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Abstract The system starts with some prior distribution of belief
_ o o _ ) _ over the joint hypotheseg(6, ,...,061). That distribution is
This article is concerned with trial-by-trial, online |eamg updated each time that an input-output datum is experienced

of cue-outcome mappings. In models structured as succes- :
sions of component functions, an external target can be-back FOr inputxy, suppose that the correct outcome, as observed

propagated such that the lower layer's target is the input to in the environment, i . Bayes’ theorem indicates that the
the higher layer that maximizes the probability of the highe  appropriate beliefs after witnessing the itéimx;) are

layer’s target. Each layer then does locally Bayesian lagrn

The resulting parameter updating is not globally Bayedian,

can better capture human behavior. The approach is imple- p(eL,...,01]t , %)

mented for an associative learning model that first maps$npu

to atée_ntionally filtered inglyrfs, andtrlu_an maplqsdattenﬂlgrfﬁl _ Pt [, --,61,%) P(BL,....01) 1)
tered inputs to outputs. The model is applied to the human- -

Iearningpﬁhenomerﬁ)on called highlighting?,pwhich is chailen JoBL...d8y p(t,[BL,...,01,%,) P(6L;...,01)

ing to other extant Bayesian models, including the rational B ) )
model of Anderson, the Kalman filter model of Dayan and The probability of the outcome given the input,

Kakade et al., the noisy-OR model of Tenenbaum and Grif- i i i i
fiths et al., and the sigmoid-belief networks of Courville et P(t (8. .,01,,), is determined by the particular functions

al. Further details and applications are provided by Krkech N €ach layer. The updating of the belief distribution over
(in press); the present article reports new simulafionshef t  the joint parameter space is referred to as globally Bagesia
Kalman filter and rational model. learning.

Cognition Modeled as a Succession of
Transformations

Cognitive models are often conceived to be successions of Locally Bayesian Learning

transformations from an input representation, througli- var An alternative approach comes from considering the local en

ous internal representations, to an output or response-reprvironment of each layer. Each layer only has contact with its

sentation. Each transformation is a formal operation,-typi Own input and output. If a layer had a specific target and in-

cally having various parameter values that are tuned by-expd@ut, then the layer could apply Bayesian updating to its own
rience. A well-know example is Marr’s (1982) modeling of parameters, without worrying about the other layers.

vision as a succession from a representation of image inten- A local updating scheme proceeds as follows. When an in-
sity to a “primal sketch” to a “3-D sketch” to a 3-D model ~ Putxi is presented at the bottom layer, the input is propagated
representation.

Globally Bayesian Learning Vo1 ~ P(Yes1]8ri1,%011)
In Bayesian approaches to cognitive modeling, each transfo
mation in the hierarchy takes an input and generates a dis- [eﬂl ~ P(Brs1)
tribution of possible outputs. Figure 1 shows the ingut
at layer? being transformed into the outpwyt, which has a Xe+1
probability distributionp(y,). The input at the first layer is
denotedk, and the output at the last layer is denogedThe Yo ~ p(Ye|8e,xe)
specifics of the distribution are governed by the values ef th
parameter§;. [eg ~ p(By)

Each value of the parametdsrepresents a particular hy-
pothesis about how inputs (stimuli) and outputs (outcomes
or responses) are related. The combinations of all possible

values (.)fe‘* span the pOSS|b_Ie beliefs of the _model. The CoreFigure 1. Architecture of successive functions. Vertical arrows in
ontolpglcal notion in Bayesian approaches |3_that knoweedg dicate a mapping from input to output within a layer, parasrieed
consists of the degree of belief in each possible value of they 8. The notation 8 ~ p(8)” means tha® is distributed accord-
parameter®,. That distribution of beliefs in each layer is ing to the probability distributiorp(8). In the globally Bayesian
denotedp(8y). approachxy.1 = y,. In the locally Bayesian approacky,. 1 = y;.

