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Abstract

Human decision making is really a two-stage process: the
process of forming an appropriate decision problem and
then proceeding towards its solution. Often, one needs to
work between stages till a decision problem with
sufficient information has been constructed. Most current
decision theories focus on Stage 2 decision process but
neglect Stage 1 decision process (Joyce, 1999);
consequently, the so-called “small-grand world” problem
(SGW) has remained an open question since Savage
(1954). This paper proposes a model of the reasoning
processes underlying Stage 1 decision in the form of a
mental decision logic (MDL) of the SGW problem, and
give an arithmetization of its dynamics through the a
novel use of the Godel numbering method. It explains
how MDL works in modeling the SGW problem; the idea
is to use domain-specific mental predicate-argument
structures (Braine, 1998) in transforming between the act-
state structures which are commonplace to most formal
theories of decision.

Introduction

Distinction between Stage 1 and Stage 2 decision
processesWhen a well defined decision problem is given,
which we will explain later, we are facing a stage 2
decision problem. The real pain for the decision-maker
may occur during the stage 1 decision process, for during
that period the decision-maker might still be trying to
formulate the right decision problem. The mind is
walking back and forth between a smaller world and a
bigger world. There potentially exist a number of mental
activities going on in a stage 1 decision process which
need to be modeled and taken into account of any
decision theory. However, as Joyce (1999) pointed out,
most current formal decision theories neglect the stage 1
decision process.

Organization of this ReportDue to the highly
interdisciplinary nature of the author’s research interests,
this document contains a substantial amount of
background material. I will endeavor to present it clearly
and concisely, providing only the essentials for
understanding MDL, as I have described it herein.
Section 2 will cover normative concepts in the decision-
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theoretic literature, including a formal description of the
SGW problem. Section 3 will serve to give a concise
introduction to the psychology of reasoning, with a heavy
focus on mental predicate logic, as it has been developed
by a number of researchers. In section 4, we begin to
develop mental decision logic to describe the
cognitive/mental dynamics of small and grand-world
interaction. Finally, in section 5, we give an
arithmetization of these dynamics through the exploitation
of various number-theoretic properties, and a novel usage
of the Godel numbering method.

Decision Theories and the SGW Problem

A number of proposals for theories of decision have
been made by a variety of researchers throughout the
years. I present a very brief list of some of the most
influential of these theories:

* Von Neumann and Morgenstern (1944/1990): A
decision problem has a two-layer structure: Choices and
outcomes. Each choice is associated with a number of
outcomes; thus a choice itself may serve as an event or
may be naturally assigned an event. In a two layer
structure, both desirability and feasibility are associated
with an outcome.

» Savage (1954/1972): A decision problem has three
layers: action functions, states as possible descriptions of
the world, and an (dis-positioned) outcome space. The
three-layer structure has some advantage in that it can
separate desirability (associated with outcomes) from
feasibility (associated states). This three-layer structure
requires a fourth component, the partition function in
order to yield a set of events. We will explain why such a
structure causes some two-folded difficulty in modeling
the small-grand world problem (SGW). Note, this is a
very valuable problem in nature. The SGW problem is not
only a problem in modeling, but a problem in human
decision-making so it has to be taken into account.

o Jeffrey (1965/1983): Collapses all aspects of a
decision problem into propositional form. Jeffrey is
considered the father of the evidential tradition in decision



theory. Every component is transformed into a
propositional description, allowing logic connectives, and
enabled Ethan Bolker (1966) to establish a cleaner
representational theorem. Jeffery’s (propositional) logic
of decision seemingly avoided the SGW problem; but to
my view, it merely lost it through cutting down on
richness in representation..

* Luce & Krantz, (1971): Developed an event-
conditional approach in the direction that was getting
closer to what I deem to be psychological plausibility.
However, new questions have been pointed out by Joyce,
concerning the strength of the event-conditional
treatment, and whether it loses the small/grand worlds
distinction.

