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Abstract

Humans make optimal perceptual decisions in noisy and
ambiguous conditions. Computations underlying such
optimal behavior have been shown to rely on Bayesian
probabilistic inference. A key element of Bayesian com-
putations is the generative model that determines the
statistical properties of sensory experience. The goal of
perceptual learning can thus be framed as estimating
the generative model from available data. In previous
studies, the generative model that subjects had to infer
was relatively simple, its structure was also assumed to
be known a priori, so that only a few model parameters
had to be estimated. We investigated whether humans
are capable of inferring more complex generative models
from experience. In a completely unsupervised percep-
tual task subjects learnt subtle statistical properties of
visual scenes consisting of ‘objects’ that could only be
identified by their statistical contingencies not by low-
level features. We show that human performance in this
task can be accounted for by Bayesian learning of model
structure and parameters within a class of models that
seek to explain observed variables by a minimum num-
ber of independent hidden causes.

Introduction
There is a growing number of studies supporting the
classical view of perception as probabilistic inference
(Helmholtz, 1962; Barlow, 1990). These studies demon-
strated that human observers parse sensory scenes by
performing optimal estimation of the parameters of the
objects involved (Ernst & Banks, 2002; Körding &
Wolpert, 2004; Kersten, Mamassian, & Yuille, 2004). A
core element of this Bayesian probabilistic framework is
an internal model of the world, the generative model.
The generative model serves as a basis for inference by
specifying how the different sources of currently available
sensory evidence are integrated with prior expectations
about the external world. Thus, in order to understand
the computational principles of perception, it is impor-
tant to characterize the forms of generative models that
are available for perceptual inference.

Most previous studies testing the Bayesian framework
in human psychophysical experiments used fundamen-
tally restricted generative models of perception. The
generative models considered in these studies consisted
of a few observed and hidden variables, and only a lim-
ited number of parameters that needed to be adjusted by
experience (Ernst & Banks, 2002; Körding & Wolpert,
2004; Kersten et al., 2004; Weiss, Simoncelli, & Adel-
son, 2002). More importantly, these generative mod-

els were tailor-made to the specific psychophysical tasks
presented in the experiments. However, in principle, in-
ference can be performed on several levels: the genera-
tive model can be used for inferring the values of hidden
variables from observed information, and the generative
model itself may also be inferred from previous expe-
rience (MacKay, 1992). Thus, it remains to be shown
whether more flexible, ‘open-ended’ generative models
could be used and learned by humans during perception.

We used an unsupervised visual learning task to show
that a general class of generative models (Sigmoid Belief
Networks) quantitatively reproduced experimental data,
including paradoxical aspects of human behavior, when
not only the parameters of these models but also their
structure (ie. the number and identity of hidden vari-
ables) was subject to learning. Crucially, the applied
Bayesian model learning embodied the Automatic Oc-
cam’s Razor (AOR) effect (MacKay, 1995) that preferred
the models that were ‘as simple as possible, but no sim-
pler’. This process led to the extraction of independent
causes that efficiently and sufficiently accounted for sen-
sory experience, without a pre-specification of the num-
ber or complexity of potential causes.

All the presented experimental results were repro-
duced and had identical roots in our simulations: the
model that was most probable based on the training
data developed hidden variables corresponding to the
real chunks that were originally used to generate the
training scenes. These results demonstrate that humans
can infer complex models from experience and implicate
Bayesian model learning as a powerful computation un-
derlying such basic cognitive phenomena as the decom-
position of visual scenes into meaningful chunks.1

Experimental Paradigm
Human adult subjects were trained and then tested in
four different experiments using the same unsupervised
learning paradigm. Subjects saw a sequence of complex
visual scenes consisting of 6 of 12 abstract unfamiliar
black shapes arranged on a 3x3 (Exp 1) or 5x5 (Exps 2-

1A previous version of this work has been already pre-
sented elsewhere to a rather different audience (Orbán, Fiser,
Aslin, & Lengyel, 2006). The main novel aspect of the version
presented here is the inclusion of the Gestalt-based model,
and a clearer explanation of human performance on embed-
ded combos. This also enabled us to account for the effects
of traning length and performance on embedded triplets in
Exp. 4.
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Figure 1: A, Experimental design. B, Explanation of
graphical model parameters.

