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Abstract

There are an infinite number of possible word-to-world
pairings in naturalistic learning environments. Previous
proposals to solve this mapping problem focus on linguistic,
social, representational constraints at a single moment. This
paper investigates a cross-situational learning strategy based
on computing distributional statistics across words, across
referents, and most importantly across the co-occurrences of
these two at multiple moments. We briefly exposed adults to a
set of trials containing multiple spoken words and multiple
pictures of individual objects with no information about word-
picture correspondences within a trial. Nonetheless, subjects
learned over trials the word-picture mappings through cross-
trial statistical relations. Different learning conditions
compared the degree of within-trial reference uncertainty, the
number of trials and the length of trials. We also propose and
implement a computational model and feed it with the same
training data used in different learning conditions in
experimental studies, to shed light on the possible underlying
mechanism of statistical learning. Overall, these results
suggest that statistical cross-situational learning may be one
of fundamental mechanisms to tackle the word-to-world
mapping problem.

Introduction

Children learn words in ambiguous contexts, with multiple
word candidates for any referent and multiple referent
candidates for any word. For example, a child may see a
boy, a bat, a ball, and a dog and hear “Look at the boy. The
dog wants his ball.” This is the word-to-world mapping
problem (e.g. Gleitman, 1990; Bloom, 2000; Smith, 2000).
How could a learner who knows no words associate object
names with the right referents? Developmentalists have
studied a number of solutions to this problem, including
ways in which the mature partner limits words and referents
and directs attention to the relevant referent (Baldwin, 1993;
Tomassalo, 2000), and internal perceptual and conceptual
constraints (Genter, 1982). This paper is concerned with an
additional solution, cross-situational statistical learning, a
process in which statistics are calculated across different
learning instances to determine across multiple experiences,
the most likely word-referent mappings. We are also
interested in how internal constraints, such as whole object
assumption or mutual exclusivity, may be realized or
embedded in these mechanisms.

Prior research has concentrated on in-the-moment
solutions to the mapping problem. For example, the mutual
exclusivity constraint (Markman, 1990) is hypothesized to
direct children to map novel words to unnamed referents. If
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there are two objects present and one has a known name, the
child should map a novel name to the second object, solving
the word-referent mapping problem in that moment. Does
this kind of constraint also contribute, perhaps in a graded
way, over multiple encounters with words and potential
referents? Children could use broader statistical regularities,
keeping track of the associations among many words and
referents across trials, using these, and adjusting these, as
they encounter potential words and referents. The idea that
the learning system may effectively calculate broad cross-
situational statistics is suggested by recent findings on
statistical learning in infants (Saffran, Aslin, & Newport,
1996). Infants (and children, adults, and nonhuman
primates) readily learn transitional probabilities among
segments in a temporal stream of syllables, tones, or visual
events (Saffran, Johnson, Aslin, & Newport, 1999; Hauser,
Newport, & Aslin, 2001; Newport & Aslin, 2004; Conway
& Christiansen, 2005). All these studies concerned
sequential statistics in streams of repeating segments. Here
we examine a different kind of statistical learning — the
mapping of units between a word and a referent stream.

Because this is the first investigation of this kind of
statistical learning, we chose to study adult language
learners, asking whether they could compute such statistics
over many potential words and referents and asking the
nature of the mechanisms that underlie such learning. We
first present 2 experiments examining the capacities and
limits of this learning. We then present a simulation study
that explicitly examines how internal constraints such as the
proposed mutual exclusivity assumption may be embedded
in these statistical mechanisms.

Experiment 1

The power of statistical learning to overcome the mapping
problem rests on the calculation of cross-situational
statistics -- not just tracking, for example, the co-
occurrences of ““ball" with ball or ““cup” with cup but the
co-occurrences of ““ball" with a scene containing balls and
dogs, balls alone, cups, cups and dogs, and so forth. Is this
kind of computational mechanism at all feasible for
humans? To answer this question, adult subjects were
exposed to multiple trials wherein they heard multiple
spoken words while looking at multiple pictures of objects.
There is a perfect one-to-one mapping of words to referents
such that each of the heard words maps to one of the
objects. However, each trial consists of multiple words and
multiples pictures of objects and there is no information



within a trial about the associations between words and
referents (including no spatial or temporal cues). We
manipulated the degree of ambiguity of each learning trial,

presenting in one condition 4 words and 4 possible referents
on each trial (16 potential associations), 3 words and 3
possible referents on each trial (9 potential associations), or
2 words and 2 possible referents (4 possible associations).

