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Abstract

This article is concerned with trial-by-trial, online learning
of cue-outcome mappings. In models structured as succes-
sions of component functions, an external target can be back-
propagated such that the lower layer’s target is the input to
the higher layer that maximizes the probability of the higher
layer’s target. Each layer then does locally Bayesian learning.
The resulting parameter updating is not globally Bayesian,but
can better capture human behavior. The approach is imple-
mented for an associative learning model that first maps inputs
to attentionally filtered inputs, and then maps attentionally fil-
tered inputs to outputs. The model is applied to the human-
learning phenomenon called highlighting, which is challeng-
ing to other extant Bayesian models, including the rational
model of Anderson, the Kalman filter model of Dayan and
Kakade et al., the noisy-OR model of Tenenbaum and Grif-
fiths et al., and the sigmoid-belief networks of Courville et
al. Further details and applications are provided by Kruschke
(in press); the present article reports new simulations of the
Kalman filter and rational model.

Cognition Modeled as a Succession of
Transformations

Cognitive models are often conceived to be successions of
transformations from an input representation, through vari-
ous internal representations, to an output or response repre-
sentation. Each transformation is a formal operation, typi-
cally having various parameter values that are tuned by expe-
rience. A well-know example is Marr’s (1982) modeling of
vision as a succession from a representation of image inten-
sity to a “primal sketch” to a “212-D sketch” to a 3-D model
representation.

Globally Bayesian Learning
In Bayesian approaches to cognitive modeling, each transfor-
mation in the hierarchy takes an input and generates a dis-
tribution of possible outputs. Figure 1 shows the inputxℓ

at layerℓ being transformed into the outputyℓ, which has a
probability distributionp(yℓ). The input at the first layer is
denotedx1, and the output at the last layer is denotedyL. The
specifics of the distribution are governed by the values of the
parametersθℓ.

Each value of the parametersθℓ represents a particular hy-
pothesis about how inputs (stimuli) and outputs (outcomes
or responses) are related. The combinations of all possible
values ofθℓ span the possible beliefs of the model. The core
ontological notion in Bayesian approaches is that knowledge
consists of the degree of belief in each possible value of the
parametersθℓ. That distribution of beliefs in each layer is
denotedp(θℓ).

The system starts with some prior distribution of belief
over the joint hypotheses,p(θL, . . . ,θ1). That distribution is
updated each time that an input-output datum is experienced.
For inputx1, suppose that the correct outcome, as observed
in the environment, istL. Bayes’ theorem indicates that the
appropriate beliefs after witnessing the item〈tL,x1〉 are

p(θL, . . . ,θ1|tL,x1)

=
p(tL|θL, . . . ,θ1,x1) p(θL, . . . ,θ1)R

dθL . . .dθ1 p(tL|θL, . . . ,θ1,x1) p(θL, . . . ,θ1)
(1)

The probability of the outcome given the input,
p(tL|θL, . . . ,θ1,x1), is determined by the particular functions
in each layer. The updating of the belief distribution over
the joint parameter space is referred to as globally Bayesian
learning.

Locally Bayesian Learning
An alternative approach comes from considering the local en-
vironment of each layer. Each layer only has contact with its
own input and output. If a layer had a specific target and in-
put, then the layer could apply Bayesian updating to its own
parameters, without worrying about the other layers.

A local updating scheme proceeds as follows. When an in-
putx1 is presented at the bottom layer, the input is propagated

xℓ

6
θℓ ∼ p(θℓ)

yℓ ∼ p(yℓ|θℓ,xℓ)

xℓ+1

6
θℓ+1 ∼ p(θℓ+1)

yℓ+1 ∼ p(yℓ+1|θℓ+1,xℓ+1)

Figure 1. Architecture of successive functions. Vertical arrows in-
dicate a mapping from input to output within a layer, parameterized
by θ. The notation “θ ∼ p(θ)” means thatθ is distributed accord-
ing to the probability distributionp(θ). In the globally Bayesian
approach,xℓ+1 = yℓ. In the locally Bayesian approach,xℓ+1 = ȳℓ.
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up the layers. The input to layerℓ+1 is the expected value of
the output of moduleℓ:

xℓ+1 = ȳℓ =
Z

dyℓ yℓ p(yℓ|xℓ) (2)

Equation 2 is applied recursively up the sequence of layers,
so every layer has a specific input.