4) white grid (Fig. 1A). Unbeknownst to subjects, vari-
ous subsets of the shapes were arranged into fixed spatial
combinations (combos) (doublets, triplets, quadruplets,
depending on the experiment). Whenever a combo ap-
peared on a training scene, its constituent shapes were
presented in an invariant spatial arrangement, and in no
scenes elements of a combo could appear without all the
other elements of the same combo also appearing. Sub-
jects were presented with 100–200 training scenes, each
scene was presented for 2 seconds with a 1-second pause
between scenes. No specific instructions were given to
subjects prior to training, they were only asked to pay
attention to the continuous sequence of scenes.

The test phase consisted of 2-alternative forced choice
(2AFC) trials, in which two arrangements of shapes were
shown sequentially in the same grid that was used during
training, and subjects were asked which of the two scenes
was more familiar based on the training. One of the
presented scenes was either a combo that was actually
used for constructing the training set (true combo), or
a part of it (embedded combo) (e.g., a pair of adjacent
shapes from a triplet or quadruplet combo). The other
scene consisted of the same number of shapes as the first
scene in an arrangement that might or might not have
occurred during training, but was in fact a mixture of
shapes from different true combos (mixture combo).

Here four experiments are considered that assess vari-
ous aspects of human observational learning, the full set
of experiments are presented elsewhere (Fiser & Aslin,
2001, 2005). Each experiment was run with 20 näıve
subjects.

Experiment 1 Our first goal was to establish that hu-
mans are sensitive to the statistical structure of visual
experience, and use this experience for judging familiar-
ity. In the baseline experiment 6 doublet combos were
defined, three of which were presented simultaneously
in any given training scene, allowing 144 possible scenes
(Fiser & Aslin, 2001). Because the doublets were not
marked in any way, subjects saw only a group of random
shapes arranged on a grid. The occurrence frequency of
doublets and individual elements was equal across the
set of scenes, allowing no obvious bias to remember any
element more than others. In the test phase a true and
a mixture doublet were presented sequentially in each
2AFC trial. The mixture combo was presented in a spa-
tial position that had never appeared before.

Experiment 2 In the previous experiment the elements
of mixture doublets occurred together fewer times than

elements of real doublets, thus a simple strategy based on
tracking co-occurrence frequencies of shape-pairs would
be sufficient to distinguish between them. The second,
frequency-balanced experiment tested whether humans
are sensitive to higher-order statistics (at least cross-
correlations, which are co-occurence frequencies normal-
ized by respective invidual occurence frequencies).

The structure of Experiment 1 was changed so that
while the same 6 doublet combos were used as before,
their appearance frequency became non-uniform intro-
ducing frequent and rare combos. Frequent doublets were
presented twice as often as rare ones, so that certain
mixture doublets consisting of shapes from frequent dou-
blets appeared just as often as rare doublets. Note, that
the frequency of the constituent shapes of these mixture
doublets was higher than that of rare doublets. The
training session consisted of 212 scenes, each scene be-
ing presented twice. In the test phase, the familiarity
of both single shapes and doublet combos was tested.
In the doublet trials, rare combos with low appearance
frequency but high correlations between elements were
compared to mixture combos with higher element and
equal pair appearance frequency, but lower correlations
between elements.

Experiment 3 This experiment tested whether human
performance in this paradigm can be fully accounted for
by learning cross-correlations. Here, four triplet combos
were formed and presented with equal occurrence fre-
quencies. 112 scenes were presented twice to subjects.
In the test phase two types of tests were performed. In
the first type, the familiarity of a true triplet and a mix-
ture triplet was compared, while in the second type dou-
blets consisting of adjacent shapes embedded in a triplet
combo (embedded doublet) were tested against mixture
doublets.

Experiment 4 This experiment compared directly
how humans treat embedded and independent (non-
embedded) combos of the same size. Here two quadru-
plet combos and two doublet combos were defined and
presented with equal frequency. Each training scene con-
sisted of six shapes, one quadruplet and one doublet. 120
such scenes were constructed and subjects were either
presented with each scene once (half training), or twice
(full training). In the test phase four types of 2AFC
trials were used: true against mixture quadruplets; em-
bedded against mixture doublets; true against mixture
doublets; and embedded against mixture triplets.