Xe
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up the layers. The input to layér- 1 is the expected value of

the output of modulé: Outcomes: ITE

Xey1=Yr = /dw Ye P(Ye|Xe) () Cues: “PE "1 PL

—

Equation 2 is applied recursively up the sequence of layers,
so every layer has a specific input. Eigﬁlﬁe ﬁ Symméetric SgUCthe fOLgJE'OUtCOme ée|ati?”5 II‘? the
: : . Ighlig tlng procedure. ases 0 .E are trained earlier than
A.‘ target Oqul.JtL is provided at the final output Iaye_r. The cases of I.PL-L, but with equal base rates overall.
belief probabilities for layef = L are updated according to

Bayes theorem, ) ) ) o
in which a new cue PL along with old cue | indicate a new

p(t,|8¢,%,) P(6r) outcome L. Figure 2 shows the symmetric structure of the
POty %) = [d6; p(t,160,%,) p(6) (3)  cue-outcome relations in highlighting. Notice that cue | is
SR PelB0 % ! an Imperfect predictor because both outcomes E and L can
wherex, = y,_; as in Equation 2. occur (on different trials) when | occurs. Cue PE is a Perfect

Then a target is selected for the next layer down. This tarpredictor of the Earlier trained outcome E, and cue PL is a
get for the lower layer is the input to the higher layer thatPerfect predictor of the Later trained outcome L.

maximizes the probability of the higher-layer target. Ihat If people learn the simple underlying symmetry of the cue-
words, when thé!" layer has a target vectr we choose the — outcome correspondences, then when they are tested with cue
next lower target as: ' | by itself, they should choose outcomes E and L equally of-
ten. In fact, there is a strong tendency to choose outcome E.
t, 4 = argmaxp(t,|x;) This response bias is not a general primacy effect, however,
X because when people are tested with the pair of cues PE

and PL, they prefer outcome L. Apparently, cue PL has been
highlighted during learning I.PLL, so that cue | is not as-
sociated strongly with L. But PL apparently is strongly asso

Equation 4 simply states that the target for the lower lager j iated with PL, even more than PE is associated with E.

the input to the upper layer that would maximize the proba-_ Table 1 shows details of a canonical highlighting design.

bility of the upper layer's target. The variabigis given a su- The learner first sees trials of cues | and PE indicating out-

perscript star to distinguish it from the input vaiie=y; ;. ~ come E, denoted |.PEE. One “epoch” of trials consists of
The targets can then be propagated down the layers by réhe items in that phase presented in random order. In the sec-

cursively applying Equations 3 and 4. For each layer, the beond and third phases of training, trials of I.PIL are inter-

liefs are updated and then a target is determined for the laydnixed. The canonical highlighting design equalizes the fre
below. quencies of the early and late outcomes. Notice in the table

An interesting quality of this algorithm is that the target that wherNg = N2 + Ny, the total number of . PEE trials is
received by a lower layer depends not only on the actual exte3N1 + 4Nz, which equals the total number of I.PLL trials.
rior target but also on what the upper layers have learned untThls“.equahty of base rates cjstmgwshes highlightingrfro
that point in training. (As mentioned before, | am assum-the “inverse base rate effect” reported by Medin and Edel-
ing trial-by-trial, online learning.) The target for thewer ~ SON (1988), which uses onIy_the second phase of Tat_)le 1, i.e.,
layer is selected to be maximally consistent with what the upN. =0 andN3 = 0. The equallity of base rates emphasizes that
per layers have already learned. In this way, the upper laydpghlighting is an order-of-learning effect, not a base reft
changes the data to be consistent with its beliefs before thfect. Simulations described below show that various Bayesi
lower layer changes its beliefs to be consistent with the.dat Models of learning predigs(E|l) = p(E|PE.PL) = .5, con-
As a consequence, the system is not globally Bayesian. Neftary to human behavior.
ertheless, simulations below illustrate that this is andntgmt
characteristic for capturing human learning. Table 1
Canonical highlighting design.