A target outputtL is provided at the final output layer. The
belief probabilities for layerℓ = L are updated according to
Bayes theorem,

p(θℓ|tℓ,xℓ) =
p(tℓ|θℓ,xℓ) p(θℓ)R

dθℓ p(tℓ|θℓ,xℓ) p(θℓ)
(3)

wherexℓ = ȳℓ−1 as in Equation 2.
Then a target is selected for the next layer down. This tar-

get for the lower layer is the input to the higher layer that
maximizes the probability of the higher-layer target. In other
words, when theℓth layer has a target vectortℓ, we choose the
next lower target as:

tℓ−1 = argmax
x∗ℓ

p(tℓ|x
∗
ℓ)

= argmax
x∗
ℓ

Z
dθℓ p(tℓ|θℓ,x

∗
ℓ) p(θℓ|tℓ,xℓ) (4)

Equation 4 simply states that the target for the lower layer is
the input to the upper layer that would maximize the proba-
bility of the upper layer’s target. The variablex∗ℓ is given a su-
perscript star to distinguish it from the input valuexℓ = ȳℓ−1.

The targets can then be propagated down the layers by re-
cursively applying Equations 3 and 4. For each layer, the be-
liefs are updated and then a target is determined for the layer
below.

An interesting quality of this algorithm is that the target
received by a lower layer depends not only on the actual exte-
rior target but also on what the upper layers have learned until
that point in training. (As mentioned before, I am assum-
ing trial-by-trial, online learning.) The target for the lower
layer is selected to be maximally consistent with what the up-
per layers have already learned. In this way, the upper layer
changes the data to be consistent with its beliefs before the
lower layer changes its beliefs to be consistent with the data.
As a consequence, the system is not globally Bayesian. Nev-
ertheless, simulations below illustrate that this is an important
characteristic for capturing human learning.

A Challenging Behavior: Highlighting
In typical associative learning experiments, people must learn
which button to press in response to some simple cues pre-
sented on a computer screen. The cues could be simple
words, such as “brain” and “world.” In a learning trial, the
cues are presented, the learner presses the button that s/he
thinks is correct, and then the correct response is displayed.
The learner studies the cues and correct response and then
moves on to the next trial. At first the learner is guessing, but
predictive accuracy improves with training.

In the highlighting procedure, people are initially trained
on cases in which two cues, denoted PE and I, indicate out-
come E. Later in training, people are also trained on cases

Outcomes:

Cues:

E
↑

︷ ︸︸ ︷

PE I

L
↑

︷ ︸︸ ︷

I PL

Figure 2. Symmetric structure of cue-outcome relations in the
highlighting procedure. Cases of PE.I→E are trained earlier than
cases of I.PL→L, but with equal base rates overall.

in which a new cue PL along with old cue I indicate a new
outcome L. Figure 2 shows the symmetric structure of the
cue-outcome relations in highlighting. Notice that cue I is
an Imperfect predictor because both outcomes E and L can
occur (on different trials) when I occurs. Cue PE is a Perfect
predictor of the Earlier trained outcome E, and cue PL is a
Perfect predictor of the Later trained outcome L.

If people learn the simple underlying symmetry of the cue-
outcome correspondences, then when they are tested with cue
I by itself, they should choose outcomes E and L equally of-
ten. In fact, there is a strong tendency to choose outcome E.
This response bias is not a general primacy effect, however,
because when people are tested with the pair of cues PE
and PL, they prefer outcome L. Apparently, cue PL has been
highlighted during learning I.PL→L, so that cue I is not as-
sociated strongly with L. But PL apparently is strongly asso-
ciated with PL, even more than PE is associated with E.

Table 1 shows details of a canonical highlighting design.
The learner first sees trials of cues I and PE indicating out-
come E, denoted I.PE→E. One “epoch” of trials consists of
the items in that phase presented in random order. In the sec-
ond and third phases of training, trials of I.PL→L are inter-
mixed. The canonical highlighting design equalizes the fre-
quencies of the early and late outcomes. Notice in the table
that whenN3 = N2+N1, the total number of I.PE→E trials is
3N1 + 4N2, which equals the total number of I.PL→L trials.
This equality of base rates distinguishes highlighting from
the “inverse base rate effect” reported by Medin and Edel-
son (1988), which uses only the second phase of Table 1, i.e.,
N1 = 0 andN3 = 0. The equality of base rates emphasizes that
highlighting is an order-of-learning effect, not a base rate ef-
fect. Simulations described below show that various Bayesian
models of learning predictp(E|I) = p(E|PE.PL) = .5, con-
trary to human behavior.

Table 1
Canonical highlighting design.

