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Abstract

The Poverty of the Stimulus (PoS) argument holds that
children do not receive enough evidence to infer the exis-
tence of core aspects of language, such as the dependence
of linguistic rules on hierarchical phrase structure. We
reevaluate one version of this argument with a Bayesian
model of grammar induction, and show that a rational
learner without any initial language-specific biases could
learn this dependency given typical child-directed input.
This choice enables the learner to master aspects of syn-
tax, such as the auxiliary fronting rule in interrogative
formation, even without having heard directly relevant
data (e.g., interrogatives containing an auxiliary in a
relative clause in the subject NP).

Introduction

Modern linguistics was strongly influenced by Chomsky’s
observation that language learners make grammatical
generalizations that do not appear justified by the ev-
idence in the input (Chomsky, 1965, 1980). The no-
tion that these generalizations can best be explained
by innate knowledge, known as the argument from the
Poverty of the Stimulus (henceforth PoS), has led to an
enduring debate that is central to many of the key issues
in cognitive science and linguistics.

The original formulation of the Poverty of Stimulus ar-
gument rests critically on assumptions about simplicity,
the nature of the input children are exposed to, and how
much evidence is sufficient to support the generaliza-
tions that children make. The phenomenon of auxiliary
fronting in interrogative sentences is one example of the
PoS argument; here, the argument states that children
must be innately biased to favor structure-dependent
rules that operate using grammatical constructs like
phrases and clauses over structure-independent rules
that operate only on the sequence of words.

English interrogatives are formed from declaratives by
fronting the main clause auxiliary. Given a declarative
sentence like “The dog in the corner is hungry”, the in-
terrogative is formed by moving the is to make the sen-
tence “Is the dog in the corner hungry?” Chomsky con-
sidered two types of operation that can explain auxiliary
fronting (Chomsky, 1965, 1971). The simplest (linear)
rule is independent of the hierarchical phrase structure
of the sentence: take the leftmost (first) occurrence of the
auxiliary in the sentence and move it to the beginning.
The structure-dependent (hierarchical) rule – move the
auxiliary from the main clause of the sentence – is more

complex since it operates over a sentence’s phrasal struc-
ture and not just its sequence of elements.

The “poverty” part of this form of the PoS argument
claims that children do not see the data they would need
to in order to rule out the structure-independent (linear)
hypothesis. An example of such data would be an in-
terrogative sentence such as “Is the man who is hungry
ordering dinner?”. In this sentence, the main clause aux-
iliary is fronted in spite of the existence of another aux-
iliary that would come first in the corresponding declar-
ative sentence. Chomsky argued that this type of data
is not accessible in child speech, maintaining that “it is
quite possible for a person to go through life without
having heard any of the relevant examples that would
choose between the two principles” (Chomsky, 1971).

It is mostly accepted that children do not appear to
go through a period where they consider the linear hy-
pothesis (Crain and Nakayama, 1987). However, two
other aspects of the PoS argument are the topic of much
debate. The first considers what evidence there is in
the input and what constitutes “enough” (Pullum and
Scholz, 2002; Legate and Yang, 2002). Unfortunately,
this approach is inconclusive: while there is some agree-
ment that the critical forms are rare in child-directed
speech, they do occur (Legate and Yang, 2002; Pullum
and Scholz, 2002). Lacking a clear specification of how
a child’s language learning mechanism might work, it is
difficult to determine whether that input is sufficient.

The second issue concerns the nature of the stimulus,
suggesting that regardless of whether there is enough
direct syntactic evidence available, there may be suf-
ficient distributional and statistical regularities in lan-
guage to explain children’s behavior (Redington et al.,
1998; Lewis and Elman, 2001; Reali and Christiansen,
2004). Most of the work focusing specifically on aux-
iliary fronting uses connectionist simulations or n-gram
models to argue that child-directed language contains
enough information to predict the grammatical status of
aux-fronted interrogatives (Reali and Christiansen, 2004;
Lewis and Elman, 2001).

