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Abstract

Ideal observer models have proven useful in investigating as-
sumptions about human information processing in a variety of
perceptual tasks. However, these models have not been ap-
plied in the area of higher-order category learning. We de-
scribe a simple Bayesian ideal observer and apply it to em-
pirical data on category learning. We describe an experiment
in which we found that acquisition of family resemblance
categories was drastically impaired if the categories were de-
fined by relations between features rather than by the features
themselves. An ideal observer was used to test whether this
effect could be accounted for by inherent information differ-
ences between the conditions. A comparison of participants’
performance to the model found a significant difference in ef-
ficiency of learning even after accounting for information dif-
ferences between conditions. This analysis illustrates how
ideal observer methods can provide useful tools for analyzing
higher-order category learning.

Keywords: categorization, category learning, relations, fea-
tures, ideal observer

Introduction

An ideal observer model makes optimal use of a set of
given information in performing a task. Such models have
traditionally proven useful in investigating human informa-
tion use in various perceptual tasks by providing an upper
bound or benchmark by which to measure performance. If a
human can perform at the same level as (or better than) the
ideal model, then we know that the human is making use of
all of the available information in the situation (or, in the
case of humans outperforming the ideal, more information
than was available to the model). If humans underperform
the ideal model, the difference can often highlight specific
constraints that limit human information processing. The
degree to which human performance approaches that of an
ideal observer can provide a measure of processing effi-
ciency.

Ideal observers have most commonly been applied to un-
derstanding human low-level visual tasks involving detec-
tion and discrimination (see Geisler, 2003), though they
have also been applied to tasks such as reading (Legge,
Klitz, & Tjan, 1997), object recognition (Liu, Knill, & Ker-
sten, 1995), and reaching (Trommershiuser, Gepshtein, Ma-
loney, Landy, & Banks, 2004). However, few studies have
applied ideal observer methods to higher-order cognitive
tasks, at least in part because of the difficulty of specifying
exactly what is ideal. Instead, most studies of human cate-
gory learning compare conditions against each other and
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assume that differences in performance capture theoreti-
cally-central differences between conditions. However,
there may be differences between conditions that are not
relevant to the variable being measured (e.g., noise). Ideal
observers can provide a theoretical upper bound on human
performance (given a set of assumptions), and can be used
to control for some of these extraneous variables.

In this paper we describe a simple method for creating an
ideal observer model that takes as input features, and rela-
tions between features, of the sort commonly used in cate-
gory learning studies with artificial stimuli. The ideal ob-
server assumes that the experimenter (but not necessarily
the learner) has full knowledge of the generating model used
to construct stimuli based on these features and relations.
This assumption is typically met in experimental category
learning paradigms in which artificial stimuli are used. We
will first describe the model and then apply it by simulating
performance in an actual category learning experiment.

The Model

The model uses a Bayesian framework to assign stimuli to
categories and to learn from labeled feedback. We use a
version of a naive Bayesian classifier, one of the simplest
probabilistic classifiers, which is optimal when all input
features are independent (and can even be optimal in certain
less restricted circumstances; see Domingos & Pazzani,
1997). The naive Bayesian classifier makes the assumption
that all features of a given category are generated independ-
ently, that is:

P(C.Fp,.... ) = p(C)p(F [C)..p(F, [C) (D)

for class variable C (which represents all possible categories)
and feature variables 1 through n. Applying Bayes rule re-
sults in the following equation:

p©[ [ p(F C)

> (PO ] p(F O]

The denominator in Equation 2 is a normalization constant
that is identical for all categories and thus often ignored for
simplicity (though implemented in the model). With two
equally-probable categories (as is most common in category
learning paradigms) p(C) is also constant (.5), and thus the
main determinant of classification is p(F;|C). This probabil-
ity is calculated in the following manner:
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where nF,IC is the number of items with feature F; in cate-

gory C, N, is the total number of items in category C, and

& and o are uniform priors'. Equation 3 can be inter-

preted as updating a uniform prior with new information,
with the prior eventually overwhelmed as more features are
observed.

