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Abstract

The rational model of categorization (RMC; Anderson,
1990) assumes that categories are learned by cluster-
ing similar stimuli together using Bayesian inference.
As computing the posterior distribution over all assign-
ments of stimuli to clusters is intractable, an approxi-
mation algorithm is used. The original algorithm used
in the RMC was an incremental procedure that had no
guarantees for the quality of the resulting approxima-
tion. Drawing on connections between the RMC and
models used in nonparametric Bayesian density esti-
mation, we present two alternative approximation al-
gorithms that are asymptotically correct. Using these
algorithms allows the effects of the assumptions of the
RMC and the particular inference algorithm to be ex-
plored separately. We look at how the choice of inference
algorithm changes the predictions of the model.

Category learning is one of the most extensively stud-
ied aspects of human cognition, with computational
models that range from strict prototypes (e.g., Reed,
1972) to full exemplar models (e.g., Medin & Schaf-
fer, 1978; Nosofsky, 1986). Recent work has emphasized
the “rational” statistical basis of these models (Ashby
& Alfonso-Reese, 1995), noting that prototype and ex-
emplar models correspond to different approaches to the
“density estimation” problem, in which one infers the
probability distribution over stimuli associated with a
category. These connections help to explain the suc-
cess of the models and suggest new directions in which
they can be extended. In this paper we discuss the sta-
tistical foundations of Anderson’s (1990) model, one of
the first explicitly rational approaches to category learn-
ing, articulating the relationship between this model and
nonparametric Bayesian density estimation. Recogniz-
ing this relationship provides the opportunity to explore
variations on the original model.

The rational model of categorization (RMC; Ander-
son, 1990, 1991) accounts for many of the basic cate-
gorization phenomena, although it is not without flaws
(e.g., Murphy & Ross, 1994). The RMC uses a flexible
representation that can interpolate between prototypes
and exemplars by clustering stimuli into groups,1 adding
new clusters to the representation as required. When a
new stimulus is observed, it can either be assigned to one
of the pre-existing clusters, or to a new cluster of its own.
The representation can thus grow to accommodate the

1Anderson (1990, 1991) refers to these groupings of stimuli
as “categories”, but since they do not necessarily correspond
to the category labels we will refer to them as “clusters”.

rich structures that emerge as we learn more about our
environment. Accordingly, a crucial aspect of the model
is the method by which stimuli are assigned to clusters.

There are two steps involved in defining any ratio-
nal model of cognition: first, identifying the underlying
computational problem, and second, showing how peo-
ple might solve that problem given cognitive constraints.
When Anderson (1990, 1991) introduced the RMC, he
assumed two strong cognitive constraints: that stimuli
are assigned to clusters sequentially, and that these as-
signments are fixed once they are made. He then intro-
duced an algorithm for assigning stimuli to clusters that
satisfied these constraints. However, without considering
other algorithms for solving this problem it is impossi-
ble to tell whether the model’s predictions result from
casting categorization as a Bayesian inference about the
clustering of objects, or from the assumptions about the
way in which people perform this inference.

Connections between the RMC and nonparametric
Bayesian density estimation provide a way of defining
alternative algorithms for assigning stimuli to clusters.
The two algorithms we present here both asymptoti-
cally approximate the Bayesian posterior distribution
over assignments of stimuli to clusters, thus resulting in
a “more rational” model of categorization. With these
algorithms, the assumptions of the statistical model used
in the RMC are no longer conflated with cognitive con-
straints, and can be tested directly. These algorithms
also suggest a novel class of psychologically plausible
procedures for performing approximate Bayesian infer-
ence under a range of cognitive constraints. To evalu-
ate these ideas, we examine how well the different algo-
rithms approximate both the true posterior distribution
and human judgments using two data sets: the classic
experiment of Medin and Schaffer (1978) and results on
order-sensitivity reported by Anderson (1990).