While both of these approaches are useful and the re-
search on statistical learning in particular is promising,
there are still notable shortcomings. First of all, the sta-
tistical models do not engage with the primary intuition
and issue raised by the PoS argument. The intuition
is that language has a hierarchical structure – it uses
symbolic notions like syntactic categories and phrases
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that are hierarchically organized within sentences, which
are recursively generated by a grammar. The issue is
whether knowledge about this structure is learned or in-
nate. An approach that lacks an explicit representa-
tion of structure has two problems addressing this issue.
First of all, many linguists and cognitive scientists tend
to discount these results because they ignore a principal
feature of linguistic knowledge, namely that it is based
on structured symbolic representations. Secondly, con-
nectionist networks and n-gram models tend to be diffi-
cult to understand analytically. For instance, the mod-
els used by Reali and Christiansen (2004) and Lewis and
Elman (2001) measure success by whether they predict
the next word in a sequence, rather than based on ex-
amination of an explicit grammar. Though the models
perform above chance, it is difficult to tell why and what
precisely they have learned.

In this work we present a Bayesian account of lin-
guistic structure learning in order to engage with the
PoS argument on its own terms – taking the existence
of structure seriously and asking whether and to what
extent knowledge of that structure can be inferred by a
rational statistical learner. This is an ideal learnability
analysis: our question is not whether a learner without
innate language-specific biases must be able infer that
linguistic structure is hierarchical, but rather whether it
is possible to make that inference. It thus addresses the
exact challenge posed by the PoS argument, which holds
that such an inference is not possible.

The Bayesian approach provides the capability of com-
bining structured representation with statistical infer-
ence, which enables us to achieve a number of important
goals. (1) We demonstrate that a learner equipped with
the capacity to explicitly represent both hierarchical and
linear grammars – but without any initial biases – could
infer that the hierarchical grammar is a better fit to typ-
ical child-directed input. (2) We show that inferring this
hierarchical grammar results in the mastery of aspects of
auxiliary fronting, even if no direct evidence is available.
(3) Our approach provides a clear and objectively sensi-
ble metric of simplicity, as well as a way to explore what
sort of data and how much is required to make these
hierarchical generalizations. And (4) our results suggest
that PoS arguments are sensible only when phenomena
are considered as part of a linguistic system, rather than
taken in isolation.

Method

We formalize the problem of picking the grammar that
best fits a corpus of child-directed speech as an instance
of Bayesian model selection. The model assumes that
linguistic data is generated by first picking a type of
grammar T , then selecting as an instance of that type
a specific grammar G from which the data D is gener-
ated. We compare grammars according to a probabilistic
score that combines the prior probability of G and T and
the likelihood of corpus data D given that grammar, in
accordance with Bayes’ rule:

p(G,T |D) ∝ p(D|G, T )p(G|T )p(T )

Because this analysis takes place within an ideal learn-
ing framework, we assume that the learner is able to ef-
fectively search over the joint space of G and T for gram-
mars that maximize the Bayesian scoring criterion. We
do not focus on the question of whether the learner can
successfully search the space, instead presuming that an
ideal learner can learn a given G,T pair if it has a higher
score than the alternatives. Because we only compare
grammars that can parse our corpus, we first consider
the corpus before explaining the grammars.

The corpus

The corpus consists of the sentences spoken by adults in
the Adam corpus (Brown, 1973) in the CHILDES data-
base (MacWhinney, 2000). In order to focus on gram-
mar learning rather than lexical acquisition, each word
is replaced by its syntactic category.1 Ungrammatical
sentences and the most grammatically complex sentence
types are removed.2 The final corpus contains 21792 in-
dividual sentence tokens corresponding to 2338 unique
sentence types out of 25876 tokens in the original cor-
pus.3 Removing the complicated sentence types, done
to improve the tractability of the analysis, is if anything
a conservative move since the hierarchical grammar is
more preferred as the input grows more complicated.

In order to explore how the preference for a grammar
is dependent on the level of evidence in the input, we
create six smaller corpora as subsets of the main corpus.
Under the reasoning that the most frequent sentences
are most available as evidence,4 different corpus Levels
contain only those sentence forms that occur with a cer-
tain frequency in the full corpus. The levels are: Level
1 (contains all forms occurring 500 or more times, cor-
responding to 8 unique types); Level 2 (300 times, 13
types); Level 3 (100 times, 37 types); Level 4 (50 times,
67 types); Level 5 (10 times, 268 types); and the com-
plete corpus, Level 6, with 2338 unique types, includ-
ing interrogatives, wh-questions, relative clauses, prepo-
sitional and adverbial phrases, command forms, and aux-
iliary as well as non-auxiliary verbs.