The classifier can be extended to reflect underlying de-
pendencies between features that are not independently gen-
erated. This refinement can often be useful in categoriza-
tion studies when one feature constrains the values of other
features. When these dependencies are known, they can be
incorporated into the model by retaining the relevant condi-
tional probabilities. For example, Equation 4 is a toy model
with two features in which feature 2 is dependent on feature
1 (the normalization constant is left out for simplicity):

P(CIF.F)=pC)pF [C)p(F [C.F) @

Equation 3 can also be extended for features that are de-
pendent on other features, becoming:
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where F; is dependent on feature F i

The algorithm for category learning operates as follows.
First, a new example is presented to the model without cate-
gory label information. The probability of its being in each
category is calculated based on previously-observed labeled
examples, and the resulting probabilities are used to assign a
predicted category to the example’. The typical way to clas-
sify a new example is to choose the category with the maxi-
mum probability of generating the example (Geisler, 2003).
Once category assignment is complete the example is placed
into the observed set along with its category label. This step
simulates the effect of feedback, with the new example now
affecting future classification judgments. Order of presenta-
tion is important: like the participants, the model’s predic-
tions can only be based on previously seen exemplars.

There are many ways to compare the model’s perform-
ance with humans. One possibility is to use a metric based
on the number of correct and incorrect trials, which is per-
haps the closest analog to how ideal observers have been
used in recent studies (Geisler, 2003). However, many

! More specifically, the ogs describe the parameters of a Dirichlet
prior in which all values are set to 1, with their sum being a..

% One issue with the algorithm is how to get it started. Although
there are a number of justifiable methods, here we start the model
with the smallest number of examples for which there is one ex-
ample for each category.
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category learning paradigms focus on differences in learning
rates, with a common metric being the number of trials
needed to reach a certain performance criterion. Viewed in
terms of statistical sampling (e.g., the number of samples
needed to learn a certain distribution), this metric provides a
natural comparison of human and model learning. Specifi-
cally, we can define sampling efficiency as the ratio of the
number of trials the model needed to learn to criterion to the
number of trials a human needed (see Scholkopf & Smola,
2002; Stankiewitz, 2003):

ttc

mod

ttc

par

(6)

where ttC.,.q is the trials to criterion needed for the model
and ttc,, the trials needed for the participant. The closer
human performance comes to the ideal, the higher the effi-
ciency.

In many ways the ideal observer described here is similar
to Anderson’s (1991) “rational” theory of categorization.
However, Anderson focuses on determining the optimal
categorization given a general environment in pursuit of a
descriptive theory of human categorization. In contrast, our
ideal observer simply aims to be normative in a specific
environment for which the structure and generating model is
known, and to provide a benchmark or upper bound on hu-
man performance. Thus many of the goals and assumptions
of Anderson’s model are very different from the ideal ob-
server described here. For example, since we know and
capture the dependencies between features, we do not make
the simplifying assumption that all features are conditionally
independent. Dropping this assumption is necessary in or-
der to maintain optimality for the types of generating mod-
els commonly used in higher-order category learning, where
features are often constrained by the values of other rela-
tions or features. Also, instead of predicting an unseen fea-
ture (such as the category label) through chained inference,
we focus on the simpler task of predicting a category class
given a set of features. This simpler goal allows us to avoid
using weighted category averages and only requires compu-
tation of the maximum likelihood category. Finally, we
avoid the need for an empirically-determined variable gov-
erning the probability of creating a new category (Ander-
son’s “coupling probability™).

We will now apply this ideal observer in order to model
learning in a categorization experiment in which the differ-
ent conditions may have different types and amounts of in-
formation associated with them.

The Experiment

A fundamental shift in the understanding of categoriza-
tion resulted from the “family resemblance” view of catego-
ries, which argued that many categories have a graded struc-
ture based on shared features (Medin & Schaffer, 1978;
Rosch, 1976; Rosch & Mervis, 1975; Wittgenstein, 1953).
The family resemblance view has had great success ac-
counting for peoples’ learning and generalization of catego-
ries that can be represented as simple lists of features. Such



categories can be learned implicitly and automatically, with
feature-category associations not necessarily available to
conscious verbalization (Ashby, Maddox, & Bohil, 2002;
Ashby & Waldron, 1999).

