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Abstract

Situations that present individuals with a conflict between
local and global gains often evoke a behavioral pattern known
as melioration — a preference for immediate rewards over
higher long-term gains. Using a variant of a binary forced-
choice paradigm by Tunney & Shanks (2002), we explored
the potential role of global feedback as a means to reduce this
bias. We hypothesized that frequent explicit feedback about
future expected and optimal gains might enable decision
makers to overcome the documented tendency to meliorate
when choices are rewarded probabilistically. Our results
suggest that the human tendency to meliorate is tenacious and
even prospective normative feedback is insufficient to reliably
overcome inefficient choice allocation. We identify human
memory limitations as a potential source of this problem and
sketch a reinforcement learning model that mimics the effects
of a variable feedback horizon on performance. We conclude
that melioration is a powerful explanatory mechanism that can
account for a wide range of human behavior.

Introduction

A specter is haunting psychology, decision sciences and
economic theory — the specter of maximization. It is an
intuitively appealing assumption that rational organisms
maximize their expected reward when making decisions.
The idea of optimal choice allocation to available
alternatives (or maximization of utility) is often equated
with the very concept of rationality and is one of the main
guiding principles of contemporary cognitive science.

Despite its intuitive appeal, this notion of utility
maximization may be mistaken. One now familiar criticism
is encapsulated in Simon’s (1956) notion of satisficing. A
satisficing organism aspires to meet some subjective
satisfaction criterion, thus replacing the optimal solution
with a solution that is deemed ‘good enough’.

The goal of this paper is to promote a less familiar but
just as profound alternative—a phenomenon known as
melioration (Herrnstein & Vaughn, 1980). In a nutshell, the
molecular mechanism underlying melioration is not the
achievement of maximal utility or subjective satisfaction,
but rather a general preference for high immediate rewards
over higher long-term gains. While the origins of this
research lie in studies of choice behavior in pigeons, the
tendency to meliorate has equally been documented for
humans (see Herrnstein, 1997).
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In this paper, we sketch the outline of a framework for
understanding this phenomenon from an information
processing perspective. After presenting the results of two
empirical studies that demonstrate suboptimal choice
behavior in humans, we develop a computational model that
explains these results in terms of capacity limitations and a
competition between local and global feedback.

Melioration in Theory and Practice

In an extensive series of experiments, Herrnstein and
colleagues (1997) have documented many instances of
motivated and systematic deviations from the rational ideal.
When faced with a dilemma between short- and long-term
rewards, both animals and humans appear to reliably favor
high immediate reinforcements over a higher overall gain.
One reason why these findings are not yet widely known
is that melioration and maximization only predict different
behaviors in environments in which local and global
optimization conflict. Imagine an environment in which one
alternative (call it L) is always better than another (X);
however, the more L is chosen, the worse both options
become. Under certain circumstances, the optimal strategy
in this environment is to always choose the locally worse
option, X. Figure 1 presents the details of such an
environment, where X stands for maximization, and L for
melioration. The two parallel lines are produced by the
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Figure 1: Environmental contingencies known to
induce melioration behavior. (See text for details.)



indicate the probability of receiving a reward by choosing
option X or L as a function of the choice history 4, which is
defined as the percentage of choices to L over the w most
recent trials. As both functions only differ by a constant C,
choosing L at any moment yields a higher expected payoff
than choosing X. While this makes L a locally dominating
alternative, we also need to consider the long-term effects of
choosing it. As every single choice of L increases the
number of recent choices to L by 1 for the next w trials (i.e.,
shifts 4 by 1/w units to the right, relative to having chosen
X), it results in a delayed and repeated cost of A/w on each
of the next w trials. Whenever the absolute magnitude of 4
exceeds C, the global costs of choosing L outweigh its local
benefits. (For values of w =10, 4 =-2/3, B=2/3,and C =
1/3, the long-term costs 2/3 of any choice of L exceed its
immediate benefit 1/3 by 1/3.)

Another way of seeing the overall inferiority of option L
despite its universal local dominance is to consider the
expected reward for a stable mix of choice allocations.
Always choosing L would yield a reward 33% of the time
(P1). The optimal long-term strategy is indicated by the
position on the abscissa at which the weighted average of
reward probabilities (drawn as a dashed line) is maximal.
This is the case when X is chosen 100% of the time (P2).