1Parts of speech used included determiners (det), nouns
(n), adjectives (adj), comments like “mmhm” (c, sentence
fragments only), prepositions (prep), pronouns (pro), proper
nouns (prop), infinitives (to), participles (part), infinitive
verbs (vinf), conjugated verbs (v), auxiliary verbs (aux), com-
plementizers (comp), and wh-question words (wh). Adverbs
and negations were removed from all sentences.

2Removed types included topicalized sentences (66 utter-
ances), sentences containing subordinate phrases (845), sen-
tential complements (1636), conjunctions (634), serial verb
constructions (459), and ungrammatical sentences (444).

3The final corpus contained forms corresponding to 7371
sentence fragments. In order to ensure that the high num-
ber of fragments did not affect the results, all analyses were
also performed for the corpus with those sentences removed.
There was no qualitative change in any of the findings.

4Partitioning in this way, by frequency alone, allows us
to stratify the input in a principled way; additionally, the
higher levels include not only rarer forms but also more com-
plex ones, and thus levels may be thought of as loosely cor-
responding to complexity.
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The grammars
Because this work is motivated by the distinction be-
tween rules operating over linear and hierarchical rep-
resentations, we would like to compare grammars that
differ structurally. The hierarchical grammar is context-
free, since CFGs generate parse trees with hierarchical
structure and are accepted as a reasonable “first approxi-
mation” to the grammars of natural language (Chomsky,
1959). We choose two different types of linear (structure-
independent) grammars. The first, which we call the flat
grammar, is simply a list of each of the sentences that
occur in the corpus; it contains zero non-terminals (aside
from S) and 2338 productions corresponding to each of
the sentence types. Because Chomsky often compared
language to a Markov model, we consider a regular gram-
mar as well.

Though the flat and regular grammars may not be of
the precise form envisioned by Chomsky, we work with
them because they are representative of simple syntac-
tic systems one might define over the linear sequence of
words rather than the hierarchical structure of phrases;
additionally, it is straightforward to define them in prob-
abilistic terms in order to do Bayesian model selection.
All grammars are probabilistic, meaning that each pro-
duction is associated with a probability and the probabil-
ity of any given parse is the product of the probabilities
of the productions involved in the derivation.

The probabilistic context-free grammar (PCFG) is the
most linguistically accurate grammar we could devise
that could parse all of the forms in the corpus: as such, it
contains the syntactic structures that modern linguists
employ, such as noun and verb phrases. The full gram-
mar, used for the Level 6 corpus, contains 14 terminals,
14 nonterminals, and 69 productions. All grammars at
other levels include only the subset of productions and
items necessary to parse that corpus.

The probabilistic regular grammar (PRG) is derived
directly from the context-free grammar by converting all
productions not already consistent with the formalism of
regular grammar (A → a or A → aB). When possible to
do so without loss of generalization ability, the resulting
productions are simplified and any unused productions
are eliminated. The final regular grammar contains 14
terminals, 85 non-terminals, and 390 productions. The
number of productions is greater than in the PCFG be-
cause each context-free production containing two non-
terminals in a row must be expanded into a series of
productions (e.g. NP → NP PP expands to NP → pro
PP, NP → n PP, etc). To illustrate this, Table 1 com-
pares NPs in the context-free and regular grammars.5

Scoring the grammars: prior probability
We assume a generative model for creating the gram-
mars under which each grammar is selected from the
space of grammars by making a series of choices: first,
the grammar type T (flat, regular, or context-free); next,
the number of non-terminals, productions, and number

5The full grammars are available at http://www.mit.edu/
∼perfors/cogsci06/archive.html.