* Joyce (1999): Propositional, four-layer (4-
components) approach in causal decision theory. It is also
event conditional to claim a unified account for both
evidential and causal theories. Joyce’s account is in the
right direction because it is propositional and event-
conditional, and it has kept the SGW problem open.

Grand-World Decisions (Syntax consistent with Joyce
1999) A decision problem can be defined as consisting of
four components: D = (Q, F, S, O). Here S is a set of
states; each state can be seen as a possible description of
the world. F is a set of action functions such that F: S —
O, where O is a set of outcomes. For any f € F and any s
€ S, f(s) = O ({, s) is an outcome. Sometimes, we also call
f(s) is an outcome, O(f, s) being dis-positioned. Q is a
partition function. E.g., Q(S) = S’ is a partition of S; i.e.,
each element in S’ is a non-empty subset of S, called an
event. The events in S” are mutually exclusive and
collectively exhaustive to S. In symbolic, for any s’; and
s 8,8 Ns’ =, and foralls’; e §*, Us’;=8.

The syntax of an axiomatic decision system naturally
includes a set of axioms. Some axioms are instrumental,
which promise what kinds of action functions may be
admitted (e.g., constant action in Savage’s system). Some
axioms are about preference ordering (e.g., non-triviality
axiom preserves the existence of partial ordering). It
involves a great deal of theoretical issues about
axiomatization, which is beyond the concern of our
current discussion. What is important here is that
Savage’s system is designed for what he calls the grand-
world decision or decision in some isolated situation. It
assumes that the agent would take all the possible options
into account and could evolve the partition of the states to
the highest level of pertinent detail. Joyce provides a
general definition of the grand-world decision problem
below, by using a mixed language of Savage and Jeffrey

DY = (Q°, FY, SY, 0%9) is the grand-world decision
problem that an agent faces if and only if there is no
proposition X, whether is in Q or not, such that the agent
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strictly prefers (O & X) to (O & —X) for some outcome
Oe O°.

In other words, DY is the decision problem whose
outcomes function as unalloyed goods relative not only to
the propositions in €2, but to all the propositions that there
are. When a decision problem fails this test it is a small-
world decision.

Small-World Decisions ~ As Savage acknowledged, his
system about grand-world decision is an idealization,
which can hardly be realistic in human decision-making.
He wrote that it is difficult to say with any completeness
how such isolated situations are actually arrived at and
justified (1972, p83). By analyzing the “Jones” decision
example in his Foundations of Statistics, Savage
suggested the term, “small world” decision problem as a
microcosm of the grand-world situation. Note that
switching attention to focusing on modeling small world
decision problem, as my psychologist colleagues might
consider, without considering grand world situation might
not help here, as the SGW problem is actually bi-
directional. Savage seemed more interested in describing
how move from the grand world to a small world
situation, while Joyce concerned himself with movement
in the other direction. Joyce’s (1999) description is
perhaps the clearest I could find.

Every small world decision D is a coarsening of
the grand world problem D® and there is always a
sequence of refinements D D, D, DY that begins with
D and ends with D Choosing is really a two stage
process in which the agent first refines her view of the
decision situation by thinking more carefully about her
options and the world’s states until she settles on the
“right” problem to solve and then endeavors to select the
best available course of action by reflecting on her beliefs
and desires in the context of this problem. Normative
decision theories have concentrated almost exclusively on
the second stage of this process. Once the decision
problem is in place they try to explain what makes the
choice of an action rational or irrational. At this point, to
the author, a behavioral or psychological model might not
do any better if instead of concentrating on the grand
world problem, it concentrates on a small-world problem
only. The initial stage is equally important, however, and
any complete account of human decision-making must
have something to say about it. A formal model of the
refinement process by Joyce can be briefly described as
follows. Suppose one decision D* = (Q", 0", S, F')is a
refinement of another D = (Q, O, S, F) just in case O" is a
refinement of O, S is a refinement of S, and F' is a
refinement of F. (It follows that ) must be a subalgebra
of Q). Note that psychologically, it is equally interesting
how people move from a refined D* decision situation to



a less refined decision, due to limited accessibility,
limited working memory, or mental model construction.
People may even go this direction purposely as part of
their decision efforts in order to reduce their cognitive
workload. This follows Wittgenstein’s view (1969/1972)
that subjective certainty should play an important role in
decision processes dealing with uncertainties. This is
probably even closer to the truth in the information (over-
loading) age.

