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Abstract 

This paper presents a new connectionist model for se-
rial order encoding and retrieval. It is based on a diver-
gent-reconvergent structure, which encodes a list of 
items by superimposed distributed representations of 
each of the items, where early items are coded by more 
active units than late ones due to lateral inhibition. Thus, 
the first item is the strongest and the last the weakest. 
Retrieval is based on the activation gradient: selecting 
the most active item, and then inhibiting it to allow the 
next item to be retrieved. Side effects of this mecha-
nism gives rise to the primacy effect, the recency effect 
and basic similarity effects, similar to those found in 
human immediate serial recall. The divergent-
reconvergent structure strikingly resembles the ana-
tomical structure of the basal ganglia. This model pro-
vides a plausible computational and functional account 
for the sequencing function of the basal ganglia, and 
other brain areas that may implement it. 

Introduction 
In 1951, Karl Lashley identified the serial-order problem as 
fundamental to understanding the brain and cognition. The 
serial-order problem can be loosely defined as how behav-
ioral sequences are produced. It underlies much human and 
animal behavior, ranging from locomotion, reaching, grasp-
ing to language and memory. In the field of memory, many 
theories have been proposed to account for the nature of 
serial order encoding and retrieval (see Henson, 1998 for a 
review). 

One influential theory, the ordinal theory, assumes that 
order is represented by relative values of a continuous prop-
erty (e.g., the activation level of the items) with the first 
item ‘strongest’ and the last item ‘weakest’. The order of 
items is retrieved by iteratively selecting the most active 
item, with each retrieved item temporary suppressed. This 
mechanism is also known as Competitive Queuing (CQ, 
Houghton, 1990). 

Models based on CQ can reproduce dominant patterns of 
order errors (omission, intrusion, transposition). A CQ sys-
tem extended with rehearsal and multiple presentation mo-
dalities (visual and auditory) can account for an even larger 
amount of data  (Page & Norris, 1998). The simplicity and 
explanatory power of CQ is appealing. However, CQ itself 
cannot explain phenomena where positional coding appears 
to be essential. For example, in the recall of a temporally 
grouped sequence: 4 5 2 – 3 9 7, if the middle item “5” of 
the 1st group is transposed with an item in the 2nd group, it is 

most likely to be the middle item “9” than others. To ac-
count for these psychological findings, positional informa-
tion is considered to be required, though there are disputes 
concerning its nature (Page & Norris, 1998). 

From current behavioral and modeling studies of working 
memory for serial order, it may best be assumed that CQ 
interacts with some positional or contextual coding mecha-
nism. This view has been explicitly or implicitly adopted in 
most major models. Burgess and Hitch (1999) used fast 
synaptic changes to associate contextual code to items, 
where the item-level representations by themselves work on 
a CQ basis. Henson (1998)’s start-end model can be seen as 
integrating CQ in one of its positional signals (the start sig-
nal), because this signal is equivalent to an activation gradi-
ent, and it is used, among other information, to cue stored 
items. 

Now that CQ has directly or indirectly played important 
roles in working memory models for serial order, how can 
the activation gradient that CQ works upon be generated in 
the brain? Many mechanisms have been proposed, but there 
has not been a consistent and neuropsychologically-based 
account. 

The primacy model (Page & Norris, 1998) assumes that 
the primacy gradient “results from some association of each 
item with some representation of the start-of-list context”. 
SARDNET (James & Miikkulainen, 1995) assumes that all 
items are activated at presentation to the same level and 
begin to decay, which makes the last item the ‘strongest’, 
and the first the ‘weakest’. Burgess and Hitch’s (1999) 
model assumes that each item is inhibited to a low level 
after presentation, but the inhibition is gradually removed, 
leaving the first item ‘strongest’ and the last item ‘weakest’, 
the opposite of SARDNET. This mechanism meets the re-
quirement of CQ (starting from the most active item), but 
the indicated inhibition implies two conditions – occurring 
immediately after presentation, and lasting throughout recall, 
which are not yet found in neuropsychological studies. To 
support the CQ framework, other mechanisms may be 
needed. 

