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Abstract

Television programs seek to attract and hold audiences in
order to show them advertisements. Audience members insist
on controlling their media experience by changing the
channel. As a result, there is great interest in understanding
the factors that lead up to and contribute to the decision to
change the channel. Many factors—related to audience
individual differences, program content, and media
structure—play a role in determining when the television
viewer opts out of one program and into another, making it
difficult to understand this dynamic behavior. A rigorous
mathematical model can help to explain some aspects of this
complex phenomenon. Based on the theoretical understanding
of channel changing behavior in the current literature, the
authors mathematically formalized a stochastic semi Markov
choice model of channel changing behavior and submit it to
empirical testing.
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“A tug of war,” this is how a popular media programming
textbook describes the relationship between television
viewers and television program services (Eastman &
Ferguson, 2006, p.3). This tug of war becomes more intense
with the increase in channel options provided by
cable/satellite services and the greater convenience of
remote controls along with other new media devices such as
Tivo. Channel changing, also called channel surfing or
grazing, is one of the largest obstacles that television
programmers have to overcome to entice and hold audiences
(Eastman & Ferguson, 2006). However, a large range of
factors related to both the audience and the channels tangle
together, making it difficult to identify the specific
processes underlying this behavior. A rigorous mathematical
model can help to disentangle this complex phenomenon.
One possible avenue for bringing clarity to this process
might be through the use of mathematical modeling.
Mathematical models are used to rigorously describe and
explain existing empirical data, derive corresponding
computational models and simulation experiments, and
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most importantly, generate and test new predictions, and
therefore test and develop theories (Bauer & Wade, 1982;
Blalock, 1969; Briten, 1970; Herman, 1967; Luce, 1970;
McPhee & Poole, 1982).

A conceptual framework for understanding channel
changing behavior was previously developed by Lang (see
Fox, Park, Grabe, & Lee, 2005; Lang et al., 2005). In this
paper, we mathematically formalize this conceptual
framework in terms of a semi Markov choice model and
begin to test it using empirical data.

Current Understanding of Channel Changing

Earlier research on channel changing behavior is primarily
descriptive, and more recently, Lang and colleagues (Lang
et al., 2005, in press) have begun to provide a conceptual
framework to explain the underlying cognitive processing of
channel changing behavior using the limited capacity theory
of mediated message processing (for a review of the theory,
see Lang, 2000; for the application to channel changing
behavior, see Fox et al., 2005; Lang et al., 2005).

Interaction between Channels and Viewers

The limited capacity framework views media consumption
as an interaction between individual audience members, the
message content, and the medium’s structural features.
Factors from both the channel/media side and the audience
side have been shown to influence whether a viewer decides
to stay or graze.

(1) Program structure format (e.g., pacing and story
length), content (e.g., emotion and genres), and context (e.g.,
air time and alternative channels) can affect channel
changing behavior (e.g., Fox et al., 2005; Lang et al., 2005;
Patzer, 1991; Walker & Bellamy, 1991). For instance,
viewers change the most during sports and the least during
pay-cable movies (Eastman & Newton, 1995), and are more
likely attracted to messages that are shorter and faster
(Bellamy & Walker, 1996; Eastman & Newton, 1995) or
with more cutting, short scenes, and shorthand visual
techniques (Bollier, 1989; Eastman & Neal-Lunsford, 1993).
Experimental studies found that channel changing patterns



are impacted by story length and production pacing (Lang et
al., 2005) as well as sensational content and tabloid style
presentation features (Fox et al., 2005).

(2) Audiences’ individual differences, including age and
gender, also play an important role in channel changing
behaviors (Fox et al, 2005; Greenberg, Heeter, & Sipes,
1988; Lang et al., 2005; Stafford & Stafford, 1996). For
example, viewers’ motivational tendencies to approach or
avoid affect whether viewers stay tuned to arousing or calm
programs (Fox et al., 2005). Younger viewers are found to
change channels more frequently than older viewers
(Eastman & Newton, 1995; Greenberg et al., 1988) and their
viewing pattern are more affected by structure and format
compared to older viewers who respond more to content
(Lang et al., 2005).