Environmental contingencies like these may appear
artificial, but there is nothing unusual per se about choices
being rewarded probabilistically and incurring both short-
and long-term benefits and costs. Outside the experimental
laboratory, meliorating behavior has been demonstrated in a
wide range of tasks and domains. For instance, even highly
experienced users of interactive software packages routinely
use inefficient procedures (Bhavani & John, 2000) and
novice typists prefer locally efficient visually-guided typing
to a superior touch typing strategy (Yechiam et al., 2003).
Fu and Gray (2004) have recently explained this ‘paradox of
the active user’ in terms of cost-benefit tradeoffs that favor
small incremental gains of an interactive nature over less
interactive but globally more efficient strategies.

Beyond the realms of software applications, discounting
local rewards in favor of higher global ones is notoriously
difficult—otherwise, nobody would ever drive without a
seatbelt, postpone a dentist’s appointment, pollute the
environment, smoke cigarettes, or gamble.

At the core of meliorating behavior lies an inability or
unwillingness to discount high local rewards in favor of
even higher global ones. Whereas previous research has
often cast this in clinical terms of self control, addiction, and
impulsiveness (see Herrnstein, 1997, Ch. 5-9), we approach
the phenomenon as a problem of incomplete knowledge and
a challenge to human information-processing limits.

Adopting a Global Perspective

In a series of experiments using the repeated forced-choice
paradigm described above, Tunney and Shanks (2002)
demonstrated that small changes in the type of payoffs can
have large effects on behavior. Whereas participants
maximized when payoffs systematically varied in
magnitude (Exp-1), they tended to meliorate when payoffs
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were probabilistic (Exp-2). This bias to focus on immediate
gains was alleviated when payoffs were negative (Exp-3) or
when the test phase was preceded by an exploration phase
(Exp-4). In the absence of a principled account, these results
appear like an assortment of wunrelated phenomena,
suggesting that people’s choice allocation is heavily
context-dependent and subject to relatively random
situational constraints.

As this seems unsatisfactory, we advocate a framework
for understanding melioration in terms of information
processing and cognitive limitations. The conflict between
melioration and maximization is a consequence of a
competition on two different timescales: attention to short-
term rewards (on a local timescale) favors option L, whereas
attention to long-term gains (or adopting a global
perspective) favors option X. While pigeons may be
doomed to meliorate due to their inability to comprehend
the long-term consequences of an action, a fundamental
difference between pigeons and people is that the latter use
language to describe and abstract from properties of task
environments. Experimenters routinely rely on this ability
by providing verbal instructions to communicate aspects of
the task that are not directly observable or experienced, e.g.,
hidden properties about task dynamics or extrapolations of
the current performance into the future.

In our research, we focus on probabilistic rewards and
investigate the use of feedback to direct attention away from
immediate outcomes and towards the global consequences
of an action. Under this approach, the phenomenon of
melioration is cast as a competition between two sources of
reward, with the goal of understanding how we can tip the
balance in favor of globally optimal performance.

Lessons from a Failed Experiment

In a previous experiment (Neth, Sims & Gray, 2005) we
explored the role of feedback frequency in a task modeled
on Tunney and Shanks’ (2002) forced-choice paradigm,
using the reward contingencies described above. In addition
to the immediate reward obtained after each choice, we
provided periodic global feedback designed to inform
participants of the relative optimality of their recent choices
on a larger timescale (every 10 or 100 trials). Our aim was
to counteract the local push towards melioration by
introducing an additional reward that favored maximization.

Results Much to our surprise, our feedback manipulation
did not have the desired result. Instead, we were baffled by a
complete lack of maximization strategies.

Critique Our choice of providing feedback over 10 trials
may have been inadequate. While focusing on 10-trial
segments may encourage a more global perspective and
facilitate a task representation on the scale that actually
determines the reward contingencies, it can be shown that it
is still advantageous to consistently meliorate when merely
extrapolating over units of 10 trials.

Another potential problem was the counterfactual nature
of the feedback provided to participants. Feedback of the
form “You won $x on the last n trials. If you had pursued
the optimal strategy all along, you would have won $y.”



implicitly directed attention to what participants did not do
so far and provided little indication of what they should do
instead. The hypothetical antecedent of the if-clause may
also have conveyed the misleading impression that
participants could not recover from past misallocations of
choices. The emphasis on what participants could have done
(given optimal performance) also rendered the feedback of
the optimal value entirely static, i.e., insensitive to the
current choices distribution of an individual. This also
created the possibility of nonsensical (or ‘contra-optimal’)
feedback when the sum of actually received rewards x (e.g.,
$0.24) exceeded the alleged ‘optimal’ reward y ($0.20).

