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Abstract 
Human decision making is really a two-stage process: the 
process of forming an appropriate decision problem and 
then proceeding towards its solution. Often, one needs to 
work between stages till a decision problem with 
sufficient information has been constructed. Most current 
decision theories focus on Stage 2 decision process but 
neglect Stage 1 decision process (Joyce, 1999); 
consequently, the so-called “small-grand world” problem 
(SGW) has remained an open question since Savage 
(1954).  This paper proposes a model of the reasoning 
processes underlying Stage 1 decision in the form of a 
mental decision logic (MDL) of the SGW problem, and 
give an arithmetization of its dynamics through the a 
novel use of the Gödel numbering method. It explains 
how MDL works in modeling the SGW problem; the idea 
is to use domain-specific mental predicate-argument 
structures (Braine, 1998) in transforming between the act-
state structures which are commonplace to most formal 
theories of decision.  
 

Introduction 
 

Distinction between Stage 1 and Stage 2 decision 
processesWhen a well defined decision problem is given, 
which we will explain later, we are facing a stage 2 
decision problem. The real pain for the decision-maker 
may occur during the stage 1 decision process, for during 
that period the decision-maker might still be trying to 
formulate the right decision problem. The mind is 
walking back and forth between a smaller world and a 
bigger world. There potentially exist a number of mental 
activities going on in a stage 1 decision process which 
need to be modeled and taken into account of any 
decision theory. However, as Joyce (1999) pointed out, 
most current formal decision theories neglect the stage 1 
decision process.  
 
Organization of this ReportDue to the highly 
interdisciplinary nature of the author’s research interests, 
this document contains a substantial amount of 
background material.  I will endeavor to present it clearly 
and concisely, providing only the essentials for 
understanding MDL, as I have described it herein.  
Section 2 will cover normative concepts in the decision-

theoretic literature, including a formal description of the 
SGW problem.  Section 3 will serve to give a concise 
introduction to the psychology of reasoning, with a heavy 
focus on mental predicate logic, as it has been developed 
by a number of researchers.  In section 4, we begin to 
develop mental decision logic to describe the 
cognitive/mental dynamics of small and grand-world 
interaction. .  Finally, in section 5, we give an 
arithmetization of these dynamics through the exploitation 
of various number-theoretic properties, and a novel usage 
of the Gödel numbering method.  
 

Decision Theories and the SGW Problem 
 

A number of proposals for theories of decision have 
been made by a variety of researchers throughout the 
years.  I present a very brief list of some of the most 
influential of these theories: 

 
• Von Neumann and Morgenstern (1944/1990): A 

decision problem has a two-layer structure: Choices and 
outcomes. Each choice is associated with a number of 
outcomes; thus a choice itself may serve as an event or 
may be naturally assigned an event. In a two layer 
structure, both desirability and feasibility are associated 
with an outcome. 

 
• Savage (1954/1972): A decision problem has three 

layers: action functions, states as possible descriptions of 
the world, and an (dis-positioned) outcome space. The 
three-layer structure has some advantage in that it can 
separate desirability (associated with outcomes) from 
feasibility (associated states). This three-layer structure 
requires a fourth component, the partition function in 
order to yield a set of events. We will explain why such a 
structure causes some two-folded difficulty in modeling 
the small-grand world problem (SGW). Note, this is a 
very valuable problem in nature. The SGW problem is not 
only a problem in modeling, but a problem in human 
decision-making so it has to be taken into account.  

 
• Jeffrey (1965/1983):  Collapses all aspects of a 

decision problem into propositional form.  Jeffrey is 
considered the father of the evidential tradition in decision 
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theory. Every component is transformed into a 
propositional description, allowing logic connectives, and 
enabled Ethan Bolker (1966) to establish a cleaner 
representational theorem. Jeffery’s (propositional) logic 
of decision seemingly avoided the SGW problem; but to 
my view, it merely lost it through cutting down on 
richness in representation..  

 
• Luce & Krantz, (1971): Developed an event-

conditional approach in the direction that was getting 
closer to what I deem to be psychological plausibility. 
However, new questions have been pointed out by Joyce, 
concerning the strength of the event-conditional 
treatment, and whether it loses the small/grand worlds 
distinction.  

 
• Joyce (1999): Propositional, four-layer (4-

components) approach in causal decision theory. It is also 
event conditional to claim a unified account for both 
evidential and causal theories. Joyce’s account is in the 
right direction because it is propositional and event-
conditional, and it has kept the SGW problem open. 