The rational model of categorization

According to the RMC, categorization is a special case of
feature induction, in which the learner uses the observed
features of a stimulus to predict its unobserved features,
using the previous stimuli to guide the prediction. Since
the model treats category labels as features, these labels
are the obvious features to predict, but other features can
be predicted as well. It is assumed that each stimulus
belongs to a single cluster, and that the features of a
stimulus are generated by the cluster to which it belongs.
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If xn denotes a partition of the n stimuli into clusters,
and Fn denotes all observed features of these n stimuli,
the probability that the (unobserved) target feature for
the nth object has value j is computed by summing over
all partitions,

P (j|Fn) =
∑
xn

P (j|xn, Fn)P (xn|Fn) (1)

where P (xn|Fn) is the posterior probability of a partition
xn given Fn. This posterior probability can be obtained
via Bayes’ rule, with

P (xn|Fn) =
P (Fn|xn)P (xn)∑
x′n

P (Fn|x′n)P (x′n)
(2)

where P (Fn|xn) is the likelihood, the probability of the
set of observed features given the partition xn, and
P (xn) is the prior probability of that partition. The sum
in Equation 1 and the denominator of Equation 2 are in-
tractable for large n, as the number of partitions grows
rapidly with the number of stimuli.2 Consequently, an
approximate inference algorithm is needed.

Anderson (1990, 1991) identified two desiderata for an
approximate inference algorithm: that it be incremental,
assigning a stimulus to each cluster as it is seen, and that
these assignments, once made, be fixed. These desider-
ata were based on beliefs about the nature of human
category learning: that “people need to be able to make
predictions all the time not just at particular junctures
after seeing many objects and much deliberation” (An-
derson, 1991, p. 412), and that “people tend to perceive
objects as coming from specific categories” (Anderson,
1991, p. 411). He developed a simple inference algo-
rithm that satisfies these desiderata. We will refer to
this algorithm as the local MAP algorithm, as it involves
assigning each stimulus to the cluster that has the high-
est posterior probability (i.e., the maximum a posteriori
or MAP cluster) given only the previous assignments.

Computing the posterior probability of a cluster as-
signment for a new stimulus, given the assignments of
the previous stimuli, is straightforward. Using the no-
tation from Anderson (1991), the posterior probability
that stimulus i + 1 was generated from cluster k is

P (k|Fi+1) =
P (Fi+1|k)P (k)∑
k P (Fi+1|k)P (k)

(3)

In this expression P (Fi+1|k) is the probability of the set
of observed features given the assignment of the stimulus
to cluster k, P (k) is the prior probability that the stimu-
lus was generated from cluster k, and all probabilities are
implicitly conditioned on the cluster assignments for the
previous stimuli. We discuss the likelihood in greater de-
tail below, and focus here on the prior P (k). In addition
to placing a distribution over existing clusters, the prior
used in the RMC allows a new stimulus to be generated

2The number of partitions of a set of n stimuli is given by
the nth Bell number, with the first ten values being 1, 2, 5,
15, 52, 203, 877, 4140, 21147, and 115975.

from a new cluster. Specifically, the prior probability of
cluster k is

P (k) =

{
cnk

(1−c)+ci nk > 0 (i.e., k is old)
(1−c)

(1−c)+ci nk = 0 (i.e., k is new)
(4)

where nk is the number of stimuli in cluster k, and c is
the probability that any two stimuli belong to the same
cluster, which Anderson (1990, 1991) calls the coupling
probability. If we imagine each cluster assignment being
drawn sequentially from this prior, it can be shown that
the resulting distribution on partitions of n stimuli gives
each partition xn probability

P (xn) =
(1− c)scn−s

∏n−1
i=0 [(1− c) + ci]

s∏

k=1

(nk − 1)! (5)

where s is the number of clusters in the partition.

Dirichlet process mixture models
The problem of predicting an arbitrary feature of a stim-
ulus can be solved by estimating the joint probability of
the features of a set of stimuli. This is the statistical
problem of density estimation. In Bayesian statistics,
this problem is addressed by defining a prior distribution
over a set of possible densities, and then updating this
distribution with the observed data to obtain a posterior
distribution over densities. In nonparametric Bayesian
statistics, the goal is to define a prior that includes as
broad a range of densities as possible, so that complex
densities can be inferred if they are warranted by the
data. The standard model used to solve this problem
is called the Dirichlet process mixture model (DPMM;
Antoniak, 1974; Neal, 1998).