Experiment:
Providing Prospective Feedback

The current study attempted to address the above
shortcomings by making several changes. First, rather than
providing retrospective and counterfactual feedback we
provided prospective feedback, for example, “If you
continue the same strategy you can expect to win $x on the
next n trials. By adopting the optimal strategy, you could
expect to win $y instead.” Apart from a change in emphasis,
this change has the additional advantage that it allows to
compute and contrast the exact values of expected wins for
consistent continuation and maximization, based on the
actual and current choice history of the individual.

Second, we increased the minimal global feedback
horizon n to 20 trials, which we found to be the smallest
number of choices for which consistent maximization
always outperforms not only melioration, but also all
alternative choice allocation strategies.

Third, we added a control condition that did not receive
any verbal (global) feedback in addition to the rewards
received on individual trials.

Fourth, and finally, we increased the number of trials
from 500 to 800.

Method

Participants Thirty RPI undergraduate students volunteered
to participate to earn a performance-related cash reward.

Task Environment As shown in Figure 2, two buttons
marked ‘Left’ and ‘Right’ were displayed at the bottom of
the task window. The top of the window listed the
participant’s cumulative winnings. The middle showed the
previous trial number, their choice on that trial, and the
reward received for that choice.

For each participant, the maximizing choice alternative X
was randomly assigned to either the left or right button. The
possible payoff for each choice was a fixed $.02 reward that
was probabilistically received or not received on each trial.

The current probability of receiving a reward upon
selecting an alternative was based on the participant’s
distribution of choices over the last 10 trials, using the
reward functions illustrated above. Over the course of 800
trials, consistent maximization would yield an expected
reward of $10.67, whereas consistent melioration would
yield an expected reward of $5.33.
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Figure 2: Screenshot of the experimental task window.

Design All participants received local feedback on the
presence or absence of a reward after each of 800 choices
and were displayed their cumulative winnings so far. The
additional availability of global feedback distinguished
between three conditions: Whereas a ‘No-Feedback’ control
group did not receive any additional feedback, two groups
received verbal feedback every 10 trials. For a ‘Future-20’
group the current choice history was extrapolated 20 trials
into the future to contrast the expected payoff for continuing
the current choice allocation ratio with the expected payoff
for consistent maximization on those trials. For a ‘Future-
AlIl’ group the same rationale was applied over a larger
horizon, spanning from the current trial ¢ to the end of the
session, i.e., the remaining 800—¢ trials. Thus, our
experiment employed a mixed design of three between-
subjects conditions, each of which made 80 blocks of 10
choices.

Procedure Participants were tested individually in a quiet
room. During the instructions, participants were informed
that their choices could earn them a cash payment of up to
$11, depending on their performance.

Each individual choice was indicated by pressing either
the left or the right button. After each choice, both buttons
were disabled for .5 sec and the feedback from the previous
trial was updated. After the buttons were re-enabled the
participant was free to make the next choice.

Every 10 trials, the two global feedback conditions saw a
feedback screen that occluded the task window and
contained the verbal feedback message.

An experimental session was completed in 45 minutes on
average, including instructions.

Predictions As the explicit global feedback was designed to
overcome the local bias towards melioration, we predicted
that both global feedback groups would select the
maximization choice more frequently than the No-Feedback
control group, which would result in higher overall gains. In
addition, we expected maximization to be most facilitated
for the Feedback-End group.



Table 2: Choice allocations of individual participants on 40 blocks (of 20 trials each). Blocks with 17 or more L-choices
were classified as melioration blocks, blocks with 17 or more X-choices were classified as maximization blocks, and all
other blocks as indeterminate (—). The overall classification of individuals in the final column is based on their total
number of choices. (If the sum to either alternative exceeds 437 out of 800, random allocation can be rejected at p < .01).
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Results

We will first present performance results on an aggregate
level before considering individual choice allocations.

Table 1 (below) contains the overall wins and
percentages of maximization choices by experimental
condition. Despite consistent trends in the predicted
direction, the group differences are relatively small and
the within group variability is high. Comparing overall
wins and maximizations by group yielded two non-
significant ANOVAs, F(2,29)=1.6, MSE = 1.33,p = .22
and F(2, 29) = 1.7, MSE = 434.6, p = .20, respectively,
suggesting that our feedback manipulations have failed
yet again. Even though two planned comparisons between
the extreme No-Feedback and Feedback-End conditions
are marginally significant (p = .087 and p = .073,
respectively) we cannot claim on the basis of group
means that global feedback elicits a larger proportion of
maximization choices and higher overall wins.