 
Grand-World Decisions (Syntax consistent with Joyce 

1999) A decision problem can be defined as consisting of 
four components: D = (Ω, F, S, O). Here S is a set of 
states; each state can be seen as a possible description of 
the world. F is a set of action functions such that F: S → 
O, where O is a set of outcomes. For any f ∈ F and any s 
∈ S, f(s) = O (f, s) is an outcome. Sometimes, we also call 
f(s) is an outcome, O(f, s) being dis-positioned. Ω is a 
partition function. E.g., Ω(S) = S’ is a partition of S; i.e., 
each element in S’ is a non-empty subset of S, called an 
event.  The events in S’ are mutually exclusive and 
collectively exhaustive to S. In symbolic, for any s’i and 
s’j ∈ S’, s’i ∩ s’j = ∅, and for all s’i ∈ S’, ∪ s’i = S.  

 
The syntax of an axiomatic decision system naturally 

includes a set of axioms. Some axioms are instrumental, 
which promise what kinds of action functions may be 
admitted (e.g., constant action in Savage’s system). Some 
axioms are about preference ordering (e.g., non-triviality 
axiom preserves the existence of partial ordering). It 
involves a great deal of theoretical issues about 
axiomatization, which is beyond the concern of our 
current discussion. What is important here is that 
Savage’s system is designed for what he calls the grand-
world decision or decision in some isolated situation. It 
assumes that the agent would take all the possible options 
into account and could evolve the partition of the states to 
the highest level of pertinent detail. Joyce provides a 
general definition of the grand-world decision problem 
below, by using a mixed language of Savage and Jeffrey   

DG = (ΩG , FG, SG, OG ) is the grand-world decision 
problem that an agent faces if and only if there is no 
proposition X, whether is in Ω or not, such that the agent 

strictly prefers (O & X) to (O & ¬X) for some outcome 
O ∈ OG.   

 
In other words, DG is the decision problem whose 

outcomes function as unalloyed goods relative not only to 
the propositions in Ω, but to all the propositions that there 
are.  When a decision problem fails this test it is a small-
world decision.  

 
 
Small-World Decisions    As Savage acknowledged, his 

system about grand-world decision is an idealization, 
which can hardly be realistic in human decision-making. 
He wrote that it is difficult to say with any completeness 
how such isolated situations are actually arrived at and 
justified (1972, p83). By analyzing the “Jones” decision 
example in his Foundations of Statistics, Savage 
suggested the term, “small world” decision problem as a 
microcosm of the grand-world situation. Note that 
switching attention to focusing on modeling small world 
decision problem, as my psychologist colleagues might 
consider, without considering grand world situation might 
not help here, as the SGW problem is actually bi-
directional. Savage seemed more interested in describing 
how move from the grand world to a small world 
situation, while Joyce concerned himself with movement 
in the other direction.  Joyce’s (1999) description is 
perhaps the clearest I could find. 

 
 Every small world decision D is a coarsening of 

the grand world problem DG, and there is always a 
sequence of refinements D, D1 D2, …,  DG  that begins with 
D and ends with DG. Choosing is really a two stage 
process in which the agent first refines her view of the 
decision situation by thinking more carefully about her 
options and the world’s states until she settles on the 
“right” problem to solve and then endeavors to select the 
best available course of action by reflecting on her beliefs 
and desires in the context of this problem. Normative 
decision theories have concentrated almost exclusively on 
the second stage of this process. Once the decision 
problem is in place they try to explain what makes the 
choice of an action rational or irrational. At this point, to 
the author, a behavioral or psychological model might not 
do any better if instead of concentrating on the grand 
world problem, it concentrates on a small-world problem 
only. The initial stage is equally important, however, and 
any complete account of human decision-making must 
have something to say about it. A formal model of the 
refinement process by Joyce can be briefly described as 
follows. Suppose one decision D+  = (Ω+, O+, S+, F+) is a 
refinement of another D = (Ω, O, S, F) just in case O+ is a 
refinement of O, S+ is a refinement of S, and F+ is a 
refinement of F. (It follows that Ω must be a subalgebra 
of Ω+). Note that psychologically, it is equally interesting 
how people move from a refined D+ decision situation to 
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a less refined decision, due to limited accessibility, 
limited working memory, or mental model construction. 
People may even go this direction purposely as part of 
their decision efforts in order to reduce their cognitive 
workload. This follows Wittgenstein’s view (1969/1972) 
that subjective certainty should play an important role in 
decision processes dealing with uncertainties. This is 
probably even closer to the truth in the information (over-
loading) age.  