Modeling framework

The goal of Bayesian learning is to ‘reverse-engineer’ the
generative model that could have generated the training
data. Because of inherent ambiguity and stochasticity
assumed by the generative model itself, the objective is
to establish a probability distribution over possible mod-
els. Importantly, because models with parameter spaces
of different dimensionality are compared, the marginal
likelihood term will prefer the simplest model (in our
case, the one with fewest parameters) that can effectively
account for (generate) the training data due to the AOR
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effect in Bayesian model comparison (MacKay, 1995).

Sigmoid belief networks The class of generative mod-
els we consider is that of two-layer sigmoid belief net-
works (SBNs, Fig. 1B). The same modelling framework
has been successfully aplied to configural learning in an-
imal classical conditioning (Courville, Daw, Gordon, &
Touretzky, 2004; Courville, Daw, & Touretzky, 2005).
The SBN architecture assumes that the state of observed
binary variables (yj , in our case: shapes being present or
absent in a training scene) depends through a sigmoidal
activation function on the state of a set of hidden binary
variables (x), which are not directly observable:

P (yj = 1|x,wm,m) =

(
1 + exp

(
−
∑

i

wijxi − wyj

))−1

(1)
where wij describes the (real-valued) influence of hid-
den variable xi on observed variable yj , wyj

determines
the spontaneous observed activation bias of yj , m indi-
cates the model structure, including the number of latent
variables and identity of the observeds they can influ-
ence (the wij weights that are allowed to have non-zero
value), and wm stands for all the parameters (wij , wyj

,
wxi

within model structure m).
Observed variables are independent conditioned on the

latents (i.e. any correlation between them is assumed
to be due to shared causes), and latent variables are
marginally independent and have Bernoulli distributions
parametrised by their biases, wx:

P (y|x,wm,m) =
∏
j

P (yj |x,wm,m) (2)

P (x|wm,m) =
∏

i

(1 + exp ((−1)xi wxi
))−1

Finally, training scenes y(t) are assumed to be iid sam-
ples from the same generative distribution, and so the
probability of the training data (D) given a specific
model is:

P (D|wm,m) =
∏

t

P
(
y(t)|wm,m

)
(3)

=
∏

t

∑
x

P
(
y(t)|x,wm,m

)
P (x|wm,m)

The ‘true’ generative model that was actually used for
generating training data in the experiments (Section 2)
is closely related to this model, with the combos corre-
sponding to latent variables. The main difference is that
here we ignore the spatial aspects of the task, i.e. only
the occurrence of a shape matters but not where it ap-
pears on the grid. Although in general, space is certainly
not a negligible factor in vision, human behavior in the
present experiments depended on the mere presence or
absence of shapes sufficiently strongly so that this sim-
plification did not cause major confounds in our results.

Training Establishing the posterior probability of any
given model is straightforward using Bayes’ rule:

P (wm,m|D) ∝ P (D|wm,m) P (wm,m) (4)

where the first term is the likelihood of the model
(Eq. 3), and the second term is the prior distribution
of models. Prior distributions for the weights were:
P (wij) = Exponential (4), P (wxi

) = Laplace (0, 4),
P
(
wyj

)
= Laplace (−2, 4). The prior over model struc-

tures preferred simple models and was such that the
distributions of the number of latents and of the num-
ber of links conditioned on the number of latents were
both Geometric (0.1). The effect of this preference is
‘washed out’ with increasing training length as the like-
lihood term (Eq. 3) sharpens.