However, much of human conceptual knowledge is com-
posed of categories that cannot be represented as simple
features (Barsalou, 1983; Keil, 1989; Murphy & Medin,
1985; Rips, 1989; Ross & Spalding, 1994). Rather, many
concepts are based on the relationships between things
rather than the literal features of the things themselves. For
example, a barrier is a relational concept that can be as con-
crete as a wall or moat or as abstract as a lack of money or
the color of one’s skin. Relational concepts abound in eve-
ryday life, with examples including social understanding (a
love triangle), law (breach of contract), religion (atonement
for sins), science (conservation of energy), as well as basic
perception (recognizing arrangements of objects as scenes)
(e.g., Gentner & Kurtz, 2005, Holyoak & Thagard, 1995).

Although relational concepts are fundamental to human
intelligence, our understanding of how we learn them is
poor compared to our understanding of feature-based cate-
gories. A reasonable and parsimonious hypothesis is that
relational categories act just like feature-based categories
with the features replaced by relations—that is, concept
learning may be a single unified process that can take either
features or relations as input. This view predicts that rela-
tional categories should show the same kind of family re-
semblance structure evidenced by feature-based categories,
thus generalizing what we have learned about category
learning from feature-based to relational categories.

However, there is evidence that relations and features
may be psychologically distinct. For example, Medin,
Goldstone, and Gentner (1990, 1993) demonstrated strong
empirical differences between relational and feature-based
similarity, suggesting that relations and features may rely on
separate, competing processes for assessing similarity.
Consistent with these findings, some researchers have ar-
gued that feature lists are fundamentally inadequate to rep-
resent relational concepts, and that such concepts must in-
stead be mentally represented as relational structures such as
“schemas” or “theories” (Gentner, 1983; Holland, Holyoak,
Nibett, & Thagard, 1986; Hummel & Holyoak, 2003; Keil,
1989; Murphy & Medin, 1985). In such accounts, learning
a relational category is more akin to inducing a schema than
to learning a list of diagnostic features. Most accounts of
schema induction assume that a shared, deterministic cohe-
sive element is necessary to create the schema in the first
place (Hummel & Holyoak, 2003; Kuehne et al., 2000).

We conducted an experiment to test whether relational
and feature-based categories were learned in similar ways”.
Specifically, we hypothesized that relational categories in
which no single defining element existed—as is the case in
family resemblance categories—would prove drastically
more difficult to learn than feature-based categories with an

? The experiment described here is based on pilot data reported in
Kittur, Hummel, and Holyoak (2004), which describes in more
detail the methods used and additional measures collected.
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identical family resemblance structure. Whereas learning
family resemblance categories based on simple features may
be done implicitly through tracking and averaging the fea-
tures of the exemplars of each category, learning relational
categories will be much more difficult because the same
feature(s) may be associated with multiple categories, de-
pending on the relations involved. To test this hypothesis
we used a 2x2 between-subjects design, in which categories
either had a single dimension perfectly predictive of cate-
gory membership (deterministic) or had a family resem-
blance structure in which three out of four dimensions were
characteristic of the category but no single dimension was
perfectly predictive. Dimensions were defined either by
individual feature values or by the relations between fea-
tures. We predicted an interaction between category struc-
ture and type, such that the relational family resemblance
condition would be much more difficult to learn than any of
the other three conditions.

Method

Subjects. 96 University of California, Los Angeles under-
graduates participated for partial fulfillment of course re-
quirements.

Relational category exemplars

*8c®

Featural category exemplars
[ i ii iv

Relations

BIGGER (O,S) |:| SIZE (0)
DARKER (O,S) SHADE (0)
ABOVE (0,S) .D.. SIZE (S)
INFRONT (0,9) || |INIIIIl sHACE (5)
i i v
Exemplars

Features

Figure 1. Examples of family resemblance categories. De-

terministic relational categories were formed by removing
one exemplar from each category. The table depicts the di-
mensions categories were defined on, as well as the value of
each exemplar on the dimensions (filled = value 1, empty =
value 2). For example, in relational category exemplar i, the
octagon (O) is bigger, darker, above, and behind the square
(S). Shown are only a small subset of all instantiations of
the four exemplar types for a category.



Stimuli and Procedure. All stimuli were composed of an
octagon and a square set in a fixed background resembling a
computer chip. Either the relations between the two shapes
(relational condition) or the individual features of each
shape (feature-based condition) determined category mem-
bership of each exemplar. Relational categories were de-
fined by whether the octagon was 1) larger, 2) darker, 3)
vertically above, and 4) in front of the square (see Figure 1).
Feature-based categories were defined by individual abso-
lute feature values: 1) size of the octagon, 2) color of the
octagon, 3) size of the square, and 4) color of the square.