 
As Joyce pointed out, “the rationality issues concerning 

the SGW problem is (a) some explanation of what it takes 
for a small-world decision maker’s estimates of her 
grand-world attitudes to be correct, and (b) an account of 
rationality that applies to both grand- and small-world 
decision making and that guarantees that any small-world 
decision maker who correctly estimates her grand-world 
attitudes, and who adheres to the law of rationality, will 
make a small-world choice that rational when viewed 
from either the grand-world or small-world perspective.” 
(1999, p77) The rationality discussions would have to do 
with the utilitarian decision semantics, which is beyond 
the scope of present paper.  

 
Structural Puzzles Concerning the SGW Problem 
 
Puzzle 1. 
By Savage, “The small-world states are in fact events in 

the grand world, that indeed they constitute a partition of 
the grand world.” (1972, p84) In the technical footnote on 
the same page, he even suggested not to insist that the 
small world have states at all, but rather to speak of a 
special class of events as small-world events. Let S be the 
set of the grand world states. The construction of a small 
world S’ from the grand world S begins with the partition 
of S into subsets, or small world states. The puzzle here is 
that with or without full knowledge about all the grand 
world states, the selected events in a psychologically 
plausible small world need not be either mutually 
exclusive or collectively exhaustive. In other words, given 
S, a small world S’ does not have to be a partition of S. In 
next section, when we formulate mental decision logic, it 
will suggest that we replace the partition function Ω by n-
place predicates, of which Ω can be treated as some 
special cases, but special cases only.  

 
Puzzle 2.  
Savage proposes two principles below to specify the 

relation between the structures of grand-world decision 
and small world decision.  

 
Principle 1. A small world consequence is a grand 

world action. Let f’ be a small-world act function, and s’ 
a small-world state or a grand world event (i.e., s’∈ S’ 
and s’ ⊆ S). Assume that f is a grand-world act function, 
which can be defined as; 

f (s) = Df  f’(s  s ∈ s’)  
 
In this sense, he also has: 
 
Principle 2. Each small world act function raises a 

grand world act.  
 
Together two principles are a bit confusing and need 

some clarification. By Principle 1, a small-world 
consequence (outcome) is based on only one small-world 
state, which is a grand world event that is only a subset of 
S. But a grand world act function should be defined on S 
but not in S. But by Principle 2, a small world act should 
raise a grand world function. My understanding is that 
what Savage means must be that a small world function f’ 
is defined on S’, taken each s’ in S’ to result in a 
consequence. Thus, a grand world act has to be defined by 
the set of small-world consequences yielded from a small 
world act function. I consulted with Joyce about my 
interpretation, and he agreed. (Personal communication, 
October, 2004).  This clarification has proved to be very 
helpful. First, in Section 5, when we try to formulate a 
mental predicate decision logic, it will require three layers 
of individual variable: variables that range over S, 
variables ranging over S’, and variable ranging over an 
event. Second, if a small world consequence is a formula, 
f(s’), a grand world act can then be represented as a set of 
formulas. As an analogy, this is parallel to a statement and 
a proof logic, respectively. In Section 6, when we try to 
do Gödel number coding, it will allow us to elegantly 
code a small world outcome as an expression, and a grand 
world act as a sequence of expressions.   

 
Puzzle 3.  
From psychological point of view, the current decision 

theories lack a mental reasoning mechanism that would 
allow a decision maker to work back and forth between 
the grand-world decision and a small world decision 
problem. Such a mechanism must be bi-directional. In 
Section 4, we will work toward a mental decision logic to 
fill this gap. The main idea is to allow bi-directional 
transformations between small-world act-event structures 
and grand-world act-state structures through mental 
predicate-argument structures.   

 
Puzzle 4.  
In Savage’s decision structure, as well as in Jeffrey’s 

logic of decision and Joyce’s causal decision theory, the 
partition function Ω is important because it guarantee the 
system to satisfy the requirements of a Boolean algebra. 
Now, as explained in Puzzle 1 above, we are going 
replace partition functions by n-place predicates, we need 
to work out the algebra structure of the resulting mental 
predicate decision logic of the SGW problem. In Section 
5, we first provides an arithmetization by applying Gödel 
number method, then show that the resulting algebra 
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structure is a ring on integers, with even numbers as its 
ideal. 

