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Abstract 

Television programs seek to attract and hold audiences in 
order to show them advertisements. Audience members insist 
on controlling their media experience by changing the 
channel. As a result, there is great interest in understanding 
the factors that lead up to and contribute to the decision to 
change the channel. Many factors—related to audience 
individual differences, program content, and media 
structure—play a role in determining when the television 
viewer opts out of one program and into another, making it 
difficult to understand this dynamic behavior. A rigorous 
mathematical model can help to explain some aspects of this 
complex phenomenon. Based on the theoretical understanding 
of channel changing behavior in the current literature, the 
authors mathematically formalized a stochastic semi Markov 
choice model of channel changing behavior and submit it to 
empirical testing. 

Keywords: channel choice; viewing duration; semi Markov 
model; dynamic model 

 
“A tug of war,” this is how a popular media programming 
textbook describes the relationship between television 
viewers and television program services (Eastman & 
Ferguson, 2006, p.3). This tug of war becomes more intense 
with the increase in channel options provided by 
cable/satellite services and the greater convenience of 
remote controls along with other new media devices such as 
Tivo. Channel changing, also called channel surfing or 
grazing, is one of the largest obstacles that television 
programmers have to overcome to entice and hold audiences 
(Eastman & Ferguson, 2006). However, a large range of 
factors related to both the audience and the channels tangle 
together, making it difficult to identify the specific 
processes underlying this behavior. A rigorous mathematical 
model can help to disentangle this complex phenomenon. 
One possible avenue for bringing clarity to this process 
might be through the use of mathematical modeling. 
Mathematical models are used to rigorously describe and 
explain existing empirical data, derive corresponding 
computational models and simulation experiments, and 

most importantly, generate and test new predictions, and 
therefore test and develop theories (Bauer & Wade, 1982; 
Blalock, 1969; Bräten, 1970; Herman, 1967; Luce, 1970; 
McPhee & Poole, 1982).  

A conceptual framework for understanding channel 
changing behavior was previously developed by Lang (see 
Fox, Park, Grabe, & Lee, 2005; Lang et al., 2005). In this 
paper, we mathematically formalize this conceptual 
framework in terms of a semi Markov choice model and 
begin to test it using empirical data. 

Current Understanding of Channel Changing 
Earlier research on channel changing behavior is primarily 
descriptive, and more recently, Lang and colleagues (Lang 
et al., 2005, in press) have begun to provide a conceptual 
framework to explain the underlying cognitive processing of 
channel changing behavior using the limited capacity theory 
of mediated message processing (for a review of the theory, 
see Lang, 2000; for the application to channel changing 
behavior, see Fox et al., 2005; Lang et al., 2005).  

Interaction between Channels and Viewers 
The limited capacity framework views media consumption 
as an interaction between individual audience members, the 
message content, and the medium’s structural features. 
Factors from both the channel/media side and the audience 
side have been shown to influence whether a viewer decides 
to stay or graze. 

(1) Program structure format (e.g., pacing and story 
length), content (e.g., emotion and genres), and context (e.g., 
air time and alternative channels) can affect channel 
changing behavior (e.g., Fox et al., 2005; Lang et al., 2005; 
Patzer, 1991; Walker & Bellamy, 1991). For instance, 
viewers change the most during sports and the least during 
pay-cable movies (Eastman & Newton, 1995), and are more 
likely attracted to messages that are shorter and faster 
(Bellamy & Walker, 1996; Eastman & Newton, 1995) or 
with more cutting, short scenes, and shorthand visual 
techniques (Bollier, 1989; Eastman & Neal-Lunsford, 1993). 
Experimental studies found that channel changing patterns 
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are impacted by story length and production pacing (Lang et 
al., 2005) as well as sensational content and tabloid style 
presentation features (Fox et al., 2005).  

(2) Audiences’ individual differences, including age and 
gender, also play an important role in channel changing 
behaviors (Fox et al, 2005; Greenberg, Heeter, & Sipes, 
1988; Lang et al., 2005; Stafford & Stafford, 1996). For 
example, viewers’ motivational tendencies to approach or 
avoid affect whether viewers stay tuned to arousing or calm 
programs (Fox et al., 2005). Younger viewers are found to 
change channels more frequently than older viewers 
(Eastman & Newton, 1995; Greenberg et al., 1988) and their 
viewing pattern are more affected by structure and format 
compared to older viewers who respond more to content 
(Lang et al., 2005).  