Testing When asked to compare the familiarity of two
scenes (yA and yB) in the testing phase, the optimal
strategy for subjects would be to compute the posterior
probability of both scenes based on the training data

P
(
yZ |D

)
=
∑
m

∫
dwm

∑
x

P
(
yZ ,x|wm,m

)
P (wm,m|D)

(5)
and always (ie, with probability one) choose the one with
the higher probability. However, as a phenomenological
model of all kinds of possible sources of noise (sensory
noise, model noise, etc) we chose a soft threshold func-
tion for computing choice probability:

P (choose A) =

(
1 + exp

(
−β log

P
(
yA|D

)
P (yB |D)

))−1

(6)
and used a single β to fit experimental data from all
subjects (β = ∞ corresponds to the optimal strat-
egy, β = 1 corresponds to probability matching).
Here log P

(
yA|D

)
/P
(
yB |D

)
is the log probability ratio

(LPR).
Note that when computing the probability of a test

scene, we seek the probability that exactly the given
scene was predicted by the learned model. This means
that we require not only that all the shapes that are
present in the test scene are predicted to be present, but
also that all the shapes that are absent from the test
scene are predicted to be absent. A different scheme,
in which only the presence but not the absence of the
shapes need to be matched (i.e. absent observeds are
marginalized out just as latents are in Eq. 5) could also
be pursued, but the results of the embedding experi-
ments (Exp. 3 and 4, see below) discourage it.

The model posterior in Eq. 4 is analytically in-
tractable, therefore an exchange reversible-jump Markov
chain Monte Carlo sampling method (Courville et al.,
2004; Green, 1995; Iba, 2001) was applied, that ensured
fair sampling from a model space containing subspaces of
differring dimensionality, and integration over this pos-
terior in Eq. 5 was approximated by a sum over samples.

Results
In the baseline experiment (Experiment 1) human sub-
jects were trained with six equal-sized doublet combos
and were shown to recognize true doublets over mix-
ture doublets (Fig. 2A). When the same training data
was used to compute the choice probability in 2AFC
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Figure 2: Comparison of human and model performance
in four experiments. A–D, Results from baseline (Exp.
1), frequency-balanced (Exp. 2), triplet (Exp. 3), and
quadruple experiments (Exp. 4), respectively. Bars show
fraction of ‘correct’ responses (choosing a true or em-
bedded combo over a mixture combo) for human ex-
periments (orange, average over subjects ±SEM), and
‘correct’ choice probabilities (Eq. 7) for computer simu-
lations (brown). Labels below the bars denote the type of
test trial: 2, doublet; E2, embedded doublet; 3, triplet;
E3, embedded triplet; 4, quadruplet. D, results from
experiments (yellow) and simulations (red) at half train-
ing length (half) and full training length (full) are also
shown. Dotted lines show 50% correct chance level per-
formance.

tests with model learning, true doublets were reliably
preferred over mixture doublets. Also, the model with
maximal a posteriori (MAP) probability showed that the
discovered latent variables corresponded to the combos
generating the training data (data not shown).

In Experiment 2, we sought to answer the question
whether the statistical learning demonstrated in Exper-
iment 1 was solely relying on co-occurrence frequencies,
or was using something more sophisticated, such as at
least cross-correlations between shapes. Bayesian model
learning, as well as humans, could distinguish between
rare doublet combos and mixtures from frequent dou-
blets (Fig. 2B) despite their balanced co-occurrence fre-
quencies.

We were interested whether the performance of hu-
mans could be fully accounted for by the learning of
cross-correlations, or they demonstrated more sophis-
ticated computations. In Experiment 3, training data
was composed of triplet combos, and beside testing true
triplets against mixture triplets, we also tested embed-
ded doublets (pairs of shapes from the same triplet)
against mixture doublets (pairs of shapes from different
triplets). If learning only depends on cross-correlations,
we expect to see similar performance on these two types
of tests. In contrast, human performance was signifi-
cantly different for triplets (true triplets were preferred)
and doublets (embedded and mixture doublets were not
distinguished) (Fig. 2C). This may be seen as Gestalt
effects being at work: once the ‘whole’ triplet is learned,
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Figure 3: Evolution of model variables with increasing
training length in a pilot triplet simulation performed
with two triplets. A, LPRs for triplet (solid line) and
embedded doublet (dashed line) 2 AFC tests. B-D, Mean
(solid line) ±1s.d. (dotted lines) of posterior parameter
distributions in the MAP model structure for latent-to-
observed weights, wij (B); observed biases, wyj (C); and
latent biases, wxi (D).