Method

Participants. 38 undergraduate and graduate students at
Indiana University were tested in the experiment. Subjects
received course credits or $7 for their participation.

Stimuli. Subjects were exposed to three learning conditions,
each of which included 18 novel word-object pairs. In total,
stimuli consisted of 54 visual-audio pairs in three
conditions. The potential words were generated from a
computer program to sample broadly from the space of
phonotactically probable English. These artificial words
were then produced by a synthetic female voice, presented
in a monotone. 54 pictures of uncommon objects served as
the visual input. The training trials were generated by
pairing each word with a single picture. For each training
trial, some number (depending on condition) of word-
referent pairs were selected. Specifically, on each trial the
referents were simultaneously presented on the screen. The
names were then presented; however, the temporal order of
the spoken names was not related in any systematic way to
the spatial location of the referents. This is illustrated for a
condition with 2 word-referent pairs and for a condition
with 4 word-referent pairs in Figure 1. A 1000 ms silence
was inserted between spoken words.
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(a) 2 X 2 condition (b) 4 X 4 condition
Figure 1: Subjects saw multiple pictures while hearing multiple
words on each trial, and were asked to find which spoken word
is paired with which picture.

In total, there were three conditions determined by the
number of words and referents presented on each trial: 2X?2
(2 words and their corresponding referents), 3X3 (3 words
and their corresponding referents), and 4X4 (4 words and
their corresponding referents). In each condition, there were
18 unique word-picture pairs, and each unique word and
corresponding unique referent were presented on a total of 6
training trials. This means, as shown in Table 1, that the
total number of trials (of 2 pairs, 3 pairs or 4 pairs) is
different over the three conditions. In order to keep the total
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training time (summed over all trials) constant, we also
varied, as shown in Table 1, the length of time of each trial.

Table 1: three learning conditions in Experiment 1.
condit | # of |# of occ. |# of | time per |total
ion total per words frials | trial time
words (sec)
2X2| 18 6 54 6 324
3X3 | 18 6 36 9 324
4X4 | 18 6 27 12 | 324

Procedure. Visual stimuli were presented by 17 inch LCD
flat panel screen and the sound was played by a pair of
speakers connected to the same Windows PC. Subjects were
instructed to map the pictures of objects showed on the
computer screen onto the spoken words in a “nonsense”
language. They were told that multiple words and pictures
co-occurred on each individual trial and their task was to
figure out which word went to which picture across multiple
trials. Subjects were asked to participate in three sessions
sequentially that corresponded to the three learning
conditions. The order of sessions was counterbalanced.
After each training session, subjects received a four-
alternative forced-choice test consisting of 18 trials. For
each testing question, subjects heard one word and were
asked to select the corresponding picture from four options

on the computer screen.
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Figure 2: The results of three learning conditions in Experiment 1.
Error bars reflect standard errors.

Results and Discussion

The three conditions present learners with different degrees
of in-trial ambiguity but the same across trial (for a perfect
statistical learner) certainty of word-referent pairings. The
4X4 condition —with four labels and four candidate
referents for each learning moment (and thus 16 potential
associations)— presents the greatest in-trial uncertainty, the
3 X3 condition next, and the 2 X2 condition least. As shown
in Figure 2, in-trial uncertainty appears a relevant factor
(ANOVA test, F(2,74)=76.069, p<0.001): Learners were
better able to discover the correct word-referent in the 2X?2
condition (M=15.897, SD=2.506) and least able in the 4X4
condition (M=9.461, SD=2.907) with performance in the
3X3 condition falling in between (M=13.692, SD=3.507).
However, the most important result is that in all conditions,
including 4 X4, subjects performed reliably above chance
(t(37)=8.785,p<0.001, one-tailed, for 4X4). Given the in-
trial ambiguity, they must be calculating statistics across
trials.