Increased Boredom Leads to Channel Changing 
One hotly debated question in this area is whether channel 
changing is an active or a passive behavior. There are two 
different views (Ferguson & Perse, 1993). The first view 
argues that frequent channel changing indicates an active 
viewer who is constantly evaluating what he or she is 
viewing and making personal selections based on personal 
motivations and goals (e.g., Eastman & Newton 1995; 
Walker & Bellamy 1991). The second view, however, is 
that channel changing reflects detached, low-involvement 
viewing and lower levels of attention (Moriarty, 1991; Perse, 
1990, 1998).  

Lang’s limited capacity theory of media processing, 
suggests that active viewers would show a consistently high 
level of cognitive effort while viewing television. That is, 
they would be attending to the content and continuously 
making decisions about whether to stay with the old or 
switch to something new. Passive viewers, on the other 
hand, would display a different pattern of cognitive effort, 
where viewers watch a program until they lose interest or 
their boredom increases to some threshold at which point 
they change the channel. Thus, if people view passively, we 
might see attention and arousal levels decreasing 
monotonically up to some point which, when reached, leads 
to a channel change at which point attention and arousal 
should increase as the viewers orient themselves to the new 
content (Lang et al., 2005). A recent experimental study 
using psychophysiological measures to study viewers’ 
levels of cognitive effort (indexed by heart rate) and 
physiological arousal (indexed by skin conductance), and 
using recognition to measure information encoding, 
supported the passive viewing model (decreasing attention 
and arousal) rather than the active model (continuously high 
levels of attention and arousal) (Lang et al., 2005). 

Modeling Channel Changing Behavior 
The significance of channel changing behaviors to industry 
practice is obvious from the intensive competition between 
channels in the current hypercompetitive media 
environment. The most popular audience analysis measures 
provided by media research companies (e.g., ratings, shares, 
average quarter-hour audience, and cumulative audience 
estimate) are mostly interested in two variables that are 

related to channel changing—channel choice and viewing 
duration. As introduced earlier, previous research has tried 
to draw a picture of who watches what channels and why 
they watch or change. The model proposed here attempts to 
define the passive viewing model in a rigorous 
mathematical theorization to bridge our existing scholarly 
understanding of channel changing behavior to the two most 
interested variables in the industry: channel choice and 
viewing duration.  

The model, called ChaCha, after the first three letters of 
“channel” and “changing” is based on a semi-Markov 
Model (Bhattacharya & Waymire, 1990; Cox & Miller, 
1965), this model conceives of different channels as states 
of the Markov chain and of switching between channels as 
transitions between states, which are driven by individual 
viewer’s interest or boredom in each channel. A strength of 
the semi-Markov Model is that it provides a model of not 
only the choice probabilities, but also the distribution of 
time between transitions (Böckenholt, 2005). This flexibility 
is necessary for modeling channel changing behavior where 
time durations between channel switches vary extensively. 
The model mathematically formalizes channel attraction and 
strength, boredom with a channel, learning from a channel, 
and finally predicts the choice of channel and viewing 
duration for a given channel. 

Choices of Channel 
The probability of choosing any “new” channel during a 
switch is given by a logistic ratio of strength model, which 
is commonly used to model choice behaviors (Böckenholt, 
2005). Table 1 demonstrates a sample of data to be modeled. 
The left column lists channels that a viewer sequentially 
watched and the right column shows the duration of 
watching each channel.  
 

Table 1: Channel choice and time durations. 
 