The key idea behind the DPMM is to assume that ob-
servations are partitioned into clusters, with the prob-
ability of their features depending only on their cluster
membership. The prior probability of a partition is

P (xn) =
αs

∏n−1
i=0 [α + i]

s∏

k=1

(nk − 1)! (6)

where α is the concentration parameter of the Dirichlet
process. This distribution over partitions can be pro-
duced by a simple sequential stochastic process (Black-
well & MacQueen 1973). If observations are assigned
to clusters one after another and the probability that
observation i + 1 is assigned to cluster k is

P (k) =
{ nk

i+α , nk > 0 (i.e., k is old)
α

i+α , nk = 0 (i.e., k is new) (7)

we obtain Equation 6 for the probability of the result-
ing partition. This distribution has a number of nice
properties, including exchangeability: the probability of
a partition is unaffected by the order in which the ob-
servations are received (Aldous, 1985).

It should be apparent from our description of the
DPMM that it is similar in spirit to the probabilistic
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model underlying the RMC. In fact, the two are directly
equivalent, a point that was first made in the statis-
tics literature by Neal (1998). If we let α = (1 − c)/c,
Equations 5 and 6 are equivalent, as are Equations 4
and 7. Anderson (1990, 1991) (impressively) thus inde-
pendently discovered one of the most celebrated models
in nonparametric Bayesian statistics, deriving this distri-
bution from first principles. Recognizing the connection
between the DPMM and the RMC makes it possible to
go beyond the assumptions behind the RMC. In par-
ticular, we can explore alternatives to the local MAP
algorithm. In the remainder of the paper, we draw on
the extensive literature on inference for the DPMM to
offer two alternative algorithms for the RMC that offer
asymptotically accurate approximations to Equation 1.

Alternative inference algorithms
Equation 1 gives the complete Bayesian solution to the
problem of prediction under the DPMM. One way to
approximate the intractable sum over partitions is to
use Monte Carlo methods, with

∑
xn

P (j|xn, Fn)P (xn|Fn) ≈ 1
m

m∑

`=1

P (j|x(`)
n , Fn) (8)

where x
(1)
n , . . . , x

(m)
n are m samples from P (xn|Fn), and

the approximation becomes exact as m → ∞. This is
the principle behind the two algorithms we outline in
this section. However, since sampling from P (xn|Fn)
is not straightforward – even computing the posterior
distribution requires an intractable sum – the two algo-
rithms use more sophisticated Monte Carlo methods to
generate a set of samples.

Gibbs sampling
The approximate inference algorithm most commonly
used for the DPMM is Gibbs sampling, a Markov chain
Monte Carlo method (see Gilks, Richardson, & Spiegel-
halter, 1996). This algorithm involves constructing a
Markov chain that will converge to the distribution from
which we want to sample, in this case the posterior dis-
tribution over partitions. The state space of the Markov
chain is the the set of partitions, and transitions between
states are produced by sampling the cluster assignment
of each stimulus from its conditional distribution, given
the current assignments of all other stimuli.

To describe this algorithm in more detail, we need to
introduce some new notation. Let Zn = (z1, . . . , zn) be a
vector of cluster assignments for a set of n stimuli, with
each stimulus being assigned to one of s clusters. Any
vector of cluster assignments corresponds to a partition,
xn, so we can define our algorithm directly in terms of
z1, . . . , zn. The conditional probability of the assignment
of stimulus i given the assignments of all other stimuli
and all observed features is

P (zi|Z−i, Fn) ∝ P (fi|zi, Z−i, F−i)P (zi|Z−i) (9)

where Z−i is the assignments of all stimuli other than
stimulus i, fi are the observed features of i, and F−i are
the observed features of all other stimuli besides i.

The interesting term in Equation 9 is P (zi|Z−i). Due
to exchangeability, the order of the observations can be
rearranged so that any particular observation is consid-
ered the last observation. Hence, we can use Equation 7
to compute P (zi|Z−i), with old clusters receiving prob-
ability in proportion to their popularity, and a new clus-
ter being chosen with probability determined by α (or,
equivalently, c). The other term, P (fi|zi, Z−i, F−i), is
the probability of the features of stimulus i under the
partition that results from this choice of zi, and depends
on the nature of the features. We discuss this in greater
detail later in the paper.

The Gibbs sampling algorithm for the DPMM (Neal,
1998) is now straightforward. First, an initial assign-
ment of stimuli to clusters is chosen. In the simulations,
we simply assign all stimuli to a single cluster. Next, we
cycle through all stimuli, sampling a cluster assignment
from the distribution specified by Equation 9. This step
is repeated, with each cycle potentially producing a new
partition of the stimuli. Since the probability of obtain-
ing a particular partition after each cycle depends only
the previous cycle, this is a Markov chain. After enough
cycles for the Markov chain to converge, we begin to save
the partitions it produces. One cycle is not independent
of the next, so some cycles are discarded to approximate
independence. The partitions generated by the Gibbs
sampler can be used in the same way as samples x

(`)
n in

Equation 8. The resulting approximation becomes exact
as m →∞ (Gilks et al., 1996).