How can the activation gradient be generated in a neuro-
psychologically plausible way? This paper presents a simple 
neural mechanism that has not been explored before. It is 
notable that the connectivity pattern in this model resembles 
that of the basal ganglia, and this pattern may also be avail-
able in the neocortex. It is hoped that this model will shed 
light on the computation and function of the basal ganglia, 
and other brain areas that may implement it. 
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The Divergent-Reconvergent Model 
The Divergent-Reconvergent Model is a novel neural net-
work model for serial encoding and retrieval. The goal of 
the current model is to show 1) a special connectivity pat-
tern in the basal ganglia, the divergent-reconvergent struc-
ture (Graybiel, Aosaki, Flaherty, & Kimura, 1994), can give 
rise to serial order encoding and retrieval in a way that has 
not been explored before; 2) side effects of this structure 
induce essential characters of human working memory: the 
serial order effects  and similarity effects. 

The basic idea 
The main input station of the basal ganglia, the striatum, 
collects inputs from the entire neocortex and sends proc-
essed information, through other parts of the basal ganglia, 
to the motor and frontal areas of the forebrain. It has puz-
zled investigators for years that there are millions of projec-
tion neurons in the primate striatum, but they project to a 
much smaller set of neurons in the basal ganglia output nu-
clei, the global pallidus (GP). Graybiel et al. used anatomi-
cal tracers on the basal ganglia pathway, and found a diver-
gent-reconvergent connection structure. They proposed that 
this network works as “local experts” performing distinct 
computational tasks, and their results are selected by a gat-
ing network. 

We propose a different function that the divergent-
reconvergent structure may also perform – the sequencing 
of motor and cognitive elements. They may include hand 
and foot movements, percepts as perceived letters and words, 
and other cognitive entities as mental arithmetic operations 
and chess moves. Basal ganglia involvement in high-level 
cognition has also been argued for by other researchers 
(Graybiel et al., 1994; Lieberman, 2000). 

Figure 1 shows the divergent-reconvergent connectivity 
structure that can support sequence encoding and retrieval. 
For comparison purposes, the layers are labeled by their 
putative brain counterparts, but the diagram is not intended 
to show the fine anatomy of the brain.  

Units in the neocortex represent input items. When an 
item is presented, it activates a set of units that are spatially 
distributed in the striatum. This set of units convergently 
activates an output unit in the GP. With this connectivity, 
the network remaps an input unit to a corresponding output 
unit, via a distributed internal representation. But, if recur-

rent loops and lateral inhibition are added to the striatal 
units, an interesting phenomenon appears: presented items 
are actively maintained in the striatum (discussed later), and 
early items inhibit a proportion of striatal units representing 
late items. This will make the distributed representation of 
late items “weaker” than that of early ones. In this way, an 
activation gradient can be produced in the striatum. The GP 
can then perform a competitive selection process to itera-
tively retrieve items sequenced in the striatum. 

It is interesting that the structural and functional require-
ments in the above mechanism (lateral inhibition, competi-
tive selection) are indeed available in the basal ganglia. The 
primary neurons in the striatum (the spiny neurons) are 
characterized by a dense and extensive local axon collateral 
field, and they have inhibitory effects on neighboring spiny 
neurons. The GP (more specifically, its internal segment, 
GPi) can function as an action selector, performing a kind of 
winner-take-all function, or as some researchers prefer, a 
“loser-take-all” function, given its inhibitory output which 
in turn disinhibits a selected action (Berns & Sejnowski, 
1998). 

Though the striatal spiny neurons do not have local recur-
rent loops, their activity may be maintained in indirect ways: 
1) there are loops between the basal ganglia and the prefron-
tal cortex (PFC) (Beiser & Houk, 1998); 2) the striatum may 
constantly receive input from the PFC, which maintains 
activation by its loops with other parts of the brain. 

It can be noted that the divergent-reconvergent connection 
pattern may also be available in the neocortex, where se-
quential information needs to be processed (e.g., auditory 
perception). In this model, we focus on the basal ganglia 
because of its privileged role in sequencing. This serial or-
der mechanism, either implemented in the basal ganglia or 
the neocortex, can be a plausible mechanism for the brain. 
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Figure 1. The divergent-reconvergent connectivity 

scheme 

Architecture 
Figure 2 shows the structure of the proposed model involv-
ing the PFC, basal ganglia and the motor cortex. The Neo-
cortex-Striatum-Motor pathway embodies the divergent-
reconvergent structure illustrated above. The winner-take-all 
function of the GP and its subsequent triggering of an action 
in the motor cortex by way of the thalamus are simplified as 
a single striatomotor reconvergent projection. The Neocor-
tex-PFC pathway actively maintains the items (without or-
der information in the current model). The PFC provides 
additional item representations, which are inhibited when 
the items are retrieved. This kind of item-level inhibition is 
also often assumed in other working memory models of 
serial order (e.g., Burgess & Hitch, 1999).  