Channel Time 
C0 t0  
C1 t1  
… … 
Ck tk  
Ck+1 tk+1  
… … 
CN tN  

 
    The logit model of probabilities of choosing any “new” 
channel is defined as the following. First, we define xj(k) as 
the attractiveness of channel j for the k-th row of the above 
table, which is the attraction score used to predict the k-th 
switch after viewing k-1 previous channels. The logit model 
uses a ratio of strengths of the states to compute choice 
probabilities, and the strengths must be positive to guarantee 
that the ratio is a probability, which ranges between zero 
and one. Therefore channel attraction scores (on a 
positive—negative scale) are transformed into strength 
scores (from zero to infinity) by exponential transformation, 
vj(k) = exp[xj(k)], which defines the strength for the channel 
j to predict the k-th switch.   
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If a viewer is watching channel i and decides to switch, 
then the viewer must switch to some other channel j ≠ i. 
Suppose the i-th channel is the current channel before the k-
th switch, which is denoted Ck-1 = i. The probability of 
choosing channel j for the k-th switch is  

 .
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Here, Prk is a conditional probability—the probability of 
choosing channel j on the k-th switch, given channel i is the 
channel viewed before this switch. The numerator is the 
strength of the channel j, and the denominator is the sum of 
strengths of all channels except for currently viewed 
channel i. That is, the probability of choosing a “new” 
channel depends on how large the strength of the “new” 
channel is compared to the sum of strengths of all channels 
except for the currently watched channel. 

Channel Attraction  
A viewer’s interest in a channel continuously changes based 
on information about what is shown on alternative channels. 
This process basically can be viewed as a simple learning 
from experience—to learn what is shown on channels and 
pick the one that is interesting. Our model adopts one of the 
most established and commonly used learning models in 
psychology— the reinforcement learning model (Busemeyer 
& Myung, 1992; Erev & Roth, 1998). Format features of 
channels (in our data, pacing and story length) have 
corresponding parameters and can affect the learning rate, 
that is, the update of interest in a channel. The learning 
process is defined as the following:  

On one hand, if channel i is watched before the k-th 
switch, it produces a change in the attraction of that channel:                     

3212211)1()( βββ DDDDkxkx ii +++−= ,               (2) 

where β1, β2, and β3 are the change of attraction of channel i 
produced by the features of the channel. In our case, two 
features (pacing and story length), dummy coded by D1 and 
D2, are included. The items of D1β1 and D2β2 are the main 
effects of these two channel features on channel attraction. 
The interaction effect is also considered by including the 
D1D2β3. On the other hand, if channel j is not watched 
before the k-th switch, then this produces a change in the 
attraction of channel j too, where α is the change: 

α+−= )1()( kxkx jj     (3) 

Boredom and Viewing Duration 
This is assumed to be determined by a diffusion process, 
which is commonly used in cognitive psychology to model 
response time (Busemeyer & Johnson, 2004; Ratcliff & 
Rouder, 1998; Ratcliff & Smith, 2004). The viewer begins 
with some initial interest in a channel, but then starts to drift 
and lose interest in that channel. This loss of interest (i.e., 
boredom) increases stochastically across time until it 
reaches a threshold at which point of time the viewer 
decides to switch to another channel. The process is 
stochastic because of continuing variations of television 

program content or structure across time (e.g., emotional 
scenes, personal relevant information, and production 
effects). The mean rate of increase in boredom is inversely 
related to the strength of the channel.  

Suppose that the i-th channel is being viewed and it has 
strength vi. Let t(0) denote the beginning of a viewing 
period and let B(0) = 0 represent the boredom at t(0). Define 
time t as the viewing duration on a channel, and let B(t) 
represent the boredom after time t. Let h represent a small 
unit of time. Then, the random walk model (Luce, 1986) has               

)()()( 1 htvhtBhtB i ++⋅+=+ − ε ,  (4) 

where ε(t+h) is an independent error with a variance equal 
to h⋅σ2. The random walk process continues to drift until the 
boredom crosses a threshold θ. The process stops as soon as 
the threshold is reached and then the channel is changed. 
This process is illustrated in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1: View durations differ for channels with different 

strengths. 
 

If the small time step h is allowed to approach zero to 
produce a continuous time diffusion process, then the 
distribution of stopping times or the viewing durations, as 
described above, are a Wald distribution, with its probability 
density function defined as 
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where µ is the mean of the distribution, λ is the threshold for 
change divided by the standard deviation units of noise, and 
the probability density is defined as a function of time 
duration t (Luce, 1986, p.509).   

