify and correct those pairs in the 
later trials. Thus, the randomness in pair selection may also 
cause those human subjects, who apply the same learning 
mechanism on the same data, to achieve quite different 
results.  

General Discussion 
Statistical Learning 
The learning situations such as those used in the present 
experiments have generally been considered too complex 
for word learning. Yet the present results show that adults 
rapidly discover word-referent mappings in these contexts. 
The only solution to the mapping problem is the 
distributional co-occurrence statistics between spoken 
words and pictures of objects. Our findings in statistical 
word learning extend those of Saffran, Aslin, & Newport 
(1996), and Newport and Aslin (2004) in word 
segmentation, Gomez & Gerken (1999) in syntax learning, 
and Conway & Christiansen, (2005) in visual and tactile 
sequence learning by showing that statistical learning 
broadly characterizes human learning, and that human 
learners can exploit cross-trial regularities over many 
potential word and referent pairs.  
   Conclusions relevant to development are limited by our 
use of adult subjects. Nonetheless, recent studies  in word 
learning (e.g. Gillette, Gleitman, Gleitman, & Lederer, 
1999; Snedeker & Gleitman, 2004) proposed a Human 
Simulation Paradigm (HSP), suggesting the value of 
examining potential general learning mechanisms in adults 
as a way to study the potency of various cues to word 
learning that might be available in the learning environment. 

Therefore, adult studies can be used as first steps and proof-
of-concept before conducting infant studies (Saffran, 
Newport, & Aslin, 1996; Newport & Aslin, 2004). In fact, 
our on-going studies on young children apply the same 
experimental paradigm and the same visual-auditory stimuli 
used in the present study.  

Key Factors in Cross-Situational Learning 
The five learning conditions in two experimental studies 
provided different kinds of statistical regularities for 
learning. We will focus on two important factors discovered 
through these manipulations.  
    First, the dominating factor in the cross-situational 
learning is the number of co-occurring word-picture pairs, a 
result confirmed in both experiments and simulation. This 
factor determines the probability of selecting a correct pair 
from a trial. Specifically, the probability of picking a correct 
pair is 2 out of 4 in the 2× 2 condition, 3 out of 9 in the 3× 3 
condition, and 4 out 16 in the 4× 4 conditions. Note that if 
subjects select an irrelevant pair, there are two possible 
consequences: (1) they select the corresponding correct pair 
later and based on the mutual exclusivity constraint, exclude 
the wrong pair; (2) they never receive evidence to justify the 
pairing so based on their limited exposure, they could either 
believe that the pairing is correct or ignore this pair in 
testing. To sum up, whenever subjects select a wrong pair, 
which is almost unavoidable, the pairing would either 
require their justification in subsequent trials to correct it in 
the best case or lead to wrong answers in testing in a worse 
case. Therefore, the probability of selecting a correct pair 
plays a key role in learning, no matter what learning 
algorithms are applied to those hypothesized pairs later. 
     The second factor is the total number of unique pairs. We 
found that the 9 pairs/12 repetitions condition is not 
significantly better than the 18 pairs/6 repetitions condition. 
One plausible reason is that the probabilities of selecting a 
correct pair from a trial in these two conditions are the 
same. With this low probability (=0.25), word learners 
would be likely to randomly select a wrong pair from a trial 
and later have to exclude it. From our simulation, we also 
found that with 4-pair in a trial and 9 word-picture pairs in 
total, it is more likely that two word-picture pairs (e.g. 1p - 

1w  and 2p - 2w ) co-occur more frequently across multiple 
trials in the 9 pairs/12 repetitions condition compared with 
selecting 4 out of 18 in the 18 pairs/6 repetitions condition. 
If word learners happen to select a wrong pairing (e.g. 1p - 

2w  or 2p - 1w ) in multiple times from those trials, then they 
may “confidently” reach wrong conclusions. Thus, the 
fewer number of word-picture pairs in total causes irrelevant 
(false) word-referent pairs to repeatedly co-occur in multiple 
trials, which may mislead word learners if they happen to 
pay attention to wrong pairings. This in fact makes the 
learning situation harder but not easier. The claim that more 
pairs are better than fewer in statistical learning sounds 
quite controversial. This is somehow an intriguing and 
compelling finding.  

922



Modeling Statistical Cross-Situational Learning 
Our model encodes a very fundamental (and rather simple) 
mechanism – building one hypothesized pair from a trial, 
saving it in the memory, gradually adding more pairs, 
justifying the correctness of a hypothesized pair in 
subsequent trials, and removing conflicting pairs if needed. 
However, similar to adult learners, the model achieved quite 
impressive performances in highly ambiguous learning 
conditions, suggesting that a powerful statistical learning 
capability can be achieved by a relatively simple learning 
mechanism. We also argue that this general learning 
principle has been applied more or less by human subjects. 
They may differ in the number of hypothesized pairs they 
could select and memorize from a trial, or in the way to 
decide which pairs to be selected, or in how many 
hypothesized pairs could be saved in the memory, or in 
when and how to justify those hypothesized pairs in the 
memory. Nonetheless, the general learning mechanism 
could be quite similar to the model described above and all 
those factors mentioned above can be treated as the 
parameters of this general learning model. Two important 
mechanisms that make the model work more effectively are 
(1) one-word-to-one-object constraint and (2) using learned 
pairs to filter new input. We noticed that the one-to-one 
constraint is especially useful in learning. Compared with 
previous studies, we demonstrate, both experimentally and 
computationally, the role of this constraint across multiple 
trials (but not in a single moment), the learning situation 
that is more representative of naturalistic learning 
environments that children are situated in. The fact that the 
mechanism encoding with this type of constraint achieved 
similar learning performance with human subjects indicates 
the plausibility that subjects utilize at least similar (if not 
identical) constraints. Moreover, by feeding the model with 
the same stimuli that subjects were exposed in the training 
phases and asking the model to do the same tests after 
training, we can demonstrate moment-to-moment changes 
in statistical learning processes that human subjects might 
experience.  

Conclusion 
Previous studies show that statistical learning is applied in 
various learning tasks, such as speech segmentation, 
syntactic learning and visual processing. In light of this, we 
study to what degree language learners can acquire word-to-
world mappings through statistical regularities in co-
occurring visual-auditory streams. We showed that a 
significant amount of lexical knowledge can be learned 
through statistical learning. Moreover, we systematically 
manipulated different statistical properties of the stimuli and 
measure the learning capacities of adult learners in various 
learning conditions. To understand underlying learning 
mechanisms, we developed a computational model that was 
fed with the same stimuli of human subjects, and simulated 
learners achieved similar performances as human learners. 
In this way, we obtained a more complete picture of 
statistical word learning. Our next step is to extend current 

studies to infants and young children to investigate how 
well they could utilize statistical cues to tackle the word-to-
world mapping problem.  
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