Layers in this model are described below. In addition, 
there is a single recall inhibitor unit that inhibits the motor 
layer during item presentation. The signs + / − on a projec-
tion designate excitatory and inhibitory, respectively. 

Neocortex layer. This is the input layer of the system. It 
has nf  units, each corresponding to an input feature. An item 
can have multiple features. When it is presented, its feature 
units are activated for 1 time step. This layer projects to the 
striatum layer (via the divergent projection) and to the PFC 
via an all-to-all projection. In the divergent projection, each 
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neocortex unit connects to the same number of units that are 
randomly selected from the striatum layer. For simplicity, 
striatum units receiving input from different neocortex units 
do not overlap. If overlapping is allowed, the system will 
work under a bit more interference. 

PFC layer. This layer actively maintains item-level rep-
resentations. Its units should be at least as many as items. 
This layer is trained with unsupervised learning to recognize 
items presented to the neocortex layer. After learning, each 
item should activate a unique unit in this layer. Units that do 
not respond to any item will remain inactive. The activation 
function is sigmoid, 

 ( )

1( ) ,
1 ax bf x

e− +=
+

 (1) 

where x is the net input, and parameters a = 7, b = -6. Items 
are actively maintained by self-recurrent connections 
(weight = 2). The dynamics is bi-stable, in the sense that a 
strong input (>0.8) can stimulate a unit to a stable activation 
level close to 1, and it will stay active until a strong inhibi-
tion (<-1.3) resets it to 0. Spontaneous decay has not been 
modeled but can be easily done with a leaky-integrator neu-
ral model. 

Striatum layer. This layer is the substrate for order en-
coding. It has ns units. The main input source is the neocor-
tex via the divergent projection. Units in this layer are ran-
domly divided into subsets of the same size (ns / nf ), each 
receiving input from a neocortex unit (weight = 1). This 
layer uses the same neural model as (1). The layer size can 
be chosen fairly freely, as long as there are enough units to 
produce fine-grained activation gradients. Another input 
source is the PFC, from where actively maintained items 
continuously activate their corresponding striatal units 
(weight = 1). 

Each unit in this layer exerts strong lateral inhibition 
(weight = -2) on 4 neighboring units in the cardinal direc-
tions, except for the edges, where there are fewer neighbors. 
When a unit is active, it dominates and completely inhibits 
those neighboring units from firing. If a neighbor unit re-
ceives input from the same neocortex feature as this unit, 
the inhibition will eventually be removed by Hebbian learn-
ing since they will frequently fire together. This reduces 
undesired variations in the activation gradient. Other num-
bers of inhibited neighbors can also be used. 

Motor output layer. This is the output layer of the sys-
tem. As the PFC layer, it should have more available units 
than items, and is to be trained by unsupervised learning to 
respond to the items. The actual neural pathway from the 
striatum to the motor cortex is a complicated chain of in-
hibitory and gating processes through the GP and thalamus 
(Berns & Sejnowski, 1998). It is summarized here by a sin-
gle winner-take-all projection. After training, item-specific 
units will summate striatal activation for the items. Units 
whose net input is above the threshold (0.2) can compete for 
output. The strongest unit will be reported, and it will inhibit 
an item representation in the PFC, which, in turn, deacti-
vates the item in the striatum, allowing the next item to be 
retrieved. 
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Figure 2. The Divergent-Reconvergent Model 

Training 
Two projections in the network are fixed. They are the di-
vergent projection from the neocortex to the striatum, and 
the self-recurrent connections in the PFC. Learning will 
apply to other projections. At initialization, each striatum 
unit is given strong inhibitory weights on 4 neighboring 
units, and small random weights are assigned to other modi-
fiable projections. 

During training, the recall inhibitor is set inactive, so that 
the network can produce output at any time. Each item is 
presented to the neocortex layer in turn. Before the next 
item is presented, network activity is reset to 0. The network 
only receives individual items but not sequences in training. 

