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Abstract 
Ideal observer models have proven useful in investigating as-
sumptions about human information processing in a variety of 
perceptual tasks.  However, these models have not been ap-
plied in the area of higher-order category learning.  We de-
scribe a simple Bayesian ideal observer and apply it to em-
pirical data on category learning.  We describe an experiment 
in which we found that acquisition of family resemblance 
categories was drastically impaired if the categories were de-
fined by relations between features rather than by the features 
themselves.  An ideal observer was used to test whether this 
effect could be accounted for by inherent information differ-
ences between the conditions.  A comparison of participants’ 
performance to the model found a significant difference in ef-
ficiency of learning even after accounting for information dif-
ferences between conditions.  This analysis illustrates how 
ideal observer methods can provide useful tools for analyzing 
higher-order category learning. 
Keywords:  categorization, category learning, relations, fea-
tures, ideal observer 

Introduction 
 An ideal observer model makes optimal use of a set of 
given information in performing a task.  Such models have 
traditionally proven useful in investigating human informa-
tion use in various perceptual tasks by providing an upper 
bound or benchmark by which to measure performance.  If a 
human can perform at the same level as (or better than) the 
ideal model, then we know that the human is making use of 
all of the available information in the situation (or, in the 
case of humans outperforming the ideal, more information 
than was available to the model).  If humans underperform 
the ideal model, the difference can often highlight specific 
constraints that limit human information processing.  The 
degree to which human performance approaches that of an 
ideal observer can provide a measure of processing effi-
ciency. 
 Ideal observers have most commonly been applied to un-
derstanding human low-level visual tasks involving detec-
tion and discrimination (see Geisler, 2003), though they 
have also been applied to tasks such as reading (Legge, 
Klitz, & Tjan, 1997), object recognition (Liu, Knill, & Ker-
sten, 1995), and reaching (Trommershäuser, Gepshtein, Ma-
loney, Landy, & Banks, 2004).  However, few studies have 
applied ideal observer methods to higher-order cognitive 
tasks, at least in part because of the difficulty of specifying 
exactly what is ideal.  Instead, most studies of human cate-
gory learning compare conditions against each other and 

assume that differences in performance capture theoreti-
cally-central differences between conditions.  However, 
there may be differences between conditions that are not 
relevant to the variable being measured (e.g., noise).  Ideal 
observers can provide a theoretical upper bound on human 
performance (given a set of assumptions), and can be used 
to control for some of these extraneous variables. 
 In this paper we describe a simple method for creating an 
ideal observer model that takes as input features, and rela-
tions between features, of the sort commonly used in cate-
gory learning studies with artificial stimuli.  The ideal ob-
server assumes that the experimenter (but not necessarily 
the learner) has full knowledge of the generating model used 
to construct stimuli based on these features and relations. 
This assumption is typically met in experimental category 
learning paradigms in which artificial stimuli are used.  We 
will first describe the model and then apply it by simulating 
performance in an actual category learning experiment.  

The Model 
 The model uses a Bayesian framework to assign stimuli to 
categories and to learn from labeled feedback.  We use a 
version of a naïve Bayesian classifier, one of the simplest 
probabilistic classifiers, which is optimal when all input 
features are independent (and can even be optimal in certain 
less restricted circumstances; see Domingos & Pazzani, 
1997). The naïve Bayesian classifier makes the assumption 
that all features of a given category are generated independ-
ently, that is: 

)|()...|()(),...,,( 11 CFpCFpCpFFCp nn =      (1) 
for class variable C (which represents all possible categories) 
and feature variables 1 through n.  Applying Bayes rule re-
sults in the following equation:  
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The denominator in Equation 2 is a normalization constant 
that is identical for all categories and thus often ignored for 
simplicity (though implemented in the model).  With two 
equally-probable categories (as is most common in category 
learning paradigms) p(C) is also constant (.5), and thus the 
main determinant of classification is p(Fi|C).  This probabil-
ity is calculated in the following manner: 

(2)
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where CFi
n | is the number of items with feature Fi in cate-

gory C, cn is the total number of items in category C, and 

iFα and Cα are uniform priors1. Equation 3 can be inter-
preted as updating a uniform prior with new information, 
with the prior eventually overwhelmed as more features are 
observed.   
 The classifier can be extended to reflect underlying de-
pendencies between features that are not independently gen-
erated.  This refinement can often be useful in categoriza-
tion studies when one feature constrains the values of other 
features.  When these dependencies are known, they can be 
incorporated into the model by retaining the relevant condi-
tional probabilities.  For example, Equation 4 is a toy model 
with two features in which feature 2 is dependent on feature 
1 (the normalization constant is left out for simplicity): 
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 Equation 3 can also be extended for features that are de-
pendent on other features, becoming: 
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where iF  is dependent on feature jF . 
 The algorithm for category learning operates as follows.  
First, a new example is presented to the model without cate-
gory label information.  The probability of its being in each 
category is calculated based on previously-observed labeled 
examples, and the resulting probabilities are used to assign a 
predicted category to the example2.  The typical way to clas-
sify a new example is to choose the category with the maxi-
mum probability of generating the example (Geisler, 2003).  
Once category assignment is complete the example is placed 
into the observed set along with its category label.  This step 
simulates the effect of feedback, with the new example now 
affecting future classification judgments.  Order of presenta-
tion is important: like the participants, the model’s predic-
tions can only be based on previously seen exemplars. 
 There are many ways to compare the model’s perform-
ance with humans.  One possibility is to use a metric based 
on the number of correct and incorrect trials, which is per-
haps the closest analog to how ideal observers have been 
used in recent studies (Geisler, 2003).  However, many 