Context-free grammar
NP → NP PP | NP CP | NP C | N | det N | adj N

pro | prop

N → n | adj N

Regular grammar
NP → pro | prop | n | det N | adj N

pro PP | prop PP | n PP | det NPP | adj NPP

pro CP | prop CP | n CP | det NCP | adj NCP

pro C | prop C | n C | det NC | adj NC

N → n | adj N NPP → n PP | adj NPP

NCP → n CP | adj NCP NC → n C | adj NC

Table 1: Sample NP productions from two grammar types.

of right-hand-side items each production contains. Fi-
nally, for each item, a specific symbol is selected from
the set of possible vocabulary (non-terminals and ter-
minals). The prior probability for a grammar with V
vocabulary items, n nonterminals, P productions and
Ni symbols for production i is thus given by:6

p(G|T ) = p(P )p(n)

PY
i=1

p(Ni)

NiY
j=1

1

V
(1)

Because of the small numbers involved, all calculations
are done in the log domain. For simplicity, p(P ), p(n),
and p(Ni) are all assumed to be geometric distributions
with parameter 0.5.7 Thus, grammars with fewer pro-
ductions and symbols are given higher prior probability.

Notions such as minimum description length and Kol-
mogorov complexity are also used to capture inductive
biases towards simpler grammars (Chater and Vitanyi,
2003; Li and Vitanyi, 1997). We adopt a probabilistic
formulation of the simplicity bias because it is efficiently
computable, derives in a principled way from a clear
generative model, and integrates naturally with how we
assess the fit to corpus data, using standard likelihood
methods for probabilistic grammars.

Scoring the grammars: likelihood

Inspired by Goldwater et al. (2005), the likelihood is
calculated assuming a language model that is divided
into two components. The first component, the gram-
mar, assigns a probability distribution over the poten-
tially infinite set of syntactic forms that are accepted in
the language. The second component generates a finite

6This probability is calculated in subtly different ways
for each grammar type, because of the different constraints
each kind of grammar places on the kinds of symbols that
can appear in production rules. For instance, with regu-
lar grammars, because the first right-hand-side item in each
production must be a terminal, the effective vocabulary size
V when choosing that item is 1

# terminals
. However, for the

second right-hand-side item in a regular-grammar produc-
tion or for any item in a CFG production, the effective V
is 1

# terminals + # non-terminals
, because that item can be ei-

ther a terminal or a non-terminal. This prior thus slightly
favors linear grammars over functionally equivalent context-
free grammars.

7Qualitative results are similar for other parameter values.
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observed corpus from the infinite set of forms produced
by the grammar, and can account for the characteristic
power-law distributions found in language (Zipf, 1932).
In essence, this two-component model assumes separate
generative processes for the allowable types of syntac-
tic forms in a language and for the frequency of specific
sentence tokens.

One advantage of this approach is that grammars are
analyzed based on individual sentence types rather than
on the frequencies of different sentence forms. This par-
allels standard linguistic practice: grammar learning is
based on how well each grammar accounts for the set of
grammatical sentences rather than their frequency dis-
tribution. Since we are concerned with grammar com-
parison rather than corpus generation, we focus here on
the first component of the model.

The likelihood p(D|G,T ) reflects how likely the corpus
data D was generated by the grammar G. It is calculated
as the product of the likelihoods of each sentence type S
in the corpus. If the set of sentences is partitioned into
k unique types, the log likelihood is given by:

log(p(D|G, T )) =

kX
i=1

log(p(Si|G, T )) (2)

The probability p(Si|G,T ) of generating any sentence
type i is the sum of the probabilities of generating all pos-
sible parses of that sentence under the grammar G. The
probability of a specific parse is the product of the prob-
ability of each production in the grammar used to derive
that parse. We assume for simplicity that all productions
with the same left-hand side have the same probability,
in order to avoid giving grammars with more produc-
tions more free parameters to adjust in fitting the data;
a more complex analysis could assign priors over these
production-probabilities and attempt to estimate them
or integrate them out.

Results

The posterior probability of a grammar G is the product
of the likelihood and the prior. All scores are presented
as log probabilities and thus are negative; smaller ab-
solute values correspond to higher probabilities.