Crossed with the feature-based and relational conditions
was the structure of each category. In the family resem-
blance condition, each category member had three out of
four dimensions consistent with its category and one incon-
sistent dimension. In the deterministic condition one di-
mension was perfectly diagnostic across all exemplars. This
design yielded four conditions to which participants were
randomly assigned: relational family resemblance or deter-
ministic (R-FR or R-D) and feature-based family resem-
blance or deterministic (F-FR or F-D).

On each trial of the acquisition phase, a participant
viewed one exemplar, categorized it as a “math” or “graph-
ics” chip, and received accuracy feedback. Acquisition con-
tinued until the participant reached criterion (>88% correct
for two consecutive blocks®).

Behavioral Results

The relational family resemblance condition proved much
more difficult to learn than the other three conditions: 22%
of participants in the relational family resemblance condi-
tion did not learn to criterion within 600 trials (no partici-
pants in any other conditions failed to learn). All results
make the extremely conservative assumption that partici-
pants who failed to learn would have succeeded on trial 601.

The mean number of trials to criterion for each condition
is shown in Figure 2a. There were main effects of both
category type (relations vs. features, F(1, 95) = 4.71, p
= .032, and category structure (family resemblance vs. de-
terministic, F(1, 95) = 9.83, p =.002; importantly, there was
also a significant interaction of category type and structure,
F(1,95) = 6.14, p = .015, due to extremely impaired acquisi-
tion when the category was defined by relations and had a
family resemblance structure.

Ideal Observer Analysis

One explanation of these results is that relations and fea-
tures are represented and processed differently in the brain,
and that relational categories may not have access to the
machinery that is used to learn feature-based family resem-
blance categories. However, another explanation could be
that the selective impairment of the relational family resem-

* This criterion was chosen so that simple feature-tracking strate-
gies (e.g., memorizing the associations of single features with
categories) would lead to sub-criterion performance.
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Figure 2. (2) Mean trials to criterion taken by participants to
learn the categories. Det=Deterministic, FR=Family Re-
semblance. (b) Mean trials to criterion for the model to
learn the categories given the same stimuli in the same order
as each individual participant. (c) Efficiency of human per-
formance compared to model performance measured by the
ratio of the number of trials needed by the model to learn to
criterion to the number of trials needed by human learners.
(Note that efficiency is calculated on a per-subject basis,
and so cannot be determined from panels (a) and (b) alone.)

blance condition is instead due to a difference in the amount
of available diagnostic information. In other words, are
people worse only because some conditions are inherently
more difficult to learn due to lack of information?

To answer this question we adapted the ideal observer
model described earlier to the current experimental task.
The features and relations available to participants were
coded as discrete values on separate dimensions and used as
inputs to the model. For example, the model received as
separate inputs the size of the square, the size of the octagon,
and the relation of which was bigger. The same information
was available to participants, who could use information
about either the features or the relations on each trial. How-
ever, the relational and featural information on a dimension
were not independent: in the example above, if the relation
was “octagon bigger than square”, then knowing the size of
the octagon provides information about the size of the
square (which must be smaller; see Figure 3). To account
for this dependency, relations were modeled as independent
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Figure 3. Relations and features involved in category gen-
eration. Arrows depict dependencies (i.e., constraints) be-
tween relations and features.

inputs, whereas feature inputs were conditional on their re-
spective relation.’

For the ideal observer described here to be truly optimal,
the generating model must meet certain assumptions. First,
the distribution of category members must be sampled from
independent multinomial distributions with Dirichlet-
distributed parameters. This assumption holds true: cate-
gory members were generated by sampling from independ-
ent multinomial distributions with an equal likelihood of
each member appearing. Second, all dependencies that arise
in generating feature values for each category member must
be captured in the conditional probabilities (i.e., relations
constraining features). This assumption is also valid: the
dependencies shown in Figure 3 reflect how the exemplars
were generated.