Increased Boredom Leads to Channel Changing

One hotly debated question in this area is whether channel
changing is an active or a passive behavior. There are two
different views (Ferguson & Perse, 1993). The first view
argues that frequent channel changing indicates an active
viewer who is constantly evaluating what he or she is
viewing and making personal selections based on personal
motivations and goals (e.g., Eastman & Newton 1995;
Walker & Bellamy 1991). The second view, however, is
that channel changing reflects detached, low-involvement
viewing and lower levels of attention (Moriarty, 1991; Perse,
1990, 1998).

Lang’s limited capacity theory of media processing,
suggests that active viewers would show a consistently high
level of cognitive effort while viewing television. That is,
they would be attending to the content and continuously
making decisions about whether to stay with the old or
switch to something new. Passive viewers, on the other
hand, would display a different pattern of cognitive effort,
where viewers watch a program until they lose interest or
their boredom increases to some threshold at which point
they change the channel. Thus, if people view passively, we
might see attention and arousal levels decreasing
monotonically up to some point which, when reached, leads
to a channel change at which point attention and arousal
should increase as the viewers orient themselves to the new
content (Lang et al., 2005). A recent experimental study
using psychophysiological measures to study viewers’
levels of cognitive effort (indexed by heart rate) and
physiological arousal (indexed by skin conductance), and
using recognition to measure information encoding,
supported the passive viewing model (decreasing attention
and arousal) rather than the active model (continuously high
levels of attention and arousal) (Lang et al., 2005).

Modeling Channel Changing Behavior

The significance of channel changing behaviors to industry
practice is obvious from the intensive competition between
channels in the current hypercompetitive media
environment. The most popular audience analysis measures
provided by media research companies (e.g., ratings, shares,
average quarter-hour audience, and cumulative audience
estimate) are mostly interested in two variables that are
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related to channel changing—channel choice and viewing
duration. As introduced earlier, previous research has tried
to draw a picture of who watches what channels and why
they watch or change. The model proposed here attempts to
define the passive viewing model in a rigorous
mathematical theorization to bridge our existing scholarly
understanding of channel changing behavior to the two most
interested variables in the industry: channel choice and
viewing duration.

The model, called ChaCha, after the first three letters of
“channel” and “changing” is based on a semi-Markov
Model (Bhattacharya & Waymire, 1990; Cox & Miller,
1965), this model conceives of different channels as states
of the Markov chain and of switching between channels as
transitions between states, which are driven by individual
viewer’s interest or boredom in each channel. A strength of
the semi-Markov Model is that it provides a model of not
only the choice probabilities, but also the distribution of
time between transitions (Bockenholt, 2005). This flexibility
is necessary for modeling channel changing behavior where
time durations between channel switches vary extensively.
The model mathematically formalizes channel attraction and
strength, boredom with a channel, learning from a channel,
and finally predicts the choice of channel and viewing
duration for a given channel.

Choices of Channel

The probability of choosing any “new” channel during a
switch is given by a logistic ratio of strength model, which
is commonly used to model choice behaviors (Bockenholt,
2005). Table 1 demonstrates a sample of data to be modeled.
The left column lists channels that a viewer sequentially
watched and the right column shows the duration of
watching each channel.

Table 1: Channel choice and time durations.

Channel Time
Co to

C t

Cy t
Cini tit1
CN N

The logit model of probabilities of choosing any “new”
channel is defined as the following. First, we define x;(k) as
the attractiveness of channel j for the k-th row of the above
table, which is the attraction score used to predict the k-th
switch after viewing k-1 previous channels. The logit model
uses a ratio of strengths of the states to compute choice
probabilities, and the strengths must be positive to guarantee
that the ratio is a probability, which ranges between zero
and one. Therefore channel attraction scores (on a
positive—negative scale) are transformed into strength
scores (from zero to infinity) by exponential transformation,
vj(k) = exp[x;(k)], which defines the strength for the channel
J to predict the k-th switch.