Prior probability
Table 2 shows the prior probability of each grammar type
on each corpus. When there is little evidence available in
the input the simplest grammar that accounts for all the
data is the structure-independent flat grammar. How-
ever, by Level 4, the simplest grammar that can parse
the data is hierarchical. As the number of unique sen-
tences and the length of the average sentence increases,
the flat grammar becomes too costly to compete with the
abstraction offered by the PCFG. The regular grammar
has too many productions and vocabulary items even on
the smallest corpus, plus its generalization ability is poor
enough that additional sentences in the input necessitate

adding so many new productions that this early cost is
never regained. The context-free grammar is more com-
plicated than necessary on the smallest corpus, requiring
17 productions and 7 nonterminals to parse just eight
sentences, and thus has the lowest relative prior proba-
bility. However, its generalization ability is sufficiently
great that additions to the corpus require few additional
productions: as a result, it quickly becomes simpler than
either of the linear grammars.

What is responsible for the transition from linear to
hierarchical grammars? Smaller corpora do not con-
tain elements generated from recursive productions (e.g.,
nested prepositional phrases, NPs with multiple adjec-
tives, or relative clauses) or multiple sentences using the
same phrase in different positions (e.g., a prepositional
phrase modifying an NP subject, an NP object, a verb,
or an adjective phrase). While a regular grammar must
often add an entire new subset of productions to ac-
count for them, as is evident in the subset of the gram-
mar shown in Table 1, a PCFG need add few or none.
As a consequence, both linear grammars have poorer
generalization ability and must add proportionally more
productions in order to parse a novel sentence.

Likelihoods
The likelihood scores for each grammar on each corpus
are shown in Table 2. It is not surprising that the flat
grammar has the highest likelihood score on all six cor-
pora – after all, as a list of each of the sentence types,
it does not generalize beyond the data at all. This is
an advantage when calculating strict likelihood, though
of course a disadvantage for a language learner wishing
to make generalizations that go beyond the data. An-
other reason that the flat grammar is preferred is that
grammars with recursive productions are penalized when
calculating likelihood scores based on finite input. This
is because recursive grammars will generate an infinite
set of sentences that do not exist in any finite corpus,
and some of the probability mass will be allocated to
those sentences.

The likelihood preference for a flat grammar does not
mean that it should be preferred overall. Preference is
based on the the posterior probability rather than like-
lihood alone. For larger corpora, the slight disadvan-
tage of the PCFG in the likelihood is outweighed by the
large advantage due to its simplicity. Furthermore, as
the corpus size increases, all the trends favor the hierar-
chical grammar: it becomes ever simpler relative to the
increasingly unwieldy linear grammars.

Generalizability
Perhaps most interestingly for language learning, the hi-
erarchical grammar generalizes best to novel items. One
measure of this is what percentage of larger corpora a
grammar based on a smaller corpus can parse. If the
smaller grammar can parse sentences in the larger cor-
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Prior Likelihood Posterior
Corpus Flat PRG PCFG Flat PRG PCFG Flat PRG PCFG
Level 1 -68 -116 -133 -17 -19 -29 -85 -135 -162
Level 2 -112 -165 -180 -33 -36 -56 -145 -201 -236
Level 3 -405 -394 -313 -134 -179 -243 -539 -573 -556
Level 4 -783 -560 -384 -281 -398 -522 -1064 -958 -906
Level 5 -4087 -1343 -541 -1499 -2379 -2891 -5586 -3722 -3432
Level 6 -51505 -5097 -681 -18128 -36392 -38421 -69633 -41489 -39102

Table 2: Log prior, likelihood, and posterior probabilities of each grammar for each level of evidence in the corpus.

pus that did not exist in the smaller corpus, it has gen-
eralized beyond the input in the smaller corpus. Table 3
shows the percentage of sentence types and tokens in the
full corpus that can be parsed by each grammar corre-
sponding to each of the smaller levels of evidence. The
context-free grammar always shows the highest level of
generalizability, followed by the regular grammar. The
flat grammar does not generalize: at each level it can
only parse the sentences it has direct experience of.

% types % tokens
Grammar Flat RG CFG Flat RG CFG
Level 1 0.3% 0.7% 2.4% 9.8% 31% 40%
Level 2 0.5% 0.8% 4.3% 13% 38% 47%
Level 3 1.4% 4.5% 13% 20% 62% 76%
Level 4 2.6% 13% 32% 25% 74% 88%
Level 5 11% 53% 87% 34% 93% 98%

Table 3: Proportion of sentences in the full corpus that are
parsed by smaller grammars of each type. The Level 1 gram-
mar is the smallest grammar of that type that can parse the
Level 1 corpus. All Level 6 grammars parse the full corpus.