As Joyce pointed out, “the rationality issues concerning
the SGW problem is (a) some explanation of what it takes
for a small-world decision maker’s estimates of her
grand-world attitudes to be correct, and (b) an account of
rationality that applies to both grand- and small-world
decision making and that guarantees that any small-world
decision maker who correctly estimates her grand-world
attitudes, and who adheres to the law of rationality, will
make a small-world choice that rational when viewed
from either the grand-world or small-world perspective.”
(1999, p77) The rationality discussions would have to do
with the utilitarian decision semantics, which is beyond
the scope of present paper.

Structural Puzzles Concerning the SGW Problem

Puzzle 1.

By Savage, “The small-world states are in fact events in
the grand world, that indeed they constitute a partition of
the grand world.” (1972, p84) In the technical footnote on
the same page, he even suggested not to insist that the
small world have states at all, but rather to speak of a
special class of events as small-world events. Let S be the
set of the grand world states. The construction of a small
world S’ from the grand world S begins with the partition
of S into subsets, or small world states. The puzzle here is
that with or without full knowledge about all the grand
world states, the selected events in a psychologically
plausible small world need not be either mutually
exclusive or collectively exhaustive. In other words, given
S, a small world S’ does not have to be a partition of S. In
next section, when we formulate mental decision logic, it
will suggest that we replace the partition function Q by n-
place predicates, of which Q can be treated as some
special cases, but special cases only.

Puzzle 2.

Savage proposes two principles below to specify the
relation between the structures of grand-world decision
and small world decision.

Principle 1. A small world consequence is a grand
world action. Let f* be a small-world act function, and s’
a small-world state or a grand world event (i.e., s’e S’
and s’ < S). Assume that f is a grand-world act function,
which can be defined as;
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f(s)=pr f(s | se s”)
In this sense, he also has:

Principle 2. Each small world act function raises a
grand world act.

Together two principles are a bit confusing and need
some clarification. By Principle 1, a small-world
consequence (outcome) is based on only one small-world
state, which is a grand world event that is only a subset of
S. But a grand world act function should be defined on S
but not in S. But by Principle 2, a small world act should
raise a grand world function. My understanding is that
what Savage means must be that a small world function
is defined on S’, taken each s’ in S’ to result in a
consequence. Thus, a grand world act has to be defined by
the set of small-world consequences yielded from a small
world act function. I consulted with Joyce about my
interpretation, and he agreed. (Personal communication,
October, 2004). This clarification has proved to be very
helpful. First, in Section 5, when we try to formulate a
mental predicate decision logic, it will require three layers
of individual variable: variables that range over S,
variables ranging over S’, and variable ranging over an
event. Second, if a small world consequence is a formula,
f(s’), a grand world act can then be represented as a set of
formulas. As an analogy, this is parallel to a statement and
a proof logic, respectively. In Section 6, when we try to
do Godel number coding, it will allow us to elegantly
code a small world outcome as an expression, and a grand
world act as a sequence of expressions.

Puzzle 3.

From psychological point of view, the current decision
theories lack a mental reasoning mechanism that would
allow a decision maker to work back and forth between
the grand-world decision and a small world decision
problem. Such a mechanism must be bi-directional. In
Section 4, we will work toward a mental decision logic to
fill this gap. The main idea is to allow bi-directional
transformations between small-world act-event structures
and grand-world act-state structures through mental
predicate-argument structures.

Puzzle 4.