 
Mental Predicate Logic 

 
Mental predicate logic One thing that sets up mental 

model theory and mental logic theory as major competing 
approaches in psychology of reasoning is that each has its 
mental representational systems, from which predictions 
can be made. Most researchers, including Braine and 
Johnson-Laird, view the mental model representations as 
purely semantic, and mental logic representations (i.e., 
inference schemas) as purely syntactic. From the 
viewpoint of mental metalogic (Yang & Bringsjord, 2001, 
2003, and forthcoming) this is a false dichotomy that 
stands in the way of progress toward greater 
understanding of human reasoning. For example, in case 
of Braine’s mental predicate logic system, the quantified 
version of Modus Ponens is formulated as follows:  

 
 For all the x ∈ X, A(x). Therefore, for all the y ∈ 

Y, A(y), where Y ⊆ X. 
 
Here both domains X and Y are bounded by the definite 

particle “the”, which can function as a universal 
quantifier. Note that the individual domain is a semantic 
component in standard value-assignment semantics of 
first order logic. But in mental predicate logic, this 
semantic component is construed into the form of an 
inference schema; though mental logicians used to claim 
no need for a semantics in mental logic theory.   

  
Mental Decision Logic 

 
Mental Decision Logic Here, by a mental decision 

logic it does not mean some standard logic system, nor a 
complete mental decision logic accounting for any full 
decision theory, which will require a great deal of further 
research. As a starting point, the initiation of mental 
decision logic for the SGW problem given below aims to 
provide a formal language that can represent the SGW in 
a mental predicate logic format compatible with the 
formal language used in 3.1; by doing so, it will allow to 
apply mental predicate logic mechanisms sampled above 
to model the SGW problem.  

 
In the following a list of lexicons for mental decision 

logic will be given with necessary explanations 
concerning mental logic. Let S = {s1, s2, …} be the set of 
all the grand world states, write the power set of S as P(S) 
= {s’| s’ ⊆ S}, and denote a possible subset of P(S) by S’. 

  
Two kinds of constants are needed. 

(a) A set of individual state constants: a1, a2, …. Each 
state constant ai can be used to name a grand world state s 
∈ S. 

(b) Another set of individual event constants: b1, b2, …. 
Each event constant bi can be used  to name an event s’ ⊆ 
S. 

 
Three kinds of state variables are needed. 
(c) The grand state variables: x1, x2, …,  with infinite 

supply, each xn ranges over S.  
(d) Event variables: x1, x2, …; each xi ranges over a 

particular set of possible events,  
which in general are not necessarily either mutually 

exclusive or  collectively exhaustive; but an any given 
partition of S can be treated as a special case.  

(e) xi
j
 ranges over the jth event (s’ ⊆ S) in the domain of 

xi (i, j = 1, 2, …) when xi is given; otherwise,  each xi
j
 is 

being held as a frame for later assignment to range over 
the states in some possible event, or say, a subset of S.  

 
Only one kind of predicates is needed. 
(f) Ak

n
   are a n-place mental predicates, k =1, 2, ….  

 
Note that for items (c)-(f) above: As a psychological 

model, Braine’s mental predicate logic has no formal 
semantics. An individual variable alone is not assigned to 
any individual domain. Similarly, a predicate alone is not 
committed to any truth condition. When and only when a 
predicate-argument structure is formed, it will be, and has 
to be associated with some specified individual domain. 
For example, Ak

1 (x) specifies S as its domain; Ak
1 (xi) 

specifies some S’ as its domain; and Ak
j (xi

1
, .… , xi

j) 
specifies j events in S’ as a set of multiple domains (i.e., 
each xi

j is assigned an event that is a subset of S as its 
domain). 

 
Also note that for items (g) and (h) below: By current 

decision theories, act functions are always monadic. Here 
we will still keep n-place function symbols for two 
considerations. One is that this treatment may allow other 
non-logical functions to be construed into the system later 
when we have to deal with utility functions, which are 
decision-semantic. Another is that it would leave room for 
potential development of n-place act functions later when 
we can make some interesting sense of them. However, in 
modeling SGW problem, it is convenient and makes sense 
to make a primary distinction at the atomic level between 
small world acts and grand world acts. In the following, 
letter f is used to denote a grand world function and h a 
small world function (usually letter g is used for a second 
function, but we try to avoid possible confusions as we 
will use g for Gödel number function in next section). 
Attention: please keep in mind that we DO NOT want to 
make such a distinction among predicates because the 
whole point for mental decision logic is to use mental 
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predicates to manage the switching back and force 
between small- and grand- world decision components.  