Phase # Epochs Items× Frequency

First N1 I.PE→E×2

Second N2 I.PE→E×3 I.PL→L ×1

Third N3 = N2 + N1 I.PE→E×1 I.PL→L ×3

Test PE.PL→? (L)
I→? (E)

Note: An item is shown in the format, Cues→Correct Response. In
the test phase, typical response tendencies are shown in parentheses.
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Highlighting has been obtained in many different experi-
ments using different stimuli, procedures, and cover stories,
such as fictitious disease diagnosis (Kruschke, 1996; Medin
& Edelson, 1988), random word association (Dennis & Kr-
uschke, 1998; Kruschke, Kappenman, & Hetrick, 2005), and
geometric figure association (Fagot, Kruschke, Dépy, & Vau-
clair, 1998). Many other published experiments have ob-
tained the inverse base rate effect for different relative fre-
quencies and numbers of training blocks (e.g., Juslin, Wen-
nerholm, & Winman, 2001; Medin & Bettger, 1991; Shanks,
1992). I have run several (unpublished) experiments in my
lab in whichN1 = 0 andN2 = N3, and in all of these experi-
ments robust highlighting has been obtained.

Predictions of Various Bayesian Models
Applied to Highlighting

The remainder of this brief article shows that several
Bayesian models of learning cannot accommodate the high-
lighting effect, but a simple locally Bayesian model does.
There is not space here to discuss several other phenomena
in human learning that are difficult for globally Bayesian
models but which can be addressed by a locally Bayesian
model. These other phenomena, and full details of the lo-
cally Bayesian model summarized in the next section, are dis-
cussed by Kruschke (in press).

Locally Bayesian Learning
An illustrative implementation of the locally Bayesian learn-
ing scheme is now presented. Figure 3 shows that the model
architecture has two layers of associative weights. Input
nodes correspond with stimulus cues, and output nodes corre-
spond to response choices. An essential aspect of the model
is that the intermediate (“hidden”) nodes represent atten-
tionally modulated copies of the corresponding input cues.
The weight from a cue to the corresponding hidden node
is constrained to be positive, but weights from cues to non-
corresponding hidden nodes can be zero or negative. This al-
lows the network to entertain hypotheses that some cues can
inhibit attention to other cues.

The weights from the hidden nodes to the outcome nodes
can have positive, zero, or negative values. Within each layer,
a hypothesis is a particular weight matrix,W . The model is
supplied with a large number of hypothetical weight matrices.

Cues i i

6 6

�
�
�
���

B
B

B
BBM

Attended Cues i i

6 6

�
�
�
���

B
B

B
BBM

Outcomes i i

xhid

6
Whid ∼ p(Whid)

yhid ∼ p(yhid |Whid,xhid)

xout

6
Wout ∼ p(Wout)

yout ∼ p(yout |Wout ,xhid)

Figure 3. Architecture for the simple model of associative learning.
When locally Bayesian, the input to the outcome layer is the mean
output of the hidden layer, i.e.,xout = ȳhid .

The prior over the hidden weight hypotheses is uniform, and
the prior over the output weight hypotheses is Gaussian. The
prior therefore is completely neutral and provides no prefer-
ential treatment for any cue or outcome.

The upper row of Figure 4 shows the results after train-
ing the locally Bayesian model in the highlighting procedure
with N1 = 1, N2 = 2 andN3 = 3 in Table 1. The left panel
simply lists the training items in the order presented. The
right panel shows the choice preference of the model, where it
can be seen that the model shows a robust highlighting effect:
p(E|I) > .5 andp(E|PE.PL) < .5.

The panel labeled “Hidden Weights” shows that the model
has shifted all its belief to hypotheses in which cue PL inhibits
hidden node I: The dotted line marked with a star, and labeled
hidI←PL, has all its belief probability loaded over the weight
value of−5. But cue PE doesnot symmetrically inhibit hid-
den node I: The solid line marked with a diamond, and la-
beled hidI←PE, has all its belief probability loaded over the
weight value of 0, not−5.

The panel labeled “Outcome Weights” shows that the
model believes in hypotheses for which there is a positive
connection from hidden node I to outcome E, but does not
believe in hypotheses for which there is a negative connec-
tion from hidden node I to outcome E: The line marked with
a square and labeled E←hidI has marginal belief probability
greater than .4 over weight value+5, but has marginal belief
probability close to 0 over weight value−5. In other words,
the locally Bayesian model has learned to believe in hypothe-
ses that arenot symmetric across cues.

The locally Bayesian model learns asymmetric beliefs
because of the internal targets it generates while learning
I.PL→L. Because it has previously learned that cue I indi-
cates outcome E, not the currently correct outcome L, the tar-
get at the hidden layer that is most consistent with the target
has hidden node I de-activated. The lower layer then learns
to believe in hypotheses that suppress hidden node I when
cue PL is present.