What is worth mention is, the mean of the distribution of 
viewing durations, μ, can be interpreted in terms of the 
strength of the currently watched channel (vi) and the 
threshold bound for changing channels (θ). To see this, 
consider a simpler case in which the variance of the error is 
set to zero, σ2 = 0. Then the random walk model is not 
random anymore, and the boredom increases linearly across 
time like a car traveling at constant speed for some fixed 
distance to a destination. In this simple example, calculating 
the time to reach the destination is familiar: time = 
distance/speed. To draw an analogy between the channel 
changing process and car traveling, the time to travel is 
identified with the mean of viewing durations, μ, the 
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distance to travel is just the threshold bound θ, and the 
speed of travel is the mean rate of increase in boredom 
which is inversely related to the strength of channel i, that is, 
vi

-1. Thus we have the following relationship between μ, θ, 
and vi

-1, as illustrated in Figure 1: 

θθμ ⋅== − i
i

v
v 1

.    (6) 

This equation is intuitive. If a channel is attractive and has 
large strength, then the boredom grows slowly and viewers 
stay on the channel longer, and if a channel is not attractive 
and has small strength, then boredom grows quickly and 
viewers change channels more frequently. Thus the mean of 
the distribution of viewing durations is directly related to 
the attractiveness and strength of the channel. As shown in 
Figure 1, suppose there are two channels, 1 and 2, and 
channel 1 is less attractive and has smaller strength than 
channel 2 (v1 < v2). Then, the boredom experienced while 
watching channel 1 grows more quickly than while 
watching channel 2. According to equation (6), the time it 
takes to reach the same threshold θ are t1 = v1⋅θ  for channel 
1 and t2 = v2⋅θ  for channel 2, which is not the same, t1 < t2, 
as shown in Figure 1.   

In addition, in the ChaCha model, the Wald distribution 
parameter is the threshold bound in standard deviation units 
of noise, λ = (θ /σ)2. With others equal, individuals with a 
larger value on this parameter will tend be more persistent 
and stick to a channel longer even in the face of boredom. 
Increasing λ (i.e., higher θ) produces longer viewing 
durations. This is portrayed by Figure 2. Even with the same 
channel strength (v1 = v2 = v), a viewer with higher threshold 
θ2 (θ2 > θ1), stays on the channel longer t2 (t2 > t1). 

Therefore, in addition to rigorous predictions and tests, 
another benefit of this modeling effort is to provide a 
theoretically based individual difference measure. The 
model can be fitted to each individual’s data by finding the 
model parameters that maximize the likelihood of the 
observed choices and viewing durations. These parameters 
include the learning rate parameter and the threshold 
parameter for each individual. It is then possible to examine 
how these parameters vary across age, gender, and other 
specific populations.  

The Dynamic Process 
The meaning of being “dynamic” is twofold for this model. 
First, within one channel, attraction and strength of the 
channel continuously changes, and boredom of the viewer 
changes correspondingly. That is, learning about a channel 
is dynamic and stochastic, which is modeled as a diffusion 
process and is defined by the updating formulas of channel 
attraction (equations (2) and (3)) and illustrated by Figure 1 
and 2. Second, the processing across channels is also 
dynamic. This is formalized by continuous changes of 
boredom across channels. A viewer can be bored by a 
channel and switch to other channels. After comparing with 
other channels, the viewer may find that the previous 
channel actually is more interesting than other options, and 
switch back to it. Additionally, cross different channels, a 
viewer can have different thresholds. This difference of 

boredom cross channels also dynamically changes over time, 
as illustrated in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Viewing durations differ for viewers with different 
thresholds. 

 

 

 

 

 
Figure 3: Dynamic changes of boredom across channels. 

Alternative Models 
In this paper, we compare proposed models to find out: (1) 
Whether the time distribution should be Wald distribution. 
Another possibility would be to assume an exponential, 
rather than a Wald, distribution of viewing durations: f (t) = 
e –t/vi / vi; (2) Whether the learning process is necessary. 
Basic models without and without learning process are 
compared; and (3) Whether the interaction effect of the 
channel features should be included.  