If a viewer is watching channel i and decides to switch,
then the viewer must switch to some other channel j # i.
Suppose the i-th channel is the current channel before the k-
th switch, which is denoted C,; = i. The probability of
choosing channel j for the k-th switch is

v, (k)

PRAGH

1#i

Here, Pr; is a conditional probability—the probability of
choosing channel j on the k-th switch, given channel i is the
channel viewed before this switch. The numerator is the
strength of the channel j, and the denominator is the sum of
strengths of all channels except for currently viewed
channel i. That is, the probability of choosing a “new”
channel depends on how large the strength of the “new”
channel is compared to the sum of strengths of all channels
except for the currently watched channel.

(M

Pr, =Pr[C, = j|C\, =1]

Channel Attraction

A viewer’s interest in a channel continuously changes based
on information about what is shown on alternative channels.
This process basically can be viewed as a simple learning
from experience—to learn what is shown on channels and
pick the one that is interesting. Our model adopts one of the
most established and commonly used learning models in
psychology— the reinforcement learning model (Busemeyer
& Myung, 1992; Erev & Roth, 1998). Format features of
channels (in our data, pacing and story length) have
corresponding parameters and can affect the learning rate,
that is, the update of interest in a channel. The learning
process is defined as the following:

On one hand, if channel i is watched before the A-th
switch, it produces a change in the attraction of that channel:

x,(k)=x,(k=1)+ DS, + D,3, + D,D,f3;, @)

where £, B>, and f; are the change of attraction of channel i
produced by the features of the channel. In our case, two
features (pacing and story length), dummy coded by D; and
D,, are included. The items of D,;f; and D,f, are the main
effects of these two channel features on channel attraction.
The interaction effect is also considered by including the
D;D,f;. On the other hand, if channel j is not watched
before the k-th switch, then this produces a change in the
attraction of channel j too, where a is the change:

x(k)y=x;(k-1)+a (3)

Boredom and Viewing Duration

This is assumed to be determined by a diffusion process,
which is commonly used in cognitive psychology to model
response time (Busemeyer & Johnson, 2004; Ratcliff &
Rouder, 1998; Ratcliff & Smith, 2004). The viewer begins
with some initial interest in a channel, but then starts to drift
and lose interest in that channel. This loss of interest (i.e.,
boredom) increases stochastically across time until it
reaches a threshold at which point of time the viewer
decides to switch to another channel. The process is
stochastic because of continuing variations of television
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program content or structure across time (e.g., emotional
scenes, personal relevant information, and production
effects). The mean rate of increase in boredom is inversely
related to the strength of the channel.

Suppose that the i-th channel is being viewed and it has
strength v;. Let #(@0) denote the beginning of a viewing
period and let B(0) = 0 represent the boredom at #(0). Define
time ¢ as the viewing duration on a channel, and let B(?)
represent the boredom after time ¢. Let 4 represent a small
unit of time. Then, the random walk model (Luce, 1986) has

B(t+h)=B(t)+h-v, +e&(t+h), 4

where g(t+h) is an independent error with a variance equal
to h-0°. The random walk process continues to drift until the
boredom crosses a threshold 8. The process stops as soon as
the threshold is reached and then the channel is changed.
This process is illustrated in Figure 1.

B
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Figure 1: View durations differ for channels with different
strengths.

If the small time step /4 is allowed to approach zero to
produce a continuous time diffusion process, then the
distribution of stopping times or the viewing durations, as
described above, are a Wald distribution, with its probability
density function defined as

1

A 2 A
) exp[—

f(t):(2m3 Zﬂzf(t_lu) ]a

where u is the mean of the distribution, A is the threshold for
change divided by the standard deviation units of noise, and
the probability density is defined as a function of time
duration ¢ (Luce, 1986, p.509).