its constituent parts (the embedded doublets) loose their
significance. Our model reproduced this behavior and
provided a straightforward explanation. The main effect
of extensive training in the simulations was increasing
certainty about the correct model structure (data not
shown) and that given that model structure there was
a strong causal link between the appearence of a combo
and its constituent shapes (shift of wij weights towards
more positive values, Fig. 3B). Given such a confident
causal link in the learned model, whenever a combo ap-
peared it could almost only produce triplets, therefore
doublets (embedded and mixture alike) could only be
created by spontaneous independent activation of indi-
vidual shapes. In other words, doublets were seen as
mere noise that naturally produced embedded and mix-
ture doublets with equal chance. An interesting predic-
tion from this argument is that more training should just
further accentuate this affect, that is embedded doublets
should become even less preferred Fig. 3A).

The fourth experiment tested explicitly whether em-
bedded combos and equal-sized independent true com-
bos are distinguished and not only size effects pre-
vented the recognition of embedded small structures in
the previous experiment. Both human experiments and
Bayesian model learning demonstrated that quadruple
combos as well as stand-alone doublets were reliably rec-
ognized (Fig. 2D), while embedded doublets were not.
Moreover, longer training did not help with the recog-
nition of embedded doublets just as predicted before.
However, the preference for embedded triplets against
mixture triplets was signifcantly above chance, and thus
above the level at which embedded doublets were pre-
ferred. Our simluations could also account for this ef-
fect. The probability of a given combo being produced
by the spontaneous activation of its constituent shapes
(noise) decreases exponentially with its size. Therefore,
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Figure 4: Aggregate plot of the fit of experimental data
with simulations. Black symbols, LPRs from statistics-
based computation; gray symbols, LPRs from Gestalt-
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mixture predictive distribution. Solid gray line, sigmoid
fit on the 12 black symbols from the data of Fig. 2 (Exp2,
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plet (Exp. 4). Symbol shapes, different test trial types in
a given experiment (see Fig. 2 for an explanation of the
legend), F and H in Exp. 4 denote full and half train-
ing length, respectively. Dotted lines show that fits were
constrained to be unbiased, ie. to go across (0, 0.5).

while the appearance of an embedded doublet could be
explained away by noise as before, the appearance of
an embedded triplet could only be explained by the ap-
pearance of a true quadruplet that failed to activate one
of its shapes. The only likely mechanism for explaining
triplets could thus produce embedded but not mixture
triplets, hence the preference for the former.

In order to demonstrate the predictive power of our
approach we have replotted all the experimental data
(12 data points) against our theoretical predictions from
Figure 2 and obtained a strong quantitative match (r =
0.95, Fig. 4, black symbols, solid grey line). Importantly,
we used the same parameter set for modelling all the
experiments. Only one parameter was tuned for fitting
the data (β = 0.15, see Eq. 6), while no specific ef-
fort was made to optimize the rest of the parameters;
indeed changing them in a wide range did not affect the
qualitative outcome of our simulations.

In Experiment 2, although rare doublet combos were
preferred over frequency-balanced cross-pairs, humans –
but not the model – learned about the frequencies of
their constituent shapes. Human subjects preferred con-
stituent single shapes of frequent doublets over those
of rare doublets (Fig. 5A). Furthermore, experiments
showed a slightly greater preference for singlets than
for doublets. Since the approach concentrating on the
purely statistical aspects of perceptual learning in this
task failed to reproduce these findings, we hypothesized
that Gestalt cues present in training scenes affect the
learning process, therefore cannot be neglected. These
Gestalt cues – the clear spatial disjunctness of individ-

ual shapes, further accentuated by the grid lines sep-
arating them – bias any näıve observer to treat indi-
vidual shapes as truly independent in spite of conflict-
ing statistical evidence. We modeled this Gestalt-based
bias phenomenologically when computing the predictive
probabilities of the two test scenes in a 2AFC test trial.
The final predictive probability of a scene was a mix-
ture of the predictions of a purely statistics-based model
(described before), Pstats, and a so-called Gestalt-based
model, PGestalt, which was constrained to have zero la-
tents (ie, the prior distribution on the number of latent
variables and correspondingly on the number of links was
δ (0)) and thus only learnt about the occurrence frequen-
cies of individual shapes:

Pmixture

(
yZ |D

)
∝ P γ

stats

(
yZ |D

)
· P (1−γ)

Gestalt

(
yZ |D

)
(7)

Both Pstats and PGestalt were computed based on Equa-
tion 5. The same mixing coefficient γ was fitted to all
experimental data (Fig. 4).