On the other hand, this conclusion is strangely at odds
with the impression gained when studying participants’
performance profiles. To illustrate the sequential choices
of individual decision makers we classified each block of
20 choices as instances of unambiguous melioration or
maximization if the number of corresponding decisions
significantly deviated from chance levels in that direction
(i.e., less than 4 or more than 16 maximizations, in which
case a sign-test assuming a random binomial random
distribution yielded p <.01).

Table 1: Performance by experimental condition.

Wins (in $): Max choices (%):
Group: Mean (SD) Mean (SD)
No Feedback: 7.27 (0.49) 37.8  (9.2)
Feedback-20: 7.81 (1.12) 46.3 (20.0)
Feedback-End:  8.18 (1.58) 552 (28.6)
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Table 2 (above) reveals structural regularities that were
obscured by the group averages. Consistent with the
average trends, the total number of maximization blocks
appears to be higher for the groups that received
prospective feedback. This applies particularly to the
Feedback-End group in which three individuals
discovered the maximization strategy by the 4™ block.

If we count the total number of maximization blocks
per participant the average count of 12.4 in the Feedback-
End group is more than twice that of the 6.0 average in
the Feedback-20 group and more than 4 times the value of
2.6 blocks for the No-Feedback group.

Similarly, when classifying the overall performance of
each individual participant (by a binomial test rejecting
the assumption of random choice allocation at p < .01) the
Feedback-End group contained 3 maximizers, whereas
the Feedback-20 group contained 2, and the No-Feedback
group contained 1 (last column of Table 2). Although
these numbers are only descriptive, they still show that
individual decision-makers were able to benefit from the
global feedback provided.

Another interesting pattern emerging from Table 2 is
that participants rarely switched back to a meliorating or
intermediate strategy after having once maximized. This
may have been facilitated by the feedback received (in
which the projected actual gains would closely
approximate the projected optimal gains) but also
suggests that maximizers typically realized that they had
found the optimal strategy.

But beyond all qualitative accounts we cannot disregard
the fact that at least half of the participants in either group
were classified as overall meliorators. Although our
provision of clear and prospective feedback may have
budged a few individuals, our results demonstrate yet
again that melioration, rather than maximization, seems to
dominate human choice.



Modeling Variable Feedback Horizons

To develop a formal understanding of the impact of local
rewards on choice performance, we developed a
reinforcement learning (Sutton & Barto, 1998) model
designed to examine the effects of adopting a local versus
global perspective on feedback. While reinforcement
learning is increasingly used in the cognitive modeling
community as a process model of human learning (e.g.,
Fu & Anderson, 2006), our use of the technique instead
reflects a desire to form quantitative predictions of
performance under known or hypothesized processing
limits. This approach mirrors the Ideal Performer
Analysis approach (Gray, Sims, Fu, & Schoelles, in press)
in terms of seeking a theory of optimal human
performance under constraints. In our case, the relevant
constraint is the extent to which the model adopts a local
or global perspective on its trial-to-trial feedback.

On each trial, the model chooses the button with the
highest utility based on its experience with each button.
Following each action, the model probabilistically
receives a reward 7 using the same contingencies as our
human participants. This reward is then used to update the
model’s utility estimate for the chosen button. This is
accomplished using a simple linear difference equation:

U <U~+al[r-U],

where o is a learning rate parameter determining how
much the error between the current estimate and observed
reward is reduced after each outcome. By itself, the above
equation would quickly learn to meliorate, as by
definition, the average return on any single choice is
greater for the melioration button than the maximization
button. In order to shift the model’s focus from local
rewards to a global perspective, we added eligibility
traces (Sutton & Barto, 1998) to the model’s utility
calculation. The effect of adding the eligibility trace is
that after each action is taken, a temporary record is made
of that action. This record is used to update the utility
estimates for an action based not just on its immediate
outcome, but also the resulting outcomes for subsequent
choices. The duration in trials that the eligibility trace
remains in memory is governed by a parameter (L) that
can be used to shift the model’s perspective from local to
global performance. For example, by setting A=5, the
model’s utility estimate for each action will consist of not
just the immediate reward, but rather the average rewards
obtained for the five choices following each action.