Phase # Epochs ltemsFrequency

argmax|d8, p(t|6s,%;) p(6clte,xe)  (4)
xj "

A Challenging Behavior: Highlighting

In typical associative learning experiments, people massti
which button to press in response to some simple cues pre-
sented on a computer screen. The cues could be simple
words, such as “brain” and “world.” In a learning trial, the
cues are presented, the learner presses the button that S/h%econd N2 |.PESE X3 LPL-L x1
thinks is correct, and then the correct response is disgdlaye . _
The learner studies the cues and correct response and then Mrd Ns=Na+Np  LPESE X1 LPL—L x3
moves on to the next trial. At first the learner is guessing), bu
predictive accuracy improves with training. Test PII:'P!? E L)

In the highlighting procedure, people are initially trained — _ —?(E)
on cases in which two cues, denoted PE and I, indicate oufNote: An item is shown in the format, Cue<Correct Response. In
come E. Later in training, people are also trained on casee test phase, typical response tendencies are showreintpeses.

First N; |.PE—E x2




Highlighting has been obtained in many different experi-The prior over the hidden weight hypotheses is uniform, and
ments using different stimuli, procedures, and cover efpri the prior over the output weight hypotheses is Gaussian. The
such as fictitious disease diagnosis (Kruschke, 1996; Mediprior therefore is completely neutral and provides no prefe
& Edelson, 1988), random word association (Dennis & Kr-ential treatment for any cue or outcome.
uschke, 1998; Kruschke, Kappenman, & Hetrick, 2005), and The upper row of Figure 4 shows the results after train-
geometric figure association (Fagot, Kruschke, Dépy, &Vauing the locally Bayesian model in the highlighting proceslur
clair, 1998). Many other published experiments have obwith N; = 1, N, = 2 andN3 = 3 in Table 1. The left panel
tained the inverse base rate effect for different relatiee f simply lists the training items in the order presented. The
guencies and numbers of training blocks (e.qg., Juslin, Wenright panel shows the choice preference of the model, where i
nerholm, & Winman, 2001; Medin & Bettger, 1991; Shanks, can be seen that the model shows a robust highlighting effect
1992). I have run several (unpublished) experiments in myy(E|l) > .5 andp(E|PE.PL) < .5.

lab in whichN; = 0 andN; = Ng, and in all of these experi-  The panel labeled “Hidden Weights” shows that the model
ments robust highlighting has been obtained. has shifted all its belief to hypotheses in which cue PL iithib
. . . hidden node I: The dotted line marked with a star, and labeled
Predictions of Various Bayesian Models hidl—PL, has all its belief probability loaded over the weight
Applied to Highlighting value of —5. But cue PE doesot symmetrically inhibit hid-

The remainder of this brief article shows that severalden node I: The solid line marked with a diamond, and la-

Bayesian models of learning cannot accommodate the higteled hidi—PE, has all its belief probability loaded over the
lighting effect, but a simple locally Bayesian model does.Weight value of 0, not-5.

There is not space here to discuss several other phenomenalhe panel labeled “Outcome Weights” shows that the
in human learning that are difficult for globally Bayesian model believes in hypotheses for which there is a positive
models but which can be addressed by a locally Bayesiagonnection from hidden node | to outcome E, but does not
model. These other phenomena, and full details of the lobelieve in hypotheses for which there is a negative connec-
cally Bayesian model summarized in the next section, are digion from hidden node | to outcome E: The line marked with

cussed by Kruschke (in press). a square and labeled-Ehidl has marginal belief probability
) ) greater than .4 over weight valdeb, but has marginal belief
Locally Bayesian Learning probability close to 0 over weight value5. In other words,

An illustrative implementation of the locally Bayesianiea  the locally Bayesian model has learned to believe in hypothe
ing scheme is now presented. Figure 3 shows that the mod&gs that areot symmetric across cues.