What is worth mention is, the mean of the distribution of
viewing durations, g, can be interpreted in terms of the
strength of the currently watched channel (v;) and the
threshold bound for changing channels (6). To see this,
consider a simpler case in which the variance of the error is
set to zero, = (0. Then the random walk model is not
random anymore, and the boredom increases linearly across
time like a car traveling at constant speed for some fixed
distance to a destination. In this simple example, calculating
the time to reach the destination is familiar: time =
distance/speed. To draw an analogy between the channel
changing process and car traveling, the time to travel is
identified with the mean of viewing durations, g, the

®)




distance to travel is just the threshold bound 6, and the
speed of travel is the mean rate of increase in boredom
which is inversely related to the strength of channel i, that is,
v!. Thus we have the following relationship between 1, 6,
and v;’, as illustrated in Figure 1:

ﬂ:iq:"i'a'

This equation is intuitive. If a channel is attractive and has
large strength, then the boredom grows slowly and viewers
stay on the channel longer, and if a channel is not attractive
and has small strength, then boredom grows quickly and
viewers change channels more frequently. Thus the mean of
the distribution of viewing durations is directly related to
the attractiveness and strength of the channel. As shown in
Figure 1, suppose there are two channels, 1 and 2, and
channel 1 is less attractive and has smaller strength than
channel 2 (v; < v,). Then, the boredom experienced while
watching channel 1 grows more quickly than while
watching channel 2. According to equation (6), the time it
takes to reach the same threshold & are ¢; = v;-@ for channel
1 and ¢, = v,-@ for channel 2, which is not the same, ¢, < ¢,,
as shown in Figure 1.

In addition, in the ChaCha model, the Wald distribution
parameter is the threshold bound in standard deviation units
of noise, A = (0 /0)’. With others equal, individuals with a
larger value on this parameter will tend be more persistent
and stick to a channel longer even in the face of boredom.
Increasing A (i.e., higher &) produces longer viewing
durations. This is portrayed by Figure 2. Even with the same
channel strength (v;= v,=v), a viewer with higher threshold
6, (6, > 6)), stays on the channel longer ¢, (¢, > ¢;).

Therefore, in addition to rigorous predictions and tests,
another benefit of this modeling effort is to provide a
theoretically based individual difference measure. The
model can be fitted to each individual’s data by finding the
model parameters that maximize the likelihood of the
observed choices and viewing durations. These parameters
include the learning rate parameter and the threshold
parameter for each individual. It is then possible to examine
how these parameters vary across age, gender, and other
specific populations.

(6)

The Dynamic Process

The meaning of being “dynamic” is twofold for this model.
First, within one channel, attraction and strength of the
channel continuously changes, and boredom of the viewer
changes correspondingly. That is, learning about a channel
is dynamic and stochastic, which is modeled as a diffusion
process and is defined by the updating formulas of channel
attraction (equations (2) and (3)) and illustrated by Figure 1
and 2. Second, the processing across channels is also
dynamic. This is formalized by continuous changes of
boredom across channels. A viewer can be bored by a
channel and switch to other channels. After comparing with
other channels, the viewer may find that the previous
channel actually is more interesting than other options, and
switch back to it. Additionally, cross different channels, a
viewer can have different thresholds. This difference of
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boredom cross channels also dynamically changes over time,
as illustrated in Figure 3.

B()
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t

Figure 2: Viewing durations differ for viewers with different
thresholds.
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Figure 3: Dynamic changes of boredom across channels.

Alternative Models

In this paper, we compare proposed models to find out: (1)
Whether the time distribution should be Wald distribution.
Another possibility would be to assume an exponential,
rather than a Wald, distribution of viewing durations: f () =
e ™/ vs (2) Whether the learning process is necessary.
Basic models without and without learning process are
compared; and (3) Whether the interaction effect of the
channel features should be included.

Crossing these two features (presence vs. absence of the
learning process and Wald vs. exponential distribution)
yields four different models to be compared to one another.
Models without the learning process will be called basic
models, those with it learning models. The preferred model
from the four will be tested for its alternative by excluding
the interaction effect parameter £;.

Method and Results
The model along with competing models are implemented
using MATLAB (MathWorks, Inc., Natick, MA) and fitted
to empirical channel changing data from an study by Lang
et al. (2005)". Because the entire viewing time is short (15.5

1The experiment is a 2 (Story Length: long vs. short) x 2
(Production Pacing: fast vs. medium) x 2 (Age: adolescents vs.
adults) design. Age was the only between-subject factor.
Participants watched television through which they could use a
remote-control to choose among the four local news channels.
Viewers’ channel choice and viewing durations were recorded by
computers.



minutes per participant) in the experiment, the number of
data points of each participant is small. Hence, the models
are fitted to observations of all participants all at once,
instead of individually.

suggests that story length may have a larger effect on
channel changing behavior compared to the other program
feature, pacing, modeled in this study.