We used the previous 12 data points complemented
with the data on singlet recognition in Experiment 2 and
obtained a good fit when fitting them with the noise pa-
rameter β and mixing coefficient γ (r = 0.76, β = 0.60
and γ = 0.27; Fig. 4, colored symbols, solid black line).
Although the overall fit of the model is somewhat worse
than before, recognition of singlets in the model consid-
erably improved when mixing was introduced (Fig. 5A).
Also, Bayesian information criterion computed over all
data points in the purely statistical model and in the
mixture model (−11.6 and −22.6 for the two models, re-
spectively) provided evidence that the inclusion of mix-
ing in the model was justified by the data. Similar to
experiments, simulations showed a slightly greater pref-
erence for singlets than for doublets (Fig. 4, orange sym-
bols). Pilot studies performed with three pairs and sim-
ilar statistics revealed that Gestalt effects play a signifi-
cant role in this result (Fig. 5B). While purely statistics-
based processing preferred both frequent singlets and
rare doublets, its preference for doublets was always
markedly greater – simply because the true generative
model discovered by statistical learning produced dou-
blets and not singlets. Gestalt-based computations, con-
versely, only processed singlet frequencies and therefore
strongly disfavored rare doublets and preferred frequent
singlets. Thus, ameliorating the predictions of statistics-
based computations with that of Gestalt-based process-
ing led to a stronger preference for frequent singlets than
for rare doublets, just as seen in humans.

Discussion
We demonstrated that humans flexibly yet automatically
learn complex generative models in visual perception.
Bayesian model learning has been implicated in several
domains of high level human cognition, from causal rea-
soning (Tenenbaum & Griffiths, 2003) to concept learn-
ing (Tenenbaum, 1999). Here we showed it being at work
already at a pre-verbal stage. Thus such a probabilistic
framework might be an adequate unified basis for mod-
eling learning processes from early sensory to complex
cognitive levels.

649



0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
co

rr
ec

t

exp
sim, w/o mixing
sim, w mixing

A 

−8 −6 −4 −2 0
−5

0

5

10

w
y

j

 prior mean

lo
g 

pr
ob

ab
ili

y 
ra

tio frb pair, model sel
single, model sel
frb pair, 0−latent
single, 0−latent

B 

Figure 5: A, Recognition of singlets in Experiment
2 in human experiments (red), in simulation with
purely statistics-based computations (orange), and with
Gestalt-based computations (yellow). B, Recognition of
frequency balanced (red) doublets and frequent singlets
(yellow) in a series of pilot frequency-balanced simula-
tions. LPRs (Eq. 6) were calculated in simulations with
purely statistics-based computations (solid lines) and
with Gestalt-based computations (dashed lines). Calcu-
lations were performed at various observed prior mean
values in order to test robustness.

An important finding of the present work was that hu-
man data can be explained through an interplay between
statistical computations and computations that are gov-
erned by Gestalt principles. Since in the experiments
presented here only one case (when single shapes were
tested in the frequency balanced experiment) necessi-
tated the mixing of statistics- and Gestalt-based predic-
tions, this result should be taken as preliminary. Never-
theless, in that case it seems that the strong Gestalt cues
of the experimental paradigm suggesting the indepen-
dence of individual shapes substantially interfered with
statistics-based computations. In line with this account,
infants, known to lack some of the Gestalt-based pro-
cessing capabilities of adults (Kovács, 2000), did not
keep track of single shape frequencies in an adapted
version of the frequency balanced experiments (Fiser &
Aslin, 2002). Such interactions between statistics- and
Gestalt-based perceptual systems are the target of future
research.

Our approach is very much in the tradition that sees
the finding of independent causes behind sensory data
as one of the major goals of perception (Barlow, 1990).
The results demonstrate that humans can infer complex
models from experience and implicate Bayesian model
learning as a powerful computation underlying such ba-
sic cognitive phenomena as the decomposition of visual
scenes into meaningful chunks.
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