PCFGs also generalize more appropriately in the case
of auxiliary fronting. The PCFG can parse aux-fronted
interrogatives containing subject NPs that have relative
clauses with auxiliaries – Chomsky’s critical forms – de-
spite never having seen an example in the input, as il-
lustrated in Table 4. The PCFG can parse the critical
form because it has seen simple declaratives and inter-
rogatives, allowing it to add productions in which the
interrogative production is an aux-initial sentence that
does not contain the auxiliary in the main clause. The
grammar also has relative clauses, which are parsed as
part of the noun phrase using the production NP → NP
CP. Thus, the PCFG will correctly generate an inter-
rogative with an aux-containing relative clause in the
subject NP.

Unlike the PCFG, the PRG cannot make the correct
generalization. Although the regular grammar has pro-
ductions corresponding to a relative clause in an NP, it
has no way of encoding whether or not a verb phrase
without a main clause auxiliary should follow that NP.
This is because there was no input in which such a verb
phrase did occur, so the only relative clauses occur either
at the end of a sentence in the object NP, or followed by

a normal verb phrase. It would require further evidence
from the input – namely, examples of exactly the sen-
tences that Chomsky argues are lacking – to be able to
make the correct generalization.

Discussion and conclusions
Our model of language learning suggests that there may
be sufficient evidence in the input for an ideal rational
learner to conclude that language is structure-dependent
without having an innate language-specific bias to do so.
Because of this, such a learner can correctly form inter-
rogatives by fronting the main clause auxiliary, even if
they hear none of the crucial data Chomsky identified.
Our account suggests that certain properties of the in-
put – namely sentences with phrases that are recursively
nested and in multiple locations – may be responsible
for this transition. It thus makes predictions that can
be tested either by analyzing child input or studying ar-
tificial grammar learning in adults.

Our findings also make a general point that has some-
times been overlooked in considering stimulus poverty
arguments, namely that children learn grammatical rules
as a part of a system of knowledge. As with auxiliary
fronting, most PoS arguments consider some isolated lin-
guistic phenomenon and conclude that because there is
not enough evidence for that phenomenon in isolation,
it must be innate. We have shown here that while there
might not be direct evidence for an individual phenom-
enon, there may be enough evidence about the system
of which it is a part to explain the phenomenon itself.

One advantage of the account we present here is that
it allows us to formally engage with the notion of sim-
plicity. In making the simplicity argument Chomsky ap-
pealed to the notion of a neutral scientist who rationally
should first consider the linear hypothesis because it is
a priori less complex (Chomsky, 1971). The question
of what a “neutral scientist” would do is especially in-
teresting in light of the fact that Bayesian models are
considered by many to be an implementation of induc-
tive inference (Jaynes, 2003). Our model incorporates
an automatic notion of simplicity that favors hypothe-
ses with fewer parameters over more complex ones. We
use this notion to show that, for the sparsest levels of
evidence, a linear grammar is simpler; but our model
also demonstrates that this simplicity is outweighed by
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Can parse?
Type Subject NP in input? Example Flat RG CFG
Decl Simple Y He is happy. (pro aux adj) Y Y Y
Int Simple Y Is he happy? (aux pro adj) Y Y Y
Decl Complex Y The boy who is reading is happy. (det n comp aux part aux adj) Y Y Y
Int Complex N Is the boy who is reading happy? (aux det n comp aux part adj N N Y

Table 4: Ability of each grammar to parse specific sentences. Only the PCFG can parse the complex interrogative sentence.

the improved performance of a hierarchical grammar on
larger quantities of realistic input. Interestingly, the
input in the first Adam transcript at the earliest age
(27mo) was significantly more diverse and complicated
than the frequency-based Level 1 corpus; indeed, of the
three, the hierarchical grammar had the highest poste-
rior probability on that transcript. This suggests that
even very young children may have access to the infor-
mation that language is hierarchically structured.