The Gibbs sampler provides an effective means of ap-
proximating the sum in Equation 1, and thus of making
accurate predictions about the unobserved features of
stimuli. However, it does not satisfy the desiderata An-
derson (1990, 1991) used to motivate his algorithm. In
particular, it is not an incremental algorithm: it assumes
that all data are available at the time of inference. This
is both a strength and a weakness. The strength is that
the Gibbs sampler is an excellent algorithm to model
experiments where people do not receive stimuli one af-
ter another, but instead receive the full set of stimuli
simultaneously. The weakness is that it needs to be run
again each time new data are added, making it inefficient
when predictions need to be made on each trial. In such
situations, we need to use a different algorithm.

Particle filtering
Particle filtering is a sequential Monte Carlo technique
that provides a discrete approximation to a posterior dis-
tribution that can be updated with new data (Doucet, de
Freitas, & Gordon, 2001). Each “particle” is a partition
x

(`)
i of the stimuli from the first i trials. Unlike the local

MAP algorithm, in which the posterior distribution is
approximated with a single partition, the particle filter
uses m partitions. Summing over these particles gives us
an approximation to the posterior distribution

P (xi|Fi) ≈ 1
m

m∑

`=1

δ(xi − x
(`)
i ) (10)

where δ(·) is 1 when its argument is 0, and 0 otherwise.
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Using Equation 10 as an approximation to the poste-
rior distribution over partitions for i trials, we can ap-
proximate the prior distribution for partitions of the first
i + 1 trials with

P (xi+1|Fi) =
∑
xi

P (xi+1|xi)P (xi|Fi)

≈
∑
xi

P (xi+1|xi)
1

m

m∑
`=1

δ(xi − x
(`)
i )

=
1

m

m∑
`=1

P (xi+1|x(`)
i ) (11)

where P (xi+1|xi) is given by Equation 7. We can then
approximate the posterior for the first i + 1 trials with

P (xi+1|Fi+1) ∝
∑
xi

P (fi+1|xi+1, Fi)P (xi+1|Fi)

≈ 1

m

m∑
`=1

P (fi+1|xi+1, Fi)P (xi+1|x(`)
i ) (12)

The result is a discrete distribution over all the previous
particle assignments and all possible assignments for the
current stimulus. Drawing m samples from this distrib-
ution provides us with our new set of particles.

The particle filter for the RMC is initialized with the
first stimulus assigned to the first cluster for all m par-
ticles. On each following trial, the distribution in Equa-
tion 12 is calculated, based on the particles sampled in
the last trial. On any trial, these particles provide an ap-
proximation to the posterior distribution on partitions.
The stimuli are integrated into the representation incre-
mentally, satisfying one of Anderson’s desiderata. The
degree to which Anderson’s fixed assignment criterion is
satisfied depends on the number of particles. The as-
signments in the particles themselves are fixed: once a
stimulus has been assigned to a cluster in a particle,
it cannot be reassigned. However, the probability of a
previous assignment across particles can change when a
new stimulus is introduced; when a new set of particles is
sampled, the number of particles that carry a particular
assignment of a stimulus to a cluster will likely change.
As m → ∞, the assignment will not appear to be fixed
as the particle filter produces exactly the correct answer.
When m = 1, the the probability of previous assignments
cannot change, and the criterion is unambiguously sat-
isfied. In fact, the single-particle particle filter is very
similar to the local MAP algorithm. Each assignment
of a stimulus becomes fixed on the trial the stimulus is
introduced. However, instead of selecting the most likely
cluster for the new stimulus, a cluster is sampled based
its posterior probability.

Comparing the algorithms
The existence of alternative algorithms that approximate
the posterior distribution over partitions makes it possi-
ble to tease the predictions of the RMC that stem from
the underlying statistical model apart from those that
result from the local MAP algorithm. We do so in two

stages. First, we evaluate the accuracy with which the
different algorithms approximate the actual predictions
produced by Bayesian inference, using a classic data set
from Medin and Schaffer (1978). Second, we examine
how well the predictions of the algorithms correspond
to human judgments. Due to space constraints, we do
not reproduce all of the modeling results from Anderson
(1990). Instead, we focus on two data sets: the exper-
iment by Medin and Schaffer (1978) mentioned above,
and order sensitivity data reported by Anderson (1990).