Crossing these two features (presence vs. absence of the 
learning process and Wald vs. exponential distribution) 
yields four different models to be compared to one another. 
Models without the learning process will be called basic 
models, those with it learning models. The preferred model 
from the four will be tested for its alternative by excluding 
the interaction effect parameter β3.  

Method and Results 
The model along with competing models are implemented 
using MATLAB (MathWorks, Inc., Natick, MA) and fitted 
to empirical channel changing data from an study by Lang 
et al. (2005)1. Because the entire viewing time is short (15.5 

                                                 
1 The experiment is a 2 (Story Length: long vs. short) × 2 
(Production Pacing: fast vs. medium) × 2 (Age: adolescents vs. 
adults) design. Age was the only between-subject factor. 
Participants watched television through which they could use a 
remote-control to choose among the four local news channels. 
Viewers’ channel choice and viewing durations were recorded by 
computers.  
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minutes per participant) in the experiment, the number of 
data points of each participant is small. Hence, the models 
are fitted to observations of all participants all at once, 
instead of individually.  
 

Table 2: Model comparisons. 

 
The parameters that maximize the log likelihood for each 

model when it is fitted to the data are used to make model 
comparisons. Because the models vary in the number of 
parameters and all are not nested, Schwartz Bayesian 
Information Criterion (BIC) is calculated for each model to 
select the preferred model. Generally, the model with the 
lowest value of BIC is selected. As shown in Table 2, Wald 
models perform much better than the exponential models. 
The Wald basic model performs slightly better than the 
Wald learning model, but the difference of BIC is very 
small (18580.00 vs. 18585.41), further tests need to be 
conducted to decide whether the learning process is needed 
to be included in the ChaCha model at the expense of 
adding one parameter α. 

Our data were collected from two age groups: adolescents 
and adults. It is intuitive that different age groups would 
demonstrate different learning rate α, but is this difference 
large enough to be considered in this model? To find out 
this, two models are compared: One is with the α being the 
same for both age groups (the Wald learning model in Table 
2); and the other estimates different learning rate α for the 
two age groups (the wl 1 model in Table 2). As shown in 
Table 2, both the best fitted parameters and the BIC values 
are very similar for these two models, with the Wald 
learning model having a slightly smaller BIC (18585.41 vs. 
18587.81). Therefore, based on current data, the learning 
process described in early sections may not contribute 
significantly to the channel changing behaviors.  

Based on this data set, the Wald basic models are 
preferred because they perform better than the exponential 
models and are more parsimonious than the Wald learning 
models, producing relatively smaller BIC. Further tests on 
Wald basic model alternatives found that when excluding 
the effects of story length (the wb1 model in Table 2), the 
effects of pacing (the wb 2 model in Table 2), and 
interaction effect between length and pacing (the wb 3 
model in Table 2), the model with only the main effect of 
story length performs best, although all the best fitted 
parameters and BIC values generated by those alternatives 
are similar to the more complete Wald basic model. This 
                                                                                  
 

suggests that story length may have a larger effect on 
channel changing behavior compared to the other program 
feature, pacing, modeled in this study.  

Discussion  
The proposed ChaCha model helps to test and develop 

theories about channel changing behavior. It also 
demonstrates the strength of modeling in media psychology 
theory building: (1) Any media use behavior is a result of 
complex combination of processes and the model helps 
untangle these subprocesses and allow them to be taken 
apart and studied in depth. (2) The model’s parameters 
provide potential measures of audiences’ individual 
differences. (3) The model’s parameters also can test and 
predict the effects of various treatment conditions of media 
content and format features. (4) A model provides deeper 
scientific understanding of the mechanisms, which can be 
used to design new programs or treatments. In this paper, 
the pattern of channel changing behavior of television 
viewers is precisely descried by our model.  

Constrained by the available empirical data, the present 
paper only illustrates, to a very limited extend, these 
potentials. For example, the model fitting procedure found 
that learning rates for different age groups did not vary. This 
may be the case in real mediated environment since 
watching television is a passive activity and learning, which 
is generally active, may not be a significant part of the 
viewing experience. However, the absence of different 
learning rates may due to the factor that we are not able to 
fit the data individually. Due to the limited data available, 
the model testing results are tentative. Refined models 
should be developed and tested by carefully designed 
experiments with longer viewing time.  
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