After an item is presented, competitive learning 
(Rumelhart & Zipser, 1985) is applied to two layers: the 
motor output layer and the PFC layer. Units in these layers 
will learn to recognize patterns in their input layers. For 
example, after an item is presented, it produces an activation 
pattern in the striatum layer. Motor units will learn this pat-
tern. The most strongly activated unit “wins” and its weight 
vector w is adapted to the pattern vector x, 

( / ),ii
w w x x wη= + Σ −  (2) 

where η = 0.1 is the learning rate. The pattern x is normal-
ized to sum to 1 by the factor Σi xi. This is helpful because 
otherwise patterns with more features will simply be more 
active and output early. Although it may be a valid phe-
nomenon that a salient item (supposedly highly active) is 
recalled first by humans, this paper does not intend to model 
this phenomenon. Units in the PFC are similarly trained to 
learn the item patterns in the neocortex layer. 

Hebbian learning is applied to adapt the lateral inhibition 
between striatum units. As mentioned above, initial inhibi-
tion between co-active units will be eventually removed. 
Hebbian learning is also applied to the projection from the 
PFC to the striatum layer (max weight = 1). This will asso-
ciate items in the PFC with their distributed representations 
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 in the striatum. This association is important for the mainte-
nance of the striatal activity. Anti-hebbian learning is ap-
plied to the projection from the motor output layer to the 
PFC layer (min weight = -2), so that a motor response will 
inhibit its corresponding item unit in the PFC. 

The model is trained with 40 passes of all items. At the 
end of training, every item should reliably activate one PFC 
unit and one motor unit. It is notable that although the net-
work is not trained to encode and retrieve sequences explic-
itly, this ability has emerged from its structure and what it 
has learned about the items. 

Simulations 

Simulation 1 - Serial recall 
In this simulation1, we test the network’s basic ability to 
encode and retrieve sequences. Recall accuracy and serial 
position effects will be investigated to assess its validity as a 
model for human working memory. During the testing 
phase, no further learning occurs. As noted above, the serial 
recall effects are a consequence of the network's architecture, 
once it has learned to recognize items in isolation. 

The materials are lists of 3 to 8 items, randomly drawn 
from a family of 20 items without repetition (the total num-
ber of items is important for this model, discussed later). For 
each length, 800 lists are used. In this simulation, each item 
is represented by a single feature. Items containing multiple 
features will be studied in Simulation 2. 

A list is presented and retrieved as follows. First, set the 
recall inhibitor unit active, so that the network will store the 
sequence without generating any output. Then, the items are 
presented to the neocortex layer, each for 1 time step fol-
lowed by an interval of 5 time steps. After a list has been 
fully presented, the recall inhibitor is deactivated to start a 
recall. Every time a response is generated, the recall inhibi-
tor is temporarily set active for 5 time steps. No output is 
produced in this interval, allowing the network to stabilize 
after an item is retrieved. The recall process ends when the 
network doesn’t generate any output in 15 time steps. 

While items are presented, an activation gradient is 
formed in the striatum (Figure 3, Plots 1-3). It is interesting 
that after an item is inhibited after retrieval, some neighbor-
ing units that it has inhibited are now liberated. Items that 
make use of these liberated units will see an increased acti-
vation due to the input from PFC (Plots 4-5). This is a spe-
cial property of the system: after an early item is retrieved, 
late items can fill up the gap it leaves, allowing the network 
to add new items to the end of the list. Thus, this model can 
elegantly handle continuous input and output. It is immune 
to some criticisms against early buffer theories of human 
memory, which need to be emptied before new items can be 
stored.  

 
1 The network sizes are neocortex layer nf = 20, striatum layer ns =  
3600 (60×60), PFC layer 400 (20×20) and motor output layer 400 
(20×20). Gaussian noise (σ = .05) is injected into the motor output 
layer. 

 

 

 

 

 

 
 

 

 

Figure 3. Network activity in sequence  
encoding and retrieval 

In human immediate serial recall, three types of errors are 
commonly found: omission, transposition and intrusion. 
Omissions are very rare in this simulation since decay has 
not been modeled. Intrusions are also rare, because the only 
input to the model is the current list, and there is no interfer-
ence from long-term memory or other input sources. Most 
errors are transposition errors, caused by the noise injected 
to the recall process. 

Recall accuracy is plotted as a function of list lengths, and 
serial positions (Figure 4). The result shows clear list length, 
primacy and recency effects. Long lists are recalled worse 
than short ones, because 1) there are more items competing 
for output at each point, 2) exponentially fewer units repre-
sent each additional item, because of the added-up lateral 
inhibition from all previous items. The memory span is ap-
proximately a log function of the memory resource, and is 
considerably stable in face of variances of the latter. 