Globally Bayesian Learning

The simplistic implementation of the locally Bayesian model
permits the analogous globally Bayesian model to be exactly
implemented. The globally Bayesian model crosses every
hidden-weight matrix with every output-weight matrix to cre-
ate a large joint hypothesis space. If the locally Bayesian
model hasNhid hidden-weight hypotheses andNout output-
weight hypotheses, then it hasNhid + Nout hypotheses alto-
gether. The globally Bayesian model, on the other hand, has
Nhid×Nout hypotheses. The prior on the joint space is also
just the product of the local priors, so that the marginal priors
on the joint space are identical to the local marginal priors.

The lower row of Figure 4 reveals that the globally
Bayesian model shows no highlighting effect whatsoever, and
symmetrically distributes its beliefs. The globally Bayesian
model believes in hypotheses that have cues PE and PL
equally associated with their respective outcomes, and have
cue I neutrally or equally associated with both outcomes.

Interestingly, it turns out that the globally Bayesian model
learns the training items more slowly than the locally
Bayesian model. In other words, accuracy on the training
items is better in the locally Bayesian model, throughout
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Figure 4. Upper Row: The locally Bayesian model trained in the highlighting procedure (with
N1 = 1, N2 = 2, N3 = 3 in Table 1).Lower Row: The globally Bayesian model trained the same.

training. (A hint of this can be seen by comparing the up-
per and lower rows of Figure 4, but the difference appears
to be weak because accuracies are near asymptote by this
point in training.) One reason for the relative retardationin
the global model is that the global model retains some belief
distributed over many candidate hypotheses, and this dilutes
performance. A more detailed discussion can be found in
Kruschke (in press).

Rational Model
The rational model of category learning, invented by Ander-
son (1990), is a Bayesian clustering algorithm. Each cluster
represents a distribution of beliefs over candidate probabili-
ties of feature values in that cluster. For example, if one stim-
ulus dimension is presence or absence of feature PE, a cluster
might have .10 belief that the probability of PE presence is
.3, and .15 belief that the probability of PE presence is .4, and
so forth. The degree of belief in the conjoined features of a
stimulus is simply assumed to be the product of the beliefs in
the individual features.

The belief distributions on each feature are continuous and
parameterized as Dirichlet distributions. These distributions
have one parameter per feature value. A convenient charac-
teristic of these distributions is that when a stimulus is added

to a cluster and the cluster’s beliefs are updated, the posterior
distribution again has the form of a Dirichlet distribution. The
parameters of the posterior distribution are simply the prior
parameters incremented by 1 wherever a feature was present
in the added stimulus.

When a stimulus is presented to the rational model, the
model computes the probability of each cluster given the
stimulus. One of the candidate clusters is always the novel
cluster which has a uniform prior. The stimulus is added to
whichever cluster has highest probability. If it is added tothe
until-then novel cluster, a new novel cluster is recruited for
subsequent trials.

Predictions regarding missing features are determined by
computing, in each cluster, the probabilities of the values
of the missing feature, and adding those probabilities across
clusters, weighted by the probability of the cluster given the
presented features. This is the normative Bayesian approach:
The prediction is the average of the predictions of each hy-
pothesis, weighted by the degree of belief in each hypothesis.

Figure 5 shows the results of applying the rational model
to the highlighting procedure withN1 = 1, N2 = 2, N3 = 3
in Table 1. The right panel reveals that the model shows no
highlighting effect. The middle panel shows the state of the
cluster nodes at the end of training. The model has recruited
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Figure 5. Rational model (Anderson, 1990) trained in the highlighting procedure (withN1 = 1,
N2 = 2, N3 = 3 in Table 1).

two clusters. One cluster represents all the I.PE→E items,
and the other cluster represents all the I.PL→L items. (The
third cluster is the omnipresent novel cluster.) Because the
clusters are completely symmetric with respect to the cues,
the predicted behavior is also.1

The Kalman Filter

The top layer of the simplistic locally Bayesian model is
closely related to a Kalman filter, which was introduced to as-
sociative learning researchers by Sutton (1992) and has been
used to model some aspects of attention in learning by Dayan,
Kakade and collaborators (e.g., Dayan & Kakade, 2001;
Dayan, Kakade, & Montague, 2000; Dayan & Yu, 2003;
Kakade & Dayan, 2002). In a Kalman filter, continuous-scale
outcomes are computed as a weighted sum of input cues. The
weighting coefficients have prior distributions defined as mul-
tivariate normal. The Kalman filter uses Bayesian updating
to adjust the probability distribution on the weights (Mein-
hold & Singpurwalla, 1983). Because the model is linear,
the posterior distributions on the weights are also multivari-
ate normal, and the Kalman filter equations elegantly express
the posterior mean and covariance as a simple function of the
prior mean and covariance. One difference between the mod-
els is that the Kalman filter can add uncertainty to the weight
distributions on every trial. Because of the accumulation of
noise across trials, the Kalman filter can exhibit some trial
order effects. Typically the amount of uncertainty added isa
constant.