To apply the algorithms to any dataset, a measure of
the probability of a set of features given a partition of
the stimuli needs to be introduced. The RMC assumes
that the features of a stimulus are independent once the
cluster it belongs to is known. Using this idea, we can
write the probability of the features of a stimulus as

P (fi+1|xi+1, Fi) =
∏

d

P (fi+1,d|xi+1, Fi)

where fi+1,d is the value of the dth feature. Anderson
(1991) gives probabilities for both discrete and continu-
ous features, but we only consider binary features here.
Given the cluster, the value on each feature is assumed to
have a Bernoulli distribution. Integrating out the para-
meter of this distribution with a Beta(β0, β1) prior gives

P (fi+1,d = j|xi+1, Fi) =
bj + βj

b· + β0 + β1

where bj is the number of stimuli with value j on the dth
feature in the cluster that partition xi+1 assigns fi+1,d.
The term b· denotes the number of stimuli in the cluster.
We use β0 = β1 = 1 in all simulations.

Making accurate predictions
The local MAP algorithm, Gibbs sampler, and particle
filter all give approximations to Equation 1. We now
compare the accuracy of these approximations using the
first experiment of Medin and Schaffer (1978). There
were six training stimuli in this experiment with five bi-
nary features (including the category label, listed last):
11111, 10101, 01011, 00000, 01000, and 10110. In an
experiment with only six training examples, the exact
solution to Equation 2 can be computed, as can the par-
tition with the highest posterior probability (the global
MAP solution). The algorithms were trained on the six
examples, and the last feature of a set of test stimuli
was then predicted. Three coupling probabilities were
compared: c = 0.25, c = 0.45, and c = 0.75. The local
MAP algorithm was run on all 720 possible orders of the
training stimuli. The Gibbs sampler was run for 1100
cycles on a single training order. The first 100 cycles
were discarded and only every 10th cycle was kept for
a total of 100 samples. The particle filter was run with
100 particles on a single training order.

The results shown in the top row of Figure 1 illustrate
that the coupling parameter does not have a large effect
on the exact solution of Equation 1. The particle filter
and Gibbs sampler do a good job of approximating this
solution, while the local MAP algorithm depends much
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Figure 1: Probability of choosing category 1 for the stimuli from the first experiment of Medin & Schaffer (1978). The
ratings of the test stimuli (converted to a single six-point scale) are along the horizontal axis. In the first row only
the first six trials are presented, while in the second row ten blocks of six trials each are presented. The three lines
in each panel correspond to three different coupling parameters: c1 = 0.25, c2 = 0.45, and c3 = 0.75. Correlations
between the human data and the simulation data are displayed on each plot for each value of the coupling parameter
(e.g., correlation r1 corresponds to parameter c1).

more on the coupling parameter. The global MAP so-
lution, which the local MAP algorithm attempts to dis-
cover, is not a very good approximation of the full poste-
rior. Overall, these results indicate that the predictions
of the model can be quite strongly affected by the choice
of algorithm.

Fitting human data

Linear correlations with the human confidence ratings
reported by Medin and Schaffer (1978) were computed
for all algorithms described in the previous section, and
are shown in Figure 1. The fits to the human data for all
three approximation algorithms improve when they are
trained on ten blocks of the six stimuli, which is not sur-
prising given that this more closely resembles the train-
ing given to human participants. This is illustrated in
the second row of Figure 1. With ten blocks of training,
the alternative algorithms predict human ratings equally
as well or better than the local MAP.

The predictions of the local MAP algorithm depend
strongly on the presentation order of the stimuli, since
cluster assignments are made sequentially and fixed.
Order effects are found in human cognition (Medin &
Bettger 1994), but are not predicted by the DPMM be-
cause of exchangeability. Using data collected by An-
derson and Matessa (Anderson, 1990), we explored the

strength of the order effects produced by local MAP and
the alternative algorithms introduced above.