The primacy effect occurs because activation levels are 
more distinct among early items than late ones. This is a 
result of the exponential-like activation gradient. The re-
cency effect occurs in this model for two reasons. First, no 
confusion can happen at the last position, since all other 
items have been retrieved. This explanation is also given in 
some other models (Page & Norris, 1998). Second, the acti-
vation of late items grows up after the removal of early 
items. This also contributes to the recency effect, since the 
increased activation makes late items more distinct. The 
second factor rests on the assumption that retrieved items 
are inhibited from the memory, or have decayed for they are 
no longer needed, as is found in cell recordings in monkey’s 
delayed match-to-sample tasks (Fuster & Jervey, 1982). It is 
valid only to the extent that this assumption is true. Other 
factors that may contribute to the recency effect include 
stronger activation of recent items due to less decay 
(Davelaar & Usher, 2003), or additional memory compo-
nents, such as the precategorical acoustic store (PAS, 
Crowder & Morton, 1969). 
Discussion 
The total number of items needs to be chosen with some 
care, because it indirectly determines how many striatum 
units are allocated for each item. If there are too few items, 
too many striatum units may be allocated for each, and the 
lateral inhibition may be so strong that the network has too 
little a memory span. If there are too many items, the stria-
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tum units allocated for each may be too sparse, and the 
weak lateral inhibition may not generate good activation 
gradients. In this paper, the total number of items is always 
chosen to balance this trade-off. The number or density of 
striatum units for an item or feature may be defined as an 
independent parameter in the future. 

Since the network parameters have not been optimized to 
fit human data, quantitative comparison is not yet available. 
However, qualitative results have provided initial support 
for the proposed model. 

 

Simulation 2 - Similarity effects 
Typical working memory models based on CQ adopt local-
ist representation for the items. Since localist representa-
tions do not represent item similarity by themselves, many 
models have resorted to a two-stage process to account for 
similarity effects: first, selecting a correct item, and then, 
passing it to a confusion process which probabilistically 
produces erroneous output items, according to their similar-
ity to the item selected in the first stage (Henson, 1998; 
Page & Norris, 1998). The model proposed in this paper 
does not require two separate stages to account for similar-
ity effects. Rather, it naturally allows interaction between 
similar items based on the neural network’s ability to handle 
distributed representations. 

Specifically, two hypotheses are to be tested. First, are 
lists with confusable items more difficult to retrieve? Sec-
ond, is the current architecture adequate to account for the 
following phenomenon? In lists containing a pair of phonol-
ogically confusable items (e.g., BHPYX), this pair of con-
fusable items are likely to be transposed with each other, 
while other items are kept in their correct positions. 

In this simulation2, a new set of 20 items are used, each 
containing 5 features. Each of the first 16 items contains 5 
completely distinct features (Items 1-16). In addition, there 
are two pairs of similar items: a pair sharing 1 feature (la-
beled A and B), and a pair sharing 2 features (labeled X and 
Y). This item set requires 97 different features. 

The test material is 3 types of experimental lists. The Dis-
sim type contains 5 distinct items. The Sim1 and Sim2 types 
contain 3 distinct items plus either of the above two pair of 
similar items, respectively. For each type, the total number 
of lists is 800. 
                                                           

accompanied by increased transposition errors between con-

2 The network sizes are, neocortex layer nf = 97, striatum layer ns =  
6400 (80×80), PFC layer 20 and motor output layer 20. Gaussian 
noise (σ = .05) is injected into the motor output layer. 
 