. Discussion
Table 2: Model comparisons. The proposed ChaCha model helps to test and develop
Model o b B3 a o (2 BIC
Exponential basic 0.83 0.77 -0.82 — — 40437.20
Exponential learning  -0.10  -0.08  0.10 0.52 — — 31836.60
Wald basic -0.04 -0.06 0.06 — 25.64 60.30 18580.00
wb 1 (no length) -0.01 — — — 24.94 58.51 18575.00
wb 2 (no pacing) — -0.04 — — 25.09 58.92 18569.00
wb 3 (no interact)  -0.01  -0.04 — — 25.27 59.37 18576.60
Wald learning -0.03 -0.06 0.05 -0.02 29.60 69.83 18585.41
wl 1 (dif learning) -0.03  -0.06  0.05 0 adolescents; 28.29 66.72 18587.81
-0.02 adult
theories about channel changing behavior. It also

The parameters that maximize the log likelihood for each
model when it is fitted to the data are used to make model
comparisons. Because the models vary in the number of
parameters and all are not nested, Schwartz Bayesian
Information Criterion (BIC) is calculated for each model to
select the preferred model. Generally, the model with the
lowest value of BIC is selected. As shown in Table 2, Wald
models perform much better than the exponential models.
The Wald basic model performs slightly better than the
Wald learning model, but the difference of BIC is very
small (18580.00 vs. 18585.41), further tests need to be
conducted to decide whether the learning process is needed
to be included in the ChaCha model at the expense of
adding one parameter .

Our data were collected from two age groups: adolescents
and adults. It is intuitive that different age groups would
demonstrate different learning rate o, but is this difference
large enough to be considered in this model? To find out
this, two models are compared: One is with the a being the
same for both age groups (the Wald learning model in Table
2); and the other estimates different learning rate a for the
two age groups (the wl 1 model in Table 2). As shown in
Table 2, both the best fitted parameters and the BIC values
are very similar for these two models, with the Wald
learning model having a slightly smaller BIC (18585.41 vs.
18587.81). Therefore, based on current data, the learning
process described in early sections may not contribute
significantly to the channel changing behaviors.

Based on this data set, the Wald basic models are
preferred because they perform better than the exponential
models and are more parsimonious than the Wald learning
models, producing relatively smaller BIC. Further tests on
Wald basic model alternatives found that when excluding
the effects of story length (the wb1 model in Table 2), the
effects of pacing (the wb 2 model in Table 2), and
interaction effect between length and pacing (the wb 3
model in Table 2), the model with only the main effect of
story length performs best, although all the best fitted
parameters and BIC values generated by those alternatives
are similar to the more complete Wald basic model. This
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demonstrates the strength of modeling in media psychology
theory building: (1) Any media use behavior is a result of
complex combination of processes and the model helps
untangle these subprocesses and allow them to be taken
apart and studied in depth. (2) The model’s parameters
provide potential measures of audiences’ individual
differences. (3) The model’s parameters also can test and
predict the effects of various treatment conditions of media
content and format features. (4) A model provides deeper
scientific understanding of the mechanisms, which can be
used to design new programs or treatments. In this paper,
the pattern of channel changing behavior of television
viewers is precisely descried by our model.

Constrained by the available empirical data, the present
paper only illustrates, to a very limited extend, these
potentials. For example, the model fitting procedure found
that learning rates for different age groups did not vary. This
may be the case in real mediated environment since
watching television is a passive activity and learning, which
is generally active, may not be a significant part of the
viewing experience. However, the absence of different
learning rates may due to the factor that we are not able to
fit the data individually. Due to the limited data available,
the model testing results are tentative. Refined models
should be developed and tested by carefully designed
experiments with longer viewing time.
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