There are a number of potential explanations of the
differences among the three conditions, including the central
variability of degree of in-trial uncertainty but also the
additional necessary confoundings of numbers of trials and
length of trial. We investigate these factors in Experiment 2.

Experiment 2

Experiment 2 was designed to replicate the findings in
Experiment 1 and further investigate under what
circumstances, subjects would be able to achieve
significantly better performance in the most ambiguous
condition of Experiment 1, the 4X 4 condition in which each
trial offered 16 possible word-referent associations. In
contrast to Experiment 1, and as summarized in Table 3, we
probe the nature of statistical learning by manipulating two
aspects of the training regime: (1) the number of
repetitions of each word-referent pair and (2) the total
number of word-referent pairs to be learned.

Method

Participants. 28 undergraduate students at Indiana
University were tested in this experiment. None of them
participated in Experiment 1.

Stimuli. all three conditions in Experiment 2 use the 4X4
presentation of 4 words and 4 pictures on each trial.
However, in the 9 words, 8 repetitions condition, subjects
attempt to discover a total of 9 word-referent pairs each
repeated 8 times over the course of training. In the 9 words,
12 repetitions condition, subjects attempt to discover 9
word-referent pairs but are given 4 additional repetitions of
each word-referent pair. Finally, the third condition is a
replication of the 4X4 condition of Experiment 1; there are
18 word-referent pairs to be learned and 6 repetitions of
each. In contrast to Experiment 1, total viewing time per
slide was kept constant and thus the total number of trials
and total length of the experiment varied across conditions.
Table 2 The statistics of the stimuli in 3 learning conditions.

learning # of |# of occ. |# of | time |total
condition total per trial | per |time
words | word trial

9 words/

8 repetitions 9 8 18 12 | 216
9 words/

12 repetitions 9 12 | 27 12 | 324
18 words/

6 repetitions 18 6 27 12 | 324

Procedure. The procedure is the same with that of Exp. 1.

Results and Discussion

There were 4 words and 4 pictures in a single trial in the
three conditions, which contained a high degree of
ambiguity at each individual moment (trial). However,
subjects in all conditions again discover more pairs than
expected by chance as shown in Figure 3 (t(27) > 6.4 in all
three conditions). In addition, the results in 18
words/6repetions condition of this experiment (M=9.629,
SD=3.076) are very similar to the same condition in
Experiment 1, suggesting that our results are reliable and

920

08 4

06 4

04 7

proportion correct

025] _chance

02 4

9 wordsi 8
repetitions

Figure 3: the results in three conditions in Experiment 2. Error
bars reflect standard errors.
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18 wordsi 6
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duplicable. The above two observations are quite in line
with what we expected.

However, as shown in Figure 3, in all three conditions,
subjects —in terms of the proportion of word-referent pairs
to be discovered — performed equivalently (F(2,54) = 0.052;
p<0.001). A direct comparison between 18 words/6
repetions (M=0.534, SD=0.232) and 9 words/12 repetitions
(M=0.609, SD=0.176) conditions shows that they have the
same number of trials, the same training time and the same
within-trial ambiguity. The only two different factors are:
(1) the number of unique pairs and (2) the number of
occurrences per pair, which was expected to make one
condition easier than the other. However, the results in these
two conditions are quite similar. An intuitive explanation is
that the number of co-occurring pairs plays a dominant role
in statistical word learning and other factors are not so
important conditioned on that factor. But why is that? Our
following computational study provides a plausible answer
to these behavioural data.