In Savage’s decision structure, as well as in Jeffrey’s
logic of decision and Joyce’s causal decision theory, the
partition function Q is important because it guarantee the
system to satisfy the requirements of a Boolean algebra.
Now, as explained in Puzzle 1 above, we are going
replace partition functions by n-place predicates, we need
to work out the algebra structure of the resulting mental
predicate decision logic of the SGW problem. In Section
5, we first provides an arithmetization by applying Gddel
number method, then show that the resulting algebra



structure is a ring on integers, with even numbers as its
ideal.

Mental Predicate Logic

Mental predicate logic One thing that sets up mental
model theory and mental logic theory as major competing
approaches in psychology of reasoning is that each has its
mental representational systems, from which predictions
can be made. Most researchers, including Braine and
Johnson-Laird, view the mental model representations as
purely semantic, and mental logic representations (i.e.,
inference schemas) as purely syntactic. From the
viewpoint of mental metalogic (Yang & Bringsjord, 2001,
2003, and forthcoming) this is a false dichotomy that
stands in the way of progress toward greater
understanding of human reasoning. For example, in case
of Braine’s mental predicate logic system, the quantified
version of Modus Ponens is formulated as follows:

For all the x € X, A(x). Therefore, for all the y €
Y, A(y), where Y < X.

Here both domains X and Y are bounded by the definite
particle “the”, which can function as a universal
quantifier. Note that the individual domain is a semantic
component in standard value-assignment semantics of
first order logic. But in mental predicate logic, this
semantic component is construed into the form of an
inference schema; though mental logicians used to claim
no need for a semantics in mental logic theory.

Mental Decision Logic

Mental Decision Logic Here, by a mental decision
logic it does not mean some standard logic system, nor a
complete mental decision logic accounting for any full
decision theory, which will require a great deal of further
research. As a starting point, the initiation of mental
decision logic for the SGW problem given below aims to
provide a formal language that can represent the SGW in
a mental predicate logic format compatible with the
formal language used in 3.1; by doing so, it will allow to
apply mental predicate logic mechanisms sampled above
to model the SGW problem.

In the following a list of lexicons for mental decision
logic will be given with necessary explanations
concerning mental logic. Let S = {s;, s,, ...} be the set of
all the grand world states, write the power set of S as P(S)
= {s’| s’ = S}, and denote a possible subset of P(S) by S’.

Two kinds of constants are needed.
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(a) A set of individual state constants: a,, a,, .... Each
state constant a; can be used to name a grand world state s
e S.

(b) Another set of individual event constants: by, b, ....

Each event constant b; can be used to name an event s’ C
S.

Three kinds of state variables are needed.

(c) The grand state variables: x', X%, ...,
supply, each x" ranges over S.

(d) Event variables: x;, X;, ...
particular set of possible events,

which in general are not necessarily either mutually
exclusive or collectively exhaustive; but an any given
partition of S can be treated as a special case.

(e) x{ ranges over the j" event (s’ < S) in the domain of
x; (i, j =1, 2, ...) when x; is given; otherwise, each x/ is
being held as a frame for later assignment to range over
the states in some possible event, or say, a subset of S.

with infinite

; each x; ranges over a

Only one kind of predicates is needed.
(f) 4" are a n-place mental predicates k =1, 2, ....

Note that for items (c)-(f) above: As a psychological
model, Braine’s mental predicate logic has no formal
semantics. An individual variable alone is not assigned to
any individual domain. Similarly, a predicate alone is not
committed to any truth condition. When and only when a
predicate-argument structure is formed, it will be, and has
to be associated with some specified individual domain.
For example, 4,' (x) specifies S as its domain; A4 (x)
specifies some S’ as its domain; and 4y (xil, )
specifies j events in S’ as a set of multiple domains (i.e.,
each x/ is assigned an event that is a subset of S as its
domain).