Figure 3 shows the average performance of 500 runs of
the reinforcement learning model using various settings of
the parameter A. As would be expected, with A=1 the
model quickly learns to meliorate. However, as the
parameter increases the model gradually shifts towards
maximization. The most obvious result obtained by the
model is a demonstration of the memory demands
required by any human participant to learn the
maximizing strategy in our experiment. In order to
reliably discover a maximizing strategy, participants
would have to attribute each reward not just to the most
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Figure 3: The percentage of maximizing choices of
reinforcement learning agents for various settings of the
eligibility trace parameter A.

recent action, but also to at least the four preceding
actions (and possibly much greater), a span that could
easily overwhelm human working memory capacity.

A further point demonstrated by the reinforcement
learning model is that even adopting the appropriate
global perspective on choice outcomes does not guarantee
that the maximizing strategy will be discovered quickly.
With A=8, the reinforcement learning models require over
200 trials of experience before 80% of the agents discover
the optimal strategy, and roughly 10% of the agents never
learn to maximize. If the learning problem faced by the
model is great, then humans face an even greater
challenge, as they must somehow learn or guess the
appropriate global perspective, as well as deal with the
working memory demands imposed by that perspective.

While it is impossible to directly measure anything like
a “A parameter” in humans by looking at behavioral data,
it is possible to examine the extent that each decision
reflects past outcomes over various timescales. Figure 4
shows the likelihood of receiving a reward over the past
10 trials and the decision to switch buttons or stay on the
current trial. For a stay decision, there is a high likelihood

0.6
= I(Rewarded|Switch)

—O~ I(Reward)

—O—I(Rewarded|Stay)

o
]

likelihood of reward

°
IS

0.3

1 2 3 4 5 6 7 8 9 10
Trials preceding the current
Figure 4: Likelihood of having received a reward on the
preceding 10 trials and deciding to switch or stay on the
current trial, contrasted with the overall reward likelihood.



that the participant was rewarded on the previous trial
(and low likelihood for participants who switched).
However the correlation rapidly diminishes between
choices and outcomes more than two trials apart. This
result strongly suggests that participants in our
experiment attributed the utility of each action mainly to
its local consequences, and failed to learn the connection
between local choices and their long-term consequences.
The value of our computational model is to suggest that
this failure may represent not just the choice of an
inappropriate  perspective on feedback, but more
fundamentally, a working memory limitation that could
prevent the adoption of a more global perspective.

Discussion

Our results provide yet another demonstration of the
persistence of the tendency to meliorate rather than
maximize. Even with a feedback manipulation that clearly
highlighted the global suboptimality of their choice
allocations, the majority of our participants meliorated.
We interpret these findings as both partial success and
successful failure. Although group means did not show
any systematic effects, individual performance profiles
suggested that our manipulation has helped some
individuals to maximize their rewards.

The success in our failure is that our theoretical model
allows us to account for those findings to a certain extent.
Even with perfect attribution of rewards to past choices
the model needs to consider sequences of six or more
choices in order to learn to maximize. By contrast,
people’s choice allocations seem to be governed by local
events like the presence or absence of rewards on the
immediately preceding trials.

At present our model does not take into account the
global feedback provided to participants. However, the
important contribution of the model is its ability to place
both local and global perspectives on a continuous scale
(via the parameter A), whereas our experiments have only
manipulated this dimension by providing qualitatively
different types of feedback. An interesting question is
whether a particular combination of local and global
feedback would tip the balance sufficiently that a
maximizing strategy could be learned using a lower
demand on working memory (concretely, a smaller
parameter A). If so, the model might shed light on the
cognitive mechanisms that underlie melioration and may
guide the design of experiments in which decision makers
reliably manage to maximize their rewards.

Conclusion

Maximization is not just an obsolete ideal in need of
retirement and remains an important benchmark for
understanding human behavior. But as individual choice
allocations often defy the notion of utility maximization
an alternative explanatory mechanism is needed: We
propose that current list of contenders (including notions
of ‘bounded rationality’ and an ‘adaptive toolbox’) needs
to be extended to include melioration.
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Our findings imply that humans, like pigeons,
systematically favor local over globally optimal rewards.
Although some humans, some of the time, under some
conditions are able to steer against local optima this
clearly does not come easily. In fact, the tenaciousness of
the melioration phenomenon may suggest that local
optimization is an evolutionary adaptive mechanism that
is only dysfunctional in very special environments.

As many phenomena of addictive and impulsive
behavior patterns can be explained from a melioration
perspective, it would be worrying if humans could not in
principle overcome this tendency. Future research should
concentrate on the interaction between conflicting local
and global feedback. A better model of this interaction
would not only benefit our theoretical understanding of
behavioral mechanisms, but would bear great potential for
applications that range from interactive software tools to
the prevention or cure of self-destructive behaviors.
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