Simulation

The above two experiments document the performances of
adults in statistical word learning. We demonstrated what
they can do given cross-situational observations. The next
question to ask is how they do that -- the underlying
computational mechanisms that support statistical word
learning. Since there is no information at the beginnings to
guide them to discover correct word-referent pairs among
all possibilities, they must start with randomly selecting
some hypothesized pairs and then gradually justify the
correctness of those pairs later. Following this general
principle, the specific questions in statistical word learning
are (1) how hypothesized pairs are selected and stored from
a trial? (2) how subjects justify whether a word-object pair
is correct? (3) whether they use the mutual exclusivity
constraint if two working hypothesized pairs are not
compatible? and (4) whether they would use previously
learned pairs to help the learning of new pairs in subsequent
trials? The following simulation study attempts to answer
those questions by showing a dynamic picture of the real-
time learning when the simulated learner is fed with the
same stimuli that subjects were exposed.



Training:
- Randomly select one pair from Trial #1 and store it in the
memory as the first hypothesized pairing.

L- Repeat the following steps for Trial #i (2 <i < 27):
a. Check the pairs in the memory M and use those with a high
confidence score . to filter the input of the current trial 7, .

J

b. Randomly selection a new pair (p . w,, )fromr,.
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new
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gy ? 7 Mgy 2 T g My 1My
elseif , ¢ [ - pnk}and Wiy € (W, s W, seeeisW, )
Finding the pairing (, ,, )in M while , -, .
If Py €4Py-P Dy D) then increase Cwby 1,
Otherwise replace ( powoc ) with (p w 1)
else lf: pnew € {pnl ? pnz aeeeees ? pnk } and wnew € {Wnl ’ an e ’ Wnk }

Finding the pairing Do W) in M while Do = Do

If then increase by 1
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Otherwise, ~ among{p, ,p .p ,p. },»  remove  those
P, €{p, D, s p, yand randomly select an answer from

the left items

Figure 4: Statistical cross-situational learning algorithm.

Method

The 4X4 condition has been tested in both experiments and
therefore is used as an example to show how the model
works. The simulations on other conditions can be achieved
by applying the corresponding stimuli to the same model. In
the 4X 4 condition, the 18 novel word-picture pairs can be
represented as {(p,, w)),( Py, W,)yeee.(Prgs Wig) } - It the ith trial,

the

stimuli are while

T; :{p["piz’pij’p[,,’wi"Wiz’W[}’W[_,,}
AR and i,can be selected from 1 to 18. And there is no
information as to which picture goes with which name. We
also assume that the simulated learner maintains a list of
hypothesized pairings as learned results from previous trials.
Moreover, the learner assigns a confidence score for each
pair in his memory to indicate the likelihood that the pair is
correct. His lexical knowledge at the ith trial can be then
represented as a list of pairs 7 ={( P+ W +Co )»
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(Pays Wi o Jsvsens (P s W, €, )y WhIlE  p and -y can be

selected separately from 1 to 18, and . is the confidence

nm;

score of a pair. Thus, the equivalence of n, and m, indicates

a correct pairing.

At the beginnings, the model randomly picks one word
and one picture from a trial and builds a hypothesized
pairing. With more trials, more pairings are built and stored
in the memory. Two additional mechanisms are utilized to
make this learning process more effective. First, one
important constraint in adding new pairs is to maintain the
consistency of hypothesized pairings so that one word can
be associated with only one picture. This constraint
explicitly encodes the proposals such as mutual exclusivity
(Markman, 1990) and contrast (Clark, 1987) into the
learning machinery and by doing so makes the learning
more efficient because the simulated learner would
randomly select many conflicting (and therefore incorrect)
word-picture pairs across multiple trials without this
constraint. Second, the model keeps track of the confidence
score of each pair. When the confidence score of a pair is
above a certain threshold, this pair will be treated as a
learned lexicon and then used to filter out the input in
subsequent trials, which can significantly simplify the
learning task. For instance, if a learned pair occurs in a new
trial, it will be removed from the stimuli to reduce a 4-4
condition into a 3-3 condition. More importantly, subjects in
empirical studies informed experimenters that they used the
similar filtering strategy in the later part of the training
phase when they were confident that some word-picture
pairs were correct. The detailed learning algorithm is
described in Figure 4.