Figure 6 shows the behavior of the Kalman filter when ap-
plied to highlighting (withN1 = 1, N2 = 2, N3 = 3 in Ta-
ble 1). The format of the figure matches that used in reports
by Dayan et al. The top panel of Figure 6 shows the mean
weight (i.e., the mean of the Gaussian distribution of beliefs
over possible weight values) on each cue, at the beginning
of each epoch of training. The means start unbiased at zero.
At the end of training, the mean on cue I is nearly zero, and
the means on cues PE and PL are nearly equal (but opposite)
magnitude. Therefore, when presented with items I or PE.PL,
the model predicts nearly 50-50 outcomes. This behavior can
be modulated somewhat by the amount of uncertainty that is

added on each trial, but increased uncertainty can be counter-
acted by longer training.

The lower panel of Figure 6 indicates the “uncertainties”
on each cue, which are simply the variances (diagonal ele-
ments of the covariance matrix) of the Gaussian belief distri-
bution. As training progresses, uncertainty decreases, which
indicates that beliefs sharpen-up over particular weight val-
ues. The graph indicates that uncertainties are very nearly
symmetric at the end of training.

The locally Bayesian model extends the Kalman-filter ap-
proach by pre-pending an attentional learning layer. Whereas
the Kalman filter learns about the cues in their totality, the
upper layer of the locally Bayesian model learns only about
attentionally filtered cues at the hidden layer. The attentional
filtration depends on the temporal order of training items. The
temporal dependencies of the two models are not incompat-
ible; future extensions of the models could incorporate both
the uncertainty accumulation of the Kalman filter model with
the attentional selection of the locally Bayesian model.

Other Bayesian Models
Tenenbaum and collaborators (e.g., Sobel, Tenenbaum, &
Gopnik, 2004; Tenenbaum & Griffiths, 2003) have developed
Bayesian models in which the hypotheses are noisy-OR gates.
The models handily address some aspects of rapid learning,
but are not able to exhibit highlighting because the models
have no time dependencies. That is, all that matters to the
model is the overall frequency of the training items, not their
training order.

Courville and colleagues (Courville, Daw, Gordon, &
Touretzky, 2004; Courville, Daw, & Touretzky, 2005) con-
ceptualized both the cues and outcomes as effects to be pre-
dicted by latent causes (analogous to the clusters in the ra-
tional model). In their approach, a hypothesis is a set of
weights from latent causes to cues and outcomes, with the

1 Anderson (1990) reported that the rational model can capture
some aspects of the “inverse base rate effect,” which is the proce-
dure of Table 1 withN1 = 0 andN3 = 0. The model works in that
situation because the more frequent cluster has a tighter Dirichlet
distribution than the less frequent cluster. But with the equal overall
frequencies in canonical highlighting, the two clusters have equal
variances.

457



1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

Epoch

W
ei

gh
t a

t b
eg

in
 o

f e
po

ch

Kalman Filter (Highlighting N
1
=1, N

2
=2, N

3
=3)

w
I

w
PE

w
PL

1 2 3 4 5 6 7
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Epoch

U
nc

er
ta

in
tiy

 a
t b

eg
in

 o
f e

po
ch

U=1.0, V=0.5, W=0.010

σ2
I

σ2
PE

σ2
PL

Figure 6. Kalman filter (Dayan et al., 2000) trained in the high-
lighting procedure (withN1 = 1, N2 = 2, N3 = 3 in Table 1).

probability of each effect being determined by a sigmoidal
function of the summed weights from activated latent causes.
The hypothesis space consists of many weight combinations,
and Bayesian learning shifts belief probability among the hy-
potheses. Courville et al. (2004) showed that the approach
can account for the dependency of conditioned inhibition on
the number of trials of training, by virtue of the prior prob-
abilities being gradually overwhelmed by training data. But
the model would not be able to exhibit highlighting because
it has no time dependencies.

Conclusion

The locally Bayesian attention model produces highlighting
(and other challenging phenomena) by generating internal
target data that depend on current beliefs. When learning a
cue-outcome correspondence, the model first generates in-
ternal representations that are maximally consistent withits
current (upper-layer) beliefs before updating its (lower-layer)
beliefs. Thus, the locally Bayesian model changes the data to
fit its beliefs before changing its beliefs to fit the data. Alas,
people seem to behave that way too.
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