Also note that for items (g) and (h) below: By current
decision theories, act functions are always monadic. Here
we will still keep n-place function symbols for two
considerations. One is that this treatment may allow other
non-logical functions to be construed into the system later
when we have to deal with utility functions, which are
decision-semantic. Another is that it would leave room for
potential development of n-place act functions later when
we can make some interesting sense of them. However, in
modeling SGW problem, it is convenient and makes sense
to make a primary distinction at the atomic level between
small world acts and grand world acts. In the following,
letter f is used to denote a grand world function and h a
small world function (usually letter g is used for a second
function, but we try to avoid possible confusions as we
will use g for Godel number function in next section).
Attention: please keep in mind that we DO NOT want to
make such a distinction among predicates because the
whole point for mental decision logic is to use mental



predicates to manage the switching back and force
between small- and grand- world decision components.

Two kinds of act function are needed:
(g) " denote grand-world act function (k, n > 0)
(h) hy" denote small-world act function (k, n > 0)

Thus, for example, £ (%), £’ (xl, X, x3), or f! (xi1)
should be well-formed formulas, and h," (x;) should be
well-formed formulas in mental decision logic, while
hi(x") and fi(x;) would not. It is easy to set up formation
rules for mental decision logic. Given the why of
formatting the SGW into a logic language as specified
above, it also not too hard to see how mental logic theory
sampled in 3.1 may apply. However, to go beyond that, it
would demand certain efforts to formulate other decision
components. These duties are beyond the call of the
present paper.

Processing Program  Though to fill out details
showing how mental decision logic would work require
much follow up research, what we have done so far
enables us to outline how mental decision logic
functioning in Stage 1 decision processes.

First, suppose the decision maker is trying to move
from the grand-world decision problem to a small world
decision problem. The following steps should be passed:

Step 1. Looking the grand-world states set S; he doesn’t
have know the whole S.

Step 2. Give the current propositional attitudes (beliefs,
concerns, interests, et. al.), to frame the content of a
predicate 4.

Step 3. Choose an n-place predicate 4," by clustering
interested states in S (not necessary all the states in S) into
n groups. In other words, a set of subset S’ is selected.

Step 4. (This step could be very implicit and may or
may not occur). Assign local state variable x’' to each of
the n groups. At this point, an n-place predicate-argument
structure 4" (x;', ..., x{") has been formed and n sub-
domains s’ specified. At this stage, conceptually each s’ is
an event as a subset of the grand-world S.

Step 5. For each s’ has been specified, disregard the
grand-world statue of any s in s’, and treat s’ as a solid
single entity. Conceptually, at this point, a grand world
event has been transformed to become a small-world
state. Cognitively, this is import in mental processing,
because this conceptual transformation may cost certain
deliberation efforts. It is not hard to speculate that this
transformation process can only be done in an event by
event fashion. Even after being clustered into a group,
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each grand-world state might still carry some significant
different grand-world features. (The literature in
psychology of categorization and conception would have
a lot to say about this.)

Step 6. Now the S’ selected in Step 3 is not longer
treated as a collection of groups consisting of grand-world
sates, but conceptually become the set of some small-
world states. Thus, this S’ provides the decision
environment necessary to resist a small world decision
problem. In formulating a decision problem in this small
world, one needs to delete (yes, one need to delete, and
deleting might have some deliberation cost) those local
grand-world-state variables (xil, ..., X;i") used earlier, and
replace them by initiating a new, so-called event variable
x; that ranges over S’, which is now the set of small-world
states.

Step 7. Here we have S’ and an event variable x;,
together they can call for different monadic predicates
A, and generate different predicate-argument structures
A (x).

Step 8. In turn, each resulting predicate-argument
structure 4,'(x;)), x; € S’, initiates a small world act
function hkl. Each hkl(xi) will return a local set of small
world outcomes (consequences), and for a given s’ in S’,
hy'(s*) is treated as a small-world outcome.

Till Step 8, we have moved from a grand-world
decision problem to a small-world decision problem. And
after Step 8 Stage 1 decision process ends and Stage 2
decision process starts. Then any current decision theory
can step in, and take over to tell either an evidential, or a
causal, or an integrated decision theory, depends on what
kind of utility account it associated with.