Results and Discussion

We applied the same training and testing data in the
previous experiments to the simulated learner. For each
condition, the simulation was run for 5000 times. Thus, we
had 5000 simulated subjects (with the same set of
parameters) for each condition. Note that the fundamental
mechanism encoded in our model is to randomly select and
store hypothesized pairs. Therefore, quite different results
were obtained on each run depending on what pairs were
selected from trial to trial. We used 5000 simulated subjects
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Fig 5: A comparison of human subjects and simulated learners.



to ensure the statistical power of this simulation study and
the results are shown in Figure 5.

We observed that in general the results in simulation are
quite in line with those of human subjects, suggesting that if
subjects apply a simple statistical learning machinery like
the one in our model, then that could explain their superior
performances. Admittedly, different subjects may apply
different learning strategies and there is no way to encode
all the possible strategies that they applied to the stimuli in a
single model. Nonetheless, the current model intends to
implement one learning device based on general principles.
The similarities of the results between human subjects and
simulated subjects are consistent not only in one condition
but among multiple conditions, indicating that the learning
principles encoded in our model are plausible to be similar
with those guiding the learning of human subjects. We will
discuss why simulated learners couldn’t achieve a better
performance in the 9 pairs/12 repetitions condition in the
next section.

We also note that one reason for individual differences in
this type of learning task is that if learners just randomly
select pairs and justify them later based on distributional
information, then the results obtained from different trials of
running the same model could be quite different. In some
cases, simulated learners may happen to pick correct pairs in
the first trials which will help subsequent learning through
the filtering mechanism. In other cases, they might pick the
wrong ones and have to justify and correct those pairs in the
later trials. Thus, the randomness in pair selection may also
cause those human subjects, who apply the same learning
mechanism on the same data, to achieve quite different
results.

General Discussion

Statistical Learning

The learning situations such as those used in the present
experiments have generally been considered too complex
for word learning. Yet the present results show that adults
rapidly discover word-referent mappings in these contexts.
The only solution to the mapping problem is the
distributional co-occurrence statistics between spoken
words and pictures of objects. Our findings in statistical
word learning extend those of Saffran, Aslin, & Newport
(1996), and Newport and Aslin (2004) in word
segmentation, Gomez & Gerken (1999) in syntax learning,
and Conway & Christiansen, (2005) in visual and tactile
sequence learning by showing that statistical learning
broadly characterizes human learning, and that human
learners can exploit cross-trial regularities over many
potential word and referent pairs.

Conclusions relevant to development are limited by our
use of adult subjects. Nonetheless, recent studies in word
learning (e.g. Gillette, Gleitman, Gleitman, & Lederer,
1999; Snedeker & Gleitman, 2004) proposed a Human
Simulation Paradigm (HSP), suggesting the value of
examining potential general learning mechanisms in adults
as a way to study the potency of various cues to word
learning that might be available in the learning environment.
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Therefore, adult studies can be used as first steps and proof-
of-concept before conducting infant studies (Saffran,
Newport, & Aslin, 1996; Newport & Aslin, 2004). In fact,
our on-going studies on young children apply the same
experimental paradigm and the same visual-auditory stimuli
used in the present study.

Key Factors in Cross-Situational Learning

The five learning conditions in two experimental studies
provided different kinds of statistical regularities for
learning. We will focus on two important factors discovered
through these manipulations.

First, the dominating factor in the -cross-situational
learning is the number of co-occurring word-picture pairs, a
result confirmed in both experiments and simulation. This
factor determines the probability of selecting a correct pair
from a trial. Specifically, the probability of picking a correct
pair is 2 out of 4 in the 2X 2 condition, 3 out of 9 in the 3X3
condition, and 4 out 16 in the 4X4 conditions. Note that if
subjects select an irrelevant pair, there are two possible
consequences: (1) they select the corresponding correct pair
later and based on the mutual exclusivity constraint, exclude
the wrong pair; (2) they never receive evidence to justify the
pairing so based on their limited exposure, they could either
believe that the pairing is correct or ignore this pair in
testing. To sum up, whenever subjects select a wrong pair,
which is almost unavoidable, the pairing would either
require their justification in subsequent trials to correct it in
the best case or lead to wrong answers in testing in a worse
case. Therefore, the probability of selecting a correct pair
plays a key role in learning, no matter what learning
algorithms are applied to those hypothesized pairs later.