In Anderson and Matessa’s experiment, subjects were
presented with a set of 16 stimuli in one of two orders,
shown in Table 1. These stimuli were designed to either
emphasize the first two features (“front-anchored stim-
uli”) or the last two features (“end-anchored stimuli”) in
the first eight trials. Subjects were trained in one of the
two orders. Following the training phase, subjects were
shown the full set of stimuli on a sheet of paper and
asked to divide the stimuli into two categories of eight
stimuli each. The second column of Table 2 shows the
probability of subjects using one of the first two features
to split the stimuli into two categories. The stimuli could
be split along any of the four features.

We compared order effects produced by the three ap-
proximation algorithms to the human data. For all three
algorithms, c = 0.5, the value used for the local MAP
by Anderson and Matessa (Anderson, 1990). The local
MAP algorithm produces the same result each time it
is run on these stimuli. The Gibbs sampler was run for
20200 cycles. The first 200 cycles were discarded and
every 20th cycle kept for a total of 1000 samples. The
particle filter was run 1000 times with either 1 or 100
particles. The results were restricted to allow only par-
titions that split the stimuli into two equal-sized groups
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Table 1: Presentation Order of Anderson & Matessa Training Stimuli (from Anderson, 1990)
Order Type Stimuli

Front-Anchored 1111, 1101, 0010, 0000, 0011, 0001, 1110, 1100, 0111, 1010, 1000, 0101, 0110, 1011, 1001, 0100
End-Anchored 0100, 0000, 1111, 1011, 0011, 0111, 1000, 1100, 1010, 0001, 0101, 1110, 1001, 0010, 0110, 1101

based on one of the features. The Adjusted Rand Index
(Hubert & Arabie, 1985), a standard measure of distance
between partitions, was used to find the similarity of the
RMC samples to each of the four partitions that split the
stimuli along a single feature. The single-feature-based
partition that had the highest Adjusted Rand Index was
selected as the partition for that sample. If there was a
tie, one of the best was selected with equal probability.

The results of the simulations are shown in Table 2.
The local MAP results illustrate a perfect bias for split-
ting the categories along the highlighted features: for the
front-anchored stimuli, one of the first two features will
always be used, and for the end-anchored stimuli, one
of the last two features will always be used. Subjects
showed a bias for the highlighted features, but not as
strong a bias as predicted by the local MAP algorithm.
Consistent with the DPMM, the particle filter with 100
particles and the Gibbs sampler do not show an effect
of the ordering of the stimuli. Reducing the number of
particles in the particle filter results in an increased or-
der bias. A particle filter using one particle produces a
softer bias that is more in line with the human data.

Conclusion
Models of human categorization have assumed many dif-
ferent types of representations. The probabilistic model
underlying the rational model of categorization (Ander-
son, 1990, 1991) is equivalent to the Dirichlet process
mixture model used in nonparametric Bayesian statis-
tics. However, exactly calculating the posterior distri-
bution over assignments of stimuli to clusters in this
model becomes impractical for any reasonable number
of stimuli, making approximation algorithms necessary.
We showed that the local MAP algorithm proposed by
Anderson does not approximate the true posterior dis-
tribution well in all situations. The Gibbs sampler and
particle filter, asymptotically correct algorithms that are
more widely used in Bayesian statistics, produced closer
approximations. These alternative algorithms thus al-
low us to directly test Anderson’s assumptions about
the computational problem underlying categorization.

Part of the motivation for Anderson’s (1990, 1991) lo-
cal MAP algorithm was a desire for a procedure that
could plausibly be used by people. The particle filter
provides a nice alternative to the local MAP algorithm,
having the same psychologically plausible properties, but

Table 2: Probability of Clustering Stimuli Along Either
of the First Two Features in Anderson & Matessa Data

Method Order Type
Front-Anchored End-Anchored

Experimental Data 0.55 0.30
Local MAP 1.00 0.00
Gibbs Sampler 0.48 0.49
Particle Filter (100) 0.50 0.50
Particle Filter (1) 0.59 0.38

also providing asymptotic performance guarantees. A
large number of particles will produce an accurate ap-
proximation of the posterior, while a small number of
particles can capture both the variability and the order-
sensitivity that people show when considering a sequence
of stimuli. Varying the number of particles provides a
way to explore the interaction between cognitive con-
straints and statistical inference, and a natural frame-
work in which to define models that are rational not just
in their construal of a computational problem, but in
their approximate solution. More research is needed to
test the predictions produced by these algorithms, but a
particle filter with an intermediate number of particles is
a promising candidate for explaining how people perform
approximate Bayesian inference in a range of settings.
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