architecture has two layers of associative weights. Input The locally Bayesian model learns asymmetric beliefs
nodes correspond with stimulus cues, and output nodes-corrbecause of the internal targets it generates while learning
spond to response choices. An essential aspect of the moddPL—L. Because it has previously learned that cue | indi-
is that the intermediate (“hidden”) nodes represent attencates outcome E, not the currently correct outcome L, the tar
tionally modulated copies of the corresponding input cuesget at the hidden layer that is most consistent with the targe
The weight from a cue to the corresponding hidden noddias hidden node | de-activated. The lower layer then learns
is constrained to be positive, but weights from cues to nonto believe in hypotheses that suppress hidden node | when
corresponding hidden nodes can be zero or negative. This atue PL is present.

lows the network to entertain hypotheses that some cues can ) )

inhibit attention to other cues. Globally Bayesian Learning

The weights from the hidden nodes to the outcome nodegpe simplistic implementation of the locally Bayesian miode
can have positive, zero, or negative values. Within eactrlay permits the analogous globally Bayesian model to be exactly
a hypothesis is a particular weight matt¥d, The modelis jyhlemented. The globally Bayesian model crosses every
supplied with a large number of hypothetical weight masice hiqgen-weight matrix with every output-weight matrix teer

ate a large joint hypothesis space. If the locally Bayesian
model hasN"® hidden-weight hy(Potheses amfUt output-
Outcomes() () Your ~ PYout Wout> Xiq) weight hypotheses, then it hag'd + N°Ut hypotheses alto-

gether. The globally Bayesian model, on the other hand, has
[Wout ~ PWour) NMd x NoUt hypotheses. The prior on the joint space is also
just the product of the local priors, so that the marginasri
Xout on the joint space are identical to the local marginal priors
Attended Cues) () The lower row of Figure 4 reveals that the globally
Yrid ~ Phia Whid: Xhia) Bayesian model shows no highlighting effect whatsoevet, an
symmetrically distributes its beliefs. The globally Baiges
[Whid ~ P(Whig) model believes in hypotheses that have cues PE and PL
. equally associated with their respective outcomes, and hav
CuesO O hid cue | neutrally or equally associated with both outcomes.

Interestingly, it turns out that the globally Bayesian miode

Fi%ures. Architecture for the simple model of associative learning l€arns the training items more slowly than the locally
When locally Bayesian, the input to the outcome layer is tikarm ~ Bayesian model. In other words, accuracy on the training

output of the hidden layer, i.&gx = Ypg- items is better in the locally Bayesian model, throughout
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Data entered: Outcome Weights * Hidden Weights Overt Behavior

[ PEI PL E] 1 1
1101 —
1101 z 0.9
1101 0.8 o
1101 B 0.8
1101 _ g
0110 z 3 1
1101 a 0.6 s 07
1101 B m
— 1101 g’ T 0.6]
S 0110 5 0.4 0 57 345
o) g i 1 g = Weight Value =)
- 0110 —O— hidPE- PE g 0.4
1101 0.2 -+ - hidPE-|
0110 S hi 0.3]
0110 O h!dPEkPL
0110 0 —é—hldthE 0.2
1101 4 0 5 =% - hidl | '
0110 . )
0110 Weight Value ¥ hidl — PL 0.1
0110 —O—E . hidPE —€— hidPL-PE
1101 —8—E . hidl - % = hidPL.| O BETrIPL | PEPL
—©—E - hidPL > hidPL~PL Test Item
Data entered: Outcome Weights Hidden Weights Overt Behavior
[PEIPL E] 1 1 —
1101 — M
1101 z 0.9
1101 0.8 o
1101 B 0.8
1101 _ g
0110 B ]
1101 a 0.6 s 07
1101 3 m
3 1101 £ 506
Jia) 0110 3 0.4 8 o5l N
9 g i 1 g = Weight Value S
O 0110 —©—hidPE-PE| & g4
1101 0.2 -+ - hidPE-|
0110 S hi 0.3]
0110 O h!dPEkPL
0110 0 —e—hldL—PE 0.2
1101 5 0 5 =% - hidl | '
9110 Weight Value “ ¢ hidl - PL 0.1}
0110 —0—E . hidPE —€— hidPL- PE M
tiot —8—E - hidl = % = hidPL-| O BEr AL 1 PEPL
—©—E-hidPL > hidPL~PL Test Item