The second factor is the total number of unique pairs. We
found that the 9 pairs/12 repetitions condition is not
significantly better than the 18 pairs/6 repetitions condition.
One plausible reason is that the probabilities of selecting a
correct pair from a trial in these two conditions are the
same. With this low probability (=0.25), word learners
would be likely to randomly select a wrong pair from a trial
and later have to exclude it. From our simulation, we also
found that with 4-pair in a trial and 9 word-picture pairs in
total, it is more likely that two word-picture pairs (e.g. p, -

w, and p,-w,) co-occur more frequently across multiple

trials in the 9 pairs/12 repetitions condition compared with
selecting 4 out of 18 in the 18 pairs/6 repetitions condition.
If word learners happen to select a wrong pairing (e.g. p, -

w, or p,-w,) in multiple times from those trials, then they

may “confidently” reach wrong conclusions. Thus, the
fewer number of word-picture pairs in total causes irrelevant
(false) word-referent pairs to repeatedly co-occur in multiple
trials, which may mislead word learners if they happen to
pay attention to wrong pairings. This in fact makes the
learning situation harder but not easier. The claim that more
pairs are better than fewer in statistical learning sounds
quite controversial. This is somehow an intriguing and
compelling finding.



Modeling Statistical Cross-Situational Learning
Our model encodes a very fundamental (and rather simple)
mechanism — building one hypothesized pair from a trial,
saving it in the memory, gradually adding more pairs,
justifying the correctness of a hypothesized pair in
subsequent trials, and removing conflicting pairs if needed.
However, similar to adult learners, the model achieved quite
impressive performances in highly ambiguous learning
conditions, suggesting that a powerful statistical learning
capability can be achieved by a relatively simple learning
mechanism. We also argue that this general learning
principle has been applied more or less by human subjects.
They may differ in the number of hypothesized pairs they
could select and memorize from a trial, or in the way to
decide which pairs to be selected, or in how many
hypothesized pairs could be saved in the memory, or in
when and how to justify those hypothesized pairs in the
memory. Nonetheless, the general learning mechanism
could be quite similar to the model described above and all
those factors mentioned above can be treated as the
parameters of this general learning model. Two important
mechanisms that make the model work more effectively are
(1) one-word-to-one-object constraint and (2) using learned
pairs to filter new input. We noticed that the one-to-one
constraint is especially useful in learning. Compared with
previous studies, we demonstrate, both experimentally and
computationally, the role of this constraint across multiple
trials (but not in a single moment), the learning situation
that is more representative of naturalistic learning
environments that children are situated in. The fact that the
mechanism encoding with this type of constraint achieved
similar learning performance with human subjects indicates
the plausibility that subjects utilize at least similar (if not
identical) constraints. Moreover, by feeding the model with
the same stimuli that subjects were exposed in the training
phases and asking the model to do the same tests after
training, we can demonstrate moment-to-moment changes
in statistical learning processes that human subjects might
experience.

Conclusion

Previous studies show that statistical learning is applied in
various learning tasks, such as speech segmentation,
syntactic learning and visual processing. In light of this, we
study to what degree language learners can acquire word-to-
world mappings through statistical regularities in co-
occurring visual-auditory streams. We showed that a
significant amount of lexical knowledge can be learned
through statistical learning. Moreover, we systematically
manipulated different statistical properties of the stimuli and
measure the learning capacities of adult learners in various
learning conditions. To understand underlying learning
mechanisms, we developed a computational model that was
fed with the same stimuli of human subjects, and simulated
learners achieved similar performances as human learners.
In this way, we obtained a more complete picture of
statistical word learning. Our next step is to extend current
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studies to infants and young children to investigate how
well they could utilize statistical cues to tackle the word-to-
world mapping problem.
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