Some modification has been made to the network for this 
simulation. In Simulation 1, competitive learning is used to 
train the motor and PFC layers. That was to show that the 
system can work in an unsupervised fashion. However, 
competitive learning requires many more units than the 
number of patterns. To simplify the system and reduce 
computational costs, in this simulation, only 20 motor and 
20 PFC units are used, and each of them is designated to be 
the “winner” of one item. Although the designation of out-
put units is similar to supervised learning, this is only to 
simulate the effect of having a large number of units in un-
supervised learning. 
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The result (Figure 5A) shows the serial position curves of 
the 3 types of lists. A clear similarity effect can be observed: 
lists with higher confusability induce more errors. The ef-
fect is produced because the activation levels of items with 
shared features are less distinctive than those without shared 
features (shared features cannot contribute a difference to 
the items’ activation levels). This basic similarity effect is 
consistent with the fact that people have greater difficulties 
recalling phonologically confusable lists than non-
confusable ones (Henson, 1998). Now, the first hypothesis 
to be tested has been shown to be true. 
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Next, transposition errors are studied in more details. In 
human immediate serial recall, transposition errors tend to 
be local, occurring between items that are close to each 
other in the list. They are explained by some models as hav-
ing similar position coding (Burgess & Hitch, 1999; Henson, 
1998). This characteristic has also been found in this model 
(Figure 5B), especially in the Sim2 condition, where a clear 
transposition gradient can be seen: more transposition errors 
occur between close items than distant ones. The locality of 
transposition errors occurs because when an item is not pro-
duced at its right position, it will tend to be produced in the 
next position, because it has higher activation than later 
items. The same property is true of other CQ models (Page 
& Norris, 1998). 

An important question is, are the pair of confusable items 
more likely to transpose with each other than with other 
items? In human experiments, this phenomenon has been 
confirmed. Phonologically confusable items tend to trans-
pose with each other, while keeping non-confusables items 
in the right positions. Unfortunately, this property has not 
been found in this model. When a pair of confusable items 
is included, their transposition did occur. For example, 
sometimes “Y 6 1 X 5” is recalled as “X 6 1 Y 5”. But it is 
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fusable item and non-confusable items. The sawtooth-like 
accuracy curve for alternating phonologically confusable 
and non-confusable items have not been found either, in a 
separate simulation. 
Discussion 
What does the result suggest? Does it mean that the model 
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is wrong? Here we provide two analyses. First, the serial 
order model is partially motivated by the neural anatomy of 
the basal ganglia. As discussed before, this mechanism may 
apply to the sequencing of many types of elements: motor, 
perceptual, cognitive and linguistic. Though it is true that 
phonologically encoded lists exhibit an obvious sawtooth-
like serial position curve if the lists contain alternate con-
fusable and non-confusable items, this curve is generally not 
obvious in other modalities like vision. Thus, the model, 
which is based on the basal ganglia, may correctly not ex-
hibit this effect. Second, further analysis of the difficulty 
from similarity reveals the same issue as repeated items – 
repeated activation of a feature does not induce a new repre-
sentation. This is an intrinsic difficulty for CQ and arguably 
the brain. The brain’s solution to the repetition problem ap-
pears to be non-trivial (consider the binding error of re-
peated items, such as 233 recalled as 223, or 858 as 585), 
and this model may provide a starting point for studying the 
brain’s solution. 

In a more adva
ditional phonological information is used to cue items in 

this model, the effects found with alternate phonologically 
confusable and non-confusable items will emerge. 

ts a novel computational
divergent-reconvergent scheme) for encoding and retrieving 
sequences. It has been demonstrated with computer simula-
tions that the Divergent-Reconvergent Model indeed pos-
sesses the capability. The side effects of the mechanism give 
rise to the list length effects, serial position effects and basic 
similarity effects. More importantly, it provides a viable 
account for the function of the basal ganglia, which has puz-
zled researchers for decades. 

It is notable that the model 
 encode and retrieve sequences. Instead, it is only exposed 

to individual items in isolation. Its ability to recall se-
quences emerges from the architecture of the model. This 
model has obvious psychological advantages: humans have 
little difficulty recalling sequences after being familiarized 
with the items. The amount of training appears to be right. 

It might appear that this model requires too rich lateral in
ibition among all items in the brain, which is problematic, 

given that mental objects of different modalities are located 
in different areas of the brain, and there isn’t comprehensive 
lateral inhibition between these areas. However, this is ex-
actly the reason why the brain’s sequencing function may 
resort to a centralized mechanism. In our opinion, this 
model is best matched with the computation going on with 
one module of the striatum (Graybiel et al., 1994). The lack 
of lateral inhibition across modules (e.g., foot and hand) can 

explain very well why mixed foot and hand movements are 
harder to sequence than foot or hand movements alone. 

The Divergent-Reconvergent Model provides a ne
gically viable account for the brain’s mechanism for serial 

order. However, it has not addressed many important issues 
(e.g., recall of non-words, temporal grouping and item repe-
titions). They will be directions for future research. 
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