The ideal observer model was run on each participant’s
data, and the number of trials necessary to learn to criterion
was measured® (see Figure 2b). We then computed each
participant’s efficiency according to Equation 6. These effi-
ciencies are depicted in Figure 2c. Human performance as
measured by statistical efficiency was much worse in the
relational family resemblance condition than in any other
condition. An ANOVA was performed on the efficiency
measure following a log transformation to normalize the
variances. The results demonstrated that the critical interac-
tion was significant, F(1, 95) = 3.93, p < .05. Since effi-
ciency takes into account differences in model as well as
human performance, finding an interaction on this measure
indicates that the human learning rates for these conditions
were more different than would expected given the inherent
difficulty of the conditions. That is, inherent informational
differences between the conditions were insufficient to ac-
count for the disparities in human performance.

Discussion
The behavioral results revealed a clear impairment in ac-
quisition for relational categories defined by a family re-
semblance structure, as compared to categories based on
features, which are learned quickly whether they had family
resemblance or deterministic structure. Relational catego-

> A natural question is: should the features be defining in the featu-
ral conditions, rather than the relations? No change is needed in
the model because in the featural conditions the dimensions on
which the features were considered dependent (relative size and
shade) had the same relational value for both categories. Thus the
features become effectively independent.

% A more statistically accurate phrasing of this would read: “the
number of samples needed to learn the distribution to a certain
degree of accuracy.”
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ries with deterministic structure were learned as quickly as
deterministic feature-based categories, suggesting that the
effect is not merely due to the relational nature of the task.
This interaction is inconsistent with the hypothesis that rela-
tional categories are learned in the same way as feature-
based categories.

An ideal observer analysis was used to determine whether
this impaired learning might be due to inherent informa-
tional differences between conditions. By comparing the
efficiency of human performance to that of the ideal model,
we were able to show that objective differences in difficulty
between conditions did not account for the experimental
data. Rather, it appears that relations and features are repre-
sented or processed differently in human category learning.

Identifying exactly how relations and features differ is an
important subject for future research. One potentially useful
approach is to determine what changes to the ideal observer
could make it more closely match human data. For example,
what happens when the model does not have perfect mem-
ory, or cannot perfectly update its prior? Or when its
“working memory” is impaired so it cannot attend to all
relations and features at once? Observing how the model
degrades as additional constraints are added could provide
valuable insights into human information processing.

Alternatively, it is possible that no processing-related
changes in the ideal observer will capture the dissociation in
the human data. Instead, it may be necessary to take into
account the representational difference between simple fea-
tures and relational predicates. It remains an open question
how to incorporate structured predicates into a Bayesian
framework; extant analyses of categorization using Bayes-
ian inference treat relations as correlations or unstructured
features rather than as structured predicates (e.g., Kemp et
al., 2004). Indeed, one possible explanation of our results
may be that the likelihood updating mechanism at work in
featural categorization may not be used for relational cate-
gorization, resulting in impairment of relational family re-
semblance learning.

At first glance the present results appear counterintuitive:
relational category learning is severely impaired if no ele-
ments are constant across all exemplars, yet people seem
able to conceptualize family resemblance relational catego-
ries, such as Wittgenstein’s (1953) classic example of
“game”. This paradox highlights the need for additional
empirical studies. One approach to exploring this seeming
inconsistency may be to examine prior knowledge and ex-
perience. While a single constant element may be necessary
to learn novel relational categories, when prior knowledge
and experience are brought into play this critical need may
be reduced. It is possible that a coherent theory that ex-
plains a relational family resemblance structure might make
learning easier (Rehder & Hastie, 2004; Rehder & Ross,
2001). In addition, repeated experience with the relevant
relations may lead to low-level chunking of a stimulus, as in
chess experts’ memory for board positions. Thus both
higher-order causal explanations and lower-order experience
may facilitate relational learning.



In summary, the dissociation between feature-based cate-
gory learning, which is robust to family-resemblance struc-
ture, and relation-based category learning, which is not,
suggests that current feature-based models of category
learning may have limited applicability to relational catego-
ries. The difficulty for such models is not only that feature
lists are inadequate to represent relations, but that the two
kinds of categories are processed differently as well.

The present study also demonstrates how ideal observer
methods can be applied in higher-order category learning.
Here we used an ideal observer to provide an objective
measure of the ease of learning in each condition. The
model is easy to implement in category learning studies
with discrete stimuli for which the generating model is
known. We believe that the ideal-observer approach can
have general applicability for studies of category learning in
which different learning conditions may have different in-
formational content.
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