 
Two kinds of act function are needed: 
(g) fk

n denote grand-world act function (k, n > 0) 
(h) hk

n denote small-world act function (k, n > 0) 
 
Thus, for example, fk

1 (x), fk
3 (x1, x2, x3), or fk

1 (xi1) 
should be well-formed formulas, and hk

n (xi) should be 
well-formed formulas in mental decision logic, while 
hk(xi) and fk(xi) would not. It is easy to set up formation 
rules for mental decision logic. Given the why of 
formatting the SGW into a logic language as specified 
above, it also not too hard to see how mental logic theory 
sampled in 3.1 may apply. However, to go beyond that, it 
would demand certain efforts to formulate other decision 
components. These duties are beyond the call of the 
present paper. 

 
Processing Program Though to fill out details 

showing how mental decision logic would work require 
much follow up research, what we have done so far 
enables us to outline how mental decision logic 
functioning in Stage 1 decision processes.  

 
First, suppose the decision maker is trying to move 

from the grand-world decision problem to a small world 
decision problem. The following steps should be passed: 

 
Step 1. Looking the grand-world states set S; he doesn’t 

have know the whole S. 
 
Step 2. Give the current propositional attitudes (beliefs, 

concerns, interests, et. al.), to frame the content of a 
predicate Ak. 

 
Step 3. Choose an n-place predicate Ak

n by clustering 
interested states in S (not necessary all the states in S) into 
n groups. In other words, a set of subset S’ is selected. 

 
Step 4. (This step could be very implicit and may or 

may not occur). Assign local state variable xj to each of 
the n groups. At this point, an n-place predicate-argument 
structure Ak

n (xi
1, …, xi

n) has been formed and n sub-
domains s’ specified. At this stage, conceptually each s’ is 
an event as a subset of the grand-world S.    

 
Step 5. For each s’ has been specified, disregard the 

grand-world statue of any s in s’, and treat s’ as a solid 
single entity. Conceptually, at this point, a grand world 
event has been transformed to become a small-world 
state. Cognitively, this is import in mental processing, 
because this conceptual transformation may cost certain 
deliberation efforts. It is not hard to speculate that this 
transformation process can only be done in an event by 
event fashion. Even after being clustered into a group, 

each grand-world state might still carry some significant 
different grand-world features. (The literature in 
psychology of categorization and conception would have 
a lot to say about this.)  

 
Step 6. Now the S’ selected in Step 3 is not longer 

treated as a collection of groups consisting of grand-world 
sates, but conceptually become the set of some small-
world states. Thus, this S’ provides the decision 
environment necessary to resist a small world decision 
problem. In formulating a decision problem in this small 
world, one needs to delete (yes, one need to delete, and 
deleting might have some deliberation cost) those local 
grand-world-state variables (xi

1, …, xi
n) used earlier, and 

replace them by initiating a new, so-called event variable 
xi that ranges over S’, which is now the set of small-world 
states.  

 
Step 7. Here we have S’ and an event variable xi, 

together they can call for different monadic predicates 
Ak

1, and generate different predicate-argument structures 
Ak

1(xi). 
 
Step 8. In turn, each resulting predicate-argument 

structure Ak
1(xi), xi ∈ S’, initiates a small world act 

function hk
1.  Each hk

1(xi) will return a local set of small 
world outcomes (consequences), and for a given s’ in S’, 
hk

1(s’) is treated as a small-world outcome. 
 
Till Step 8, we have moved from a grand-world 

decision problem to a small-world decision problem. And 
after Step 8 Stage 1 decision process ends and Stage 2 
decision process starts. Then any current decision theory 
can step in, and take over to tell either an evidential, or a 
causal, or an integrated decision theory, depends on what 
kind of utility account it associated with.  