Flgure4 Up;)er Row: The locally Bayesian model trained in the highlighting m@dare (with
1,N, =2,N3 =3 in Table 1).Lower Row: The globally Bayesian model trained the same.

training. (A hint of this can be seen by comparing the up-to a cluster and the cluster’s beliefs are updated, the posste
per and lower rows of Figure 4, but the difference appearslistribution again has the form of a Dirichlet distributiorhe
to be weak because accuracies are near asymptote by thparameters of the posterior distribution are simply thermpri
point in training.) One reason for the relative retardafion parameters incremented by 1 wherever a feature was present
the global model is that the global model retains some beliein the added stimulus.
distributed over many candidate hypotheses, and thisedilut  When a stimulus is presented to the rational model, the
performance. A more detailed discussion can be found imodel computes the probability of each cluster given the
Kruschke (in press). stimulus. One of the candidate clusters is always the novel
. cluster which has a uniform prior. The stimulus is added to
Rational Model whichever cluster has highest probability. If it is addethe
The rational model of category learning, invented by Ander-until-then novel cluster, a new novel cluster is recruited f
son (1990), is a Bayesian clustering algorithm. Each dlustesubsequent trials.
represents a distribution of beliefs over candidate pritbab  Predictions regarding missing features are determined by
ties of feature values in that cluster. For example, if oime-st computing, in each cluster, the probabilities of the values
ulus dimension is presence or absence of feature PE, arclustef the missing feature, and adding those probabilitiessscro
might have .10 belief that the probability of PE presence isclusters, weighted by the probability of the cluster givea t
.3, and .15 belief that the probability of PE presence isnd, a presented features. This is the normative Bayesian apiproac
so forth. The degree of belief in the conjoined features of arhe prediction is the average of the predictions of each hy-
stimulus is simply assumed to be the product of the beliefs ippothesis, weighted by the degree of belief in each hypathesi
the individual features. Figure 5 shows the results of applying the rational model
The belief distributions on each feature are continuous antb the highlighting procedure withl; = 1, N =2, N3 = 3
parameterized as Dirichlet distributions. These distiilms  in Table 1. The right panel reveals that the model shows no
have one parameter per feature value. A convenient charabighlighting effect. The middle panel shows the state of the
teristic of these distributions is that when a stimulus idextl  cluster nodes at the end of training. The model has recruited
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Data entered: Internal Clusters Overt Behavior

[ PEI PL E] Dirichlet Parameters 1
1101 Cluster 1:
1101 1112 1 0.9 T
1101 1212 112
o 1101 Cluster 2: 0.8r
P éigé 12 1 112
M 11212 1 0.7p
1) 1101
- 1101 Cluster 3:
o) 1101 1111 0.6f
3 0110 1111 m
= 0110 T 05 1
I 0110
s 0110 0.4f
BT
14 0110 03
0110
1101 0.2r
0110
0110 0.1f
0110 H
1101 0
PE.I I.PL | PE.PL

Test Item

Figure5. Rational model (Anderson, 1990) trained in the highlightprocedure (witiN; = 1,
N2 =2,N3 = 3in Table 1).

two clusters. One cluster represents all the FREitems, added on each trial, but increased uncertainty can be asunte
and the other cluster represents all the EFFLitems. (The acted by longer training.

third cluster is the omnipresent novel cluster.) Because th The lower panel of Figure 6 indicates the “uncertainties”
clusters are completely symmetric with respect to the cuesyn each cue, which are simply the variances (diagonal ele-
the predicted behavior is aldo. ments of the covariance matrix) of the Gaussian beliefidistr
bution. As training progresses, uncertainty decreaseshwh
indicates that beliefs sharpen-up over particular weigtit v
ues. The graph indicates that uncertainties are very nearly