Arithmetization of MDL

Why arithmetization? — There are two reasons behind
providing an arithmetization of mental decision logic of
the SGW problem, both concerning to keep the standards
common to modern normative decision theories. One
reason is that in the normative decision structure, Q is a
partition function the guarantees the resulting decision
structure as a Boolean algebra. In mental decision logic of
the SGW problem, we withdraw this partition
requirement, and replace Q by mental predicates. By
taking this approach, the decision structure can still be
closed under the set-theoretic union function, but is no
longer closed under relative complement. (Consider that

now it is possible that WB’# B.) Though the resulting
decision structure doesn’t have to be a Boolean algebra,
we do need to see what algebra structure the resulting
decision logic commits to.



Godel numbering. Given that it contained non-logical
decision-functions, the mental decision logic of the SGW
problem tends to be a first-order theory, not first-order
logic. There are many ways to do Gddel coding. The
method we use below is a modified version of Mendelson
(1979). For the mental decision-logic (MDL) described in
Section 5, we correlate with each symbol u of MDL a
positive integer g(u), called the Godel number of u, in the
following ways.

g(O)=3g0))=5¢e,)=Tg =9 g-)=

g (a) =5+ 8k for k=1, 2, ...

g (b)=7+8k fork=1,2, ...

g(x")=11+8nforn=1,2,...
gx)=13+8kfork=1,2,...
g (x) =17 +8(2"3" fork> 1
g (4" =19+ 8(2"3" fork > 1
g (f") =23 +8(2"3" fork> 1
g (h") =29+ 8(2"3%) for k> 1
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Given an expression uju,...u, , we define its Godel
number to be
g(uguy...u,) = 280038y e

where p; for the i™ prime, and p, = 2.

For example, an expression in mental decision logic of
1 . . .
SGW can be small-world outcomes hy (x;), in which u;is
1 . . .
hy ', uy is “(, u; is x;, and uy is ©)”.

For an arbitrary finite sequence of expressions e;e,...¢;,
we can assign a Godel number by setting

g(ere,...e) = 28C3ED) [y &en)

where p; for the i™ prime, and p, = 2.

Interestingly, as we discussed earlier, in mental
decision logic of SGW problem, a grand world act can be
given as a sequence of the small-world outcomes yielded
from the same small-world act function. For example, an
f, can be defined by hy(x;"), ..., hy(x{).

Thus, each symbol is assigned a unique odd number;
each expression is assigned an even number and the
exponent of 2 in its prime factorization is odd; while each
sequence of expressions is assigned an even number and
the exponent of 2 in its prime factorization is even. In
other words, g is a one-one function from the set of
symbols, expressions, and finite sequences of expressions
of MDL into the set of positive integers. The power of
Godel number method is that by the uniqueness of
factorization of integers into primes, a Gddel number can
be uniquely decomposed to its factorization, and thus to
recover the original expression or the sequence of
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expressions. (Further discussions are beyond the scope of
this paper)

A ring/ideal structure  Godel number method, as it is
well known, is one of the main techniques created by
Godel in proving his completeness theorem of first-order
theory (1931). And this method has developed to study
algebra structures of formal systems in model theory, a
branch of mathematical logic. It is also called number-
theoretic semantics in model theory (see Mendelson,
1979). Below is the definition of a specific algebra
structure (Gratzer, 1968/1979).

Definition Let R be a ring, and I is a
subset of R. [ is an Ideal of R if foranya,be I, (a—b) €
I,and foranyae Iandanyre R,axre L.

By the definition, the set of all the integers is a ring, and
its subset of all the even number is an Ideal. (Gratzer,
1979)

Note that in 6.2., all the MDL symbols are coded by
integers, of which small-world outcomes that represented
as expressions and grand-world outcomes that can be
represented as sequences are assigned to even numbers.
Thus we treat the arithmetization of the MDL of SGW
problem as a ring, the Godel numbers of outcomes can be
seen as its ideal. This method is also used in model
theory, and is also called number-theoretic model of first-
order theory.
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