 
Arithmetization of MDL 

 
Why arithmetization? There are two reasons behind 

providing an arithmetization of mental decision logic of 
the SGW problem, both concerning to keep the standards 
common to modern normative decision theories. One 
reason is that in the normative decision structure, Ω is a 
partition function the guarantees the resulting decision 
structure as a Boolean algebra. In mental decision logic of 
the SGW problem, we withdraw this partition 
requirement, and replace Ω by mental predicates. By 
taking this approach, the decision structure can still be 
closed under the set-theoretic union function, but is no 
longer closed under relative complement. (Consider that 
now it is possible that ∪B’≠ B.)  Though the resulting 
decision structure doesn’t have to be a Boolean algebra, 
we do need to see what algebra structure the resulting 
decision logic commits to.  
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Gödel numbering. Given that it contained non-logical 
decision-functions, the mental decision logic of the SGW 
problem tends to be a first-order theory, not first-order 
logic. There are many ways to do Gödel coding. The 
method we use below is a modified version of Mendelson 
(1979). For the mental decision-logic (MDL) described in 
Section 5, we correlate with each symbol u of MDL a 
positive integer g(u), called the Gödel number of u, in the 
following ways. 

 
 g( ( ) = 3; g( ) ) = 5; g( , ) = 7; g( ¬) = 9; g(→) = 

11 
  g (ak) = 5 + 8k for k=1, 2, … 
  g (bk) = 7 + 8k for k=1, 2, …  
  g (xn) = 11 + 8n for n = 1, 2, … 
  g (xk) = 13 + 8k for k = 1, 2, … 
  g (xk

n) = 17 + 8(2n3k) for k ≥ 1 
  g (Ak

n)  = 19 + 8(2n3k) for k ≥ 1 
  g (fk

n ) = 23 + 8(2n3k) for k ≥ 1 
  g (hk

n ) = 29 + 8(2n3k) for k ≥ 1 
 
Given an expression u1u2…ur , we define its Gödel 

number to be   
 g(u1u2…ur) = 2g(u1)3g(u2)…pr-1

g(uR) ,  
 
where pi for the  ith  prime, and p0 = 2. 
 
For example, an expression in mental decision logic of 

SGW can be small-world outcomes hk
1(xi), in which u1is 

hk
1, u2 is “(“, u3 is xi, and u4 is “)”.   
 
For an arbitrary finite sequence of expressions e1e2…er , 

we can assign a  Gödel number by setting  
 
  g(e1e2…er) = 2g(e1)3g(e2)…pr-1

g(eR) ,  
 
where pi for the  ith  prime, and p0 = 2. 
 
Interestingly, as we discussed earlier, in mental 

decision logic of SGW problem, a grand world act can be 
given as a sequence of the small-world outcomes yielded 
from the same small-world act function. For example, an 
fk can be defined by hk(xi

1), …, hk(xi
j).  

 
Thus, each symbol is assigned a unique odd number; 

each expression is assigned an even number and the 
exponent of 2 in its prime factorization is odd; while each 
sequence of expressions is assigned an even number and 
the exponent of 2 in its prime factorization is even. In 
other words, g is a one-one function from the set of 
symbols, expressions, and finite sequences of expressions 
of MDL into the set of positive integers. The power of 
Gödel number method is that by the uniqueness of 
factorization of integers into primes, a Gödel number can 
be uniquely decomposed to its factorization, and thus to 
recover the original expression or the sequence of 

expressions. (Further discussions are beyond the scope of 
this paper) 

 
A ring/ideal structure Gödel number method, as it is 

well known, is one of the main techniques created by 
Gödel in proving his completeness theorem of first-order 
theory (1931). And this method has developed to study 
algebra structures of formal systems in model theory, a 
branch of mathematical logic. It is also called number-
theoretic semantics in model theory (see Mendelson, 
1979). Below is the definition of a specific algebra 
structure (Gratzer, 1968/1979). 

 
Definition   Let R be a ring, and I is a 

subset of R. I is an Ideal of R if for any a, b ∈ I, (a − b) ∈ 
I , and for any a ∈ I and any r ∈ R, a × r ∈ I.  

 
By the definition, the set of all the integers is a ring, and 

its subset of all the even number is an Ideal.  (Gratzer, 
1979) 

 
Note that in 6.2., all the MDL symbols are coded by 

integers, of which small-world outcomes that represented 
as expressions and grand-world outcomes that can be 
represented as sequences are assigned to even numbers. 
Thus we treat the arithmetization of the MDL of SGW 
problem as a ring, the Gödel numbers of outcomes can be 
seen as its ideal. This method is also used in model 
theory, and is also called number-theoretic model of first-
order theory.  
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