The top layer of the simplistic locally Bayesian model is Symmetric at the end of training. _
closely related to a Kalman filter, which was introduced toas 1 he locally Bayesian model extends the Kalman-filter ap-
sociative learning researchers by Sutton (1992) and has be®roach by pre-pending an attentional learning layer. Wwere
used to model some aspects of attention in learning by Dayarﬁ'?e Kalman filter learns about the cues in their totality, the
Kakade and collaborators (e.g., Dayan & Kakade, 2001ypperllayer of the locally Baye5|a}n model learns only about
Dayan, Kakade, & Montague, 2000; Dayan & Yu, 2003; attentionally filtered cues at the hidden layer. The atberti
Kakade & Dayan, 2002). In a Kalman filter, continuous-scaldiltration depends on the temporal order of training itemtse T
outcomes are computed as a weighted sum of input cues. Th@mporal dependencies of the two models are not incompat-
weighting coefficients have prior distributions defined as-m  Ible; future extensions of the models could incorporatébot
tivariate normal. The Kalman filter uses Bayesian updatingn€ uncertainty accumulation of the Kalman filter model with
to adjust the probability distribution on the weights (Mein he attentional selection of the locally Bayesian model.

hold & Singpurwalla, 1983). Because the model is linear, :

the posterior distributions on the weights are also muitiva Other Bayesian Models
ate normal, and the Kalman filter equations elegantly expresTenenbaum and collaborators (e.g., Sobel, Tenenbaum, &
the posterior mean and covariance as a simple function of thgopnik, 2004; Tenenbaum & Griffiths, 2003) have developed
prior mean and covariance. One difference between the modgayesian models in which the hypotheses are noisy-OR gates.
els is that the Kalman filter can add uncertainty to the weightl he models handily address some aspects of rapid learning,
distributions on every trial. Because of the accumulatibn o but are not able to exhibit highlighting because the models
noise across trials, the Kalman filter can exhibit some triahave no time dependencies. That is, all that matters to the
order effects. Typically the amount of uncertainty addeal is model is the overall frequency of the training items, notrthe
constant. training order.

Figure 6 shows the behavior of the Kalman filter when ap-_ Courville and colleagues (Courville, Daw, Gordon, &
plied to highlighting (withN; = 1, N, = 2, N3 = 3 in Ta- Touretzky, 2004; Courville, Daw, & Touretzky, 2005) con-
ble 1). The format of the figure matches that used in report§€Ptualized both the cues and outcomes as effects to be pre-
by Dayan et al. The top panel of Figure 6 shows the meaficted by latent causes (analogous to the clusters in the ra-
weight (i.e., the mean of the Gaussian distribution of liglie tional model). In their approach, a hypothesis is a set of
over possible weight values) on each cue, at the beginninﬂe'ghts from latent causes to cues and outcomes, with the

i i . i 0- .
of each epoch of training. The means start unbiased at zer L Anderson (1990) reported that the rational model can captur

At the end of training, the mean on cue | is nearly zero, antsome aspects of the “inverse base rate effect,” which is theep
the means on cues PE and PL are nearly equal (but oppositéjre of Table 1 witiN; = 0 andN3 = 0. The model works in that

magnitude. Therefore, when presented with items | or PE.PLSilation because the more frequent cluster has a tighteshizit
h del di ’ | his behavi distribution than the less frequent cluster. But with theaagverall
the model predicts nearly 50-50 outcomes. This behavior cafiequencies in canonical highlighting, the two clustersehaqual

be modulated somewhat by the amount of uncertainty that igariances.

The Kalman Filter
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current (upper-layer) beliefs before updating its (lovarer)

beliefs. Thus, the locally Bayesian model changes the data t
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people seem to behave that way too.
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