This work has some limitations that should be ad-
dressed with further research. While we showed that a
comparison of appropriate grammars of each type results
in a preference for the hierarchically structured gram-
mar, these grammars were not the result of an exhaustive
search through the space of all grammars. It is almost
certain that better grammars of either type could be
found, so any conclusions are preliminary. We have ex-
plored several ways to test the robustness of the analysis.
First, we conducted a local search using an algorithm
inspired by Stolcke and Omohundro (1994), in which
a space of grammars is searched via successive merg-
ing of states. The results using grammars produced by
this search are qualitatively similar to the results shown
here. Second, we tried several other regular grammars,
and again the hierarchical grammar was preferred. In
general, the poor performance of the regular grammars
appears to reflect the fact that they fail to maximize
the tradeoff between simplicity and generalization. The
simpler regular grammars buy that simplicity only at the
cost of increasing overgeneralization, resulting in a high
penalty in the likelihood.

Are we trying to argue that the knowledge that lan-
guage is structure-dependent is not innate? No. All we
have shown is that, contra the PoS argument, structure
dependence need not be a part of innate linguistic knowl-
edge. It is true that the ability to represent PCFGs is
“given” to our model, but this is a relatively weak form
of innateness: few would argue that children are born
without the capacity to represent the thoughts they later
grow to have, since if they were no learning would occur.
Furthermore, everything that is built into the model –
the capacity to represent each grammar as well as the
details of the Bayesian inference procedure – is domain-
general, not language-specific as the original PoS claim
suggests.

In sum, we have demonstrated that a child equipped
with both the resources to learn a range of symbolic

grammars that differ in structure and the ability to find
the best fitting grammars of various types, can in prin-
ciple infer the appropriateness of hierarchical phrase-
structure grammars without the need for innate biases
to that effect. How well this ideal learnability analysis
corresponds to the actual learning behavior of children
remains an important open question.

Acknowledgments Thanks to Virginia Savova for
helpful comments. Supported by an NDSEG fellowship
(AP) and the Paul E. Newton Chair (JBT).

References
Brown, R. (1973). A first language: The early stages. Harvard

University Press.
Chater, N. and Vitanyi, P. (2003). Simplicity: A unifying

principle in cognitive science? TICS, 7:19–22.
Chomsky, N. (1959). On certain formal properties of gram-

mars. Information and Control, 2:137–167.
Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT

Press, Cambridge, MA.
Chomsky, N. (1971). Problems of Knowledge and Freedom.

Fontana, London.
Chomsky, N. (1980). In Piatelli-Palmarini, M., editor, Lan-

guage and learning: The debate between Jean Piaget and
Noam Chomsky. Harvard Univ Press, Cambridge, MA.

Crain, S. and Nakayama, M. (1987). Structure dependence
in grammar formation. Language, 24:139–186.

Goldwater, S., Griffiths, T., and Johnson, M. (2005). Inter-
polating between types and tokens by estimating power
law generators. NIPS, 18.

Jaynes, E. (2003). Probability theory: The logic of science.
Cambridge University Press, Cambridge.

Legate, J. and Yang, C. (2002). Empirical re-assessment of
stimulus poverty arguments. Ling. Review, 19:151–162.

Lewis, J. and Elman, J. (2001). Learnability and the statis-
tical structure of language: Poverty of stimulus arguments
revisited. In Proc. of the 26th BU Conf. on Lang. Devel.
Cascadilla Press.

Li, M. and Vitanyi, P. (1997). An Intro. to Kolmogorov com-
plexity and its applications. Springer Verlag, NY.

MacWhinney, B. (2000). The CHILDES project: Tools for
analyzing talk. Lawrence Erlbaum Ass., third edition.

Pullum, G. and Scholz, B. (2002). Empirical assessment of
stimulus poverty arguments. Linguistic Review, 19:9–50.

Reali, F. and Christiansen, M. (2004). Structure dependence
in language acquisition: Uncovering the statistical richness
of the stimulus. In Proc. of the 26th conference of the
Cognitive Science Society.

Redington, M., Chater, N., and Finch, S. (1998). Distribu-
tional information: A powerful cue for acquiring syntactic
categories. Cognitive Science, 22:425–469.

Stolcke, A. and Omohundro, S. (1994). Introducing proba-
bilistic grammars by bayesian model merging. ICGI.

Zipf, G. (1932). Selective studies and the principle of relative
frequency in language. Harvard University Press.

668