                                                 
1 More specifically, the αFis describe the parameters of a Dirichlet 
prior in which all values are set to 1, with their sum being αc.  
2 One issue with the algorithm is how to get it started.  Although 
there are a number of justifiable methods, here we start the model 
with the smallest number of examples for which there is one ex-
ample for each category. 

category learning paradigms focus on differences in learning 
rates, with a common metric being the number of trials 
needed to reach a certain performance criterion.  Viewed in 
terms of statistical sampling (e.g., the number of samples 
needed to learn a certain distribution), this metric provides a 
natural comparison of human and model learning.  Specifi-
cally, we can define sampling efficiency as the ratio of the 
number of trials the model needed to learn to criterion to the 
number of trials a human needed (see Scholkopf & Smola, 
2002; Stankiewitz, 2003): 

parttc
ttcmod               (6) 

where ttcmod is the trials to criterion needed for the model 
and ttcpar the trials needed for the participant.  The closer 
human performance comes to the ideal, the higher the effi-
ciency. 
 In many ways the ideal observer described here is similar 
to Anderson’s (1991) “rational” theory of categorization. 
However, Anderson focuses on determining the optimal 
categorization given a general environment in pursuit of a 
descriptive theory of human categorization.  In contrast, our 
ideal observer simply aims to be normative in a specific 
environment for which the structure and generating model is 
known, and to provide a benchmark or upper bound on hu-
man performance. Thus many of the goals and assumptions 
of Anderson’s model are very different from the ideal ob-
server described here.  For example, since we know and 
capture the dependencies between features, we do not make 
the simplifying assumption that all features are conditionally 
independent.  Dropping this assumption is necessary in or-
der to maintain optimality for the types of generating mod-
els commonly used in higher-order category learning, where 
features are often constrained by the values of other rela-
tions or features.  Also, instead of predicting an unseen fea-
ture (such as the category label) through chained inference, 
we focus on the simpler task of predicting a category class 
given a set of features.  This simpler goal allows us to avoid 
using weighted category averages and only requires compu-
tation of the maximum likelihood category.  Finally, we 
avoid the need for an empirically-determined variable gov-
erning the probability of creating a new category (Ander-
son’s “coupling probability”). 
 We will now apply this ideal observer in order to model 
learning in a categorization experiment in which the differ-
ent conditions may have different types and amounts of in-
formation associated with them.  

The Experiment 
  A fundamental shift in the understanding of categoriza-
tion resulted from the “family resemblance” view of catego-
ries, which argued that many categories have a graded struc-
ture based on shared features (Medin & Schaffer, 1978; 
Rosch, 1976; Rosch & Mervis, 1975; Wittgenstein, 1953).  
The family resemblance view has had great success ac-
counting for peoples’ learning and generalization of catego-
ries that can be represented as simple lists of features.  Such 
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categories can be learned implicitly and automatically, with 
feature-category associations not necessarily available to 
conscious verbalization (Ashby, Maddox, & Bohil, 2002; 
Ashby & Waldron, 1999).  
 However, much of human conceptual knowledge is com-
posed of categories that cannot be represented as simple 
features (Barsalou, 1983; Keil, 1989; Murphy & Medin, 
1985; Rips, 1989; Ross & Spalding, 1994).  Rather, many 
concepts are based on the relationships between things 
rather than the literal features of the things themselves.  For 
example, a barrier is a relational concept that can be as con-
crete as a wall or moat or as abstract as a lack of money or 
the color of one’s skin.  Relational concepts abound in eve-
ryday life, with examples including social understanding (a 
love triangle), law (breach of contract), religion (atonement 
for sins), science (conservation of energy), as well as basic 
perception (recognizing arrangements of objects as scenes) 
(e.g., Gentner & Kurtz, 2005, Holyoak & Thagard, 1995). 
 Although relational concepts are fundamental to human 
intelligence, our understanding of how we learn them is 
poor compared to our understanding of feature-based cate-
gories.  A reasonable and parsimonious hypothesis is that 
relational categories act just like feature-based categories 
with the features replaced by relations—that is, concept 
learning may be a single unified process that can take either 
features or relations as input.  This view predicts that rela-
tional categories should show the same kind of family re-
semblance structure evidenced by feature-based categories,  
thus generalizing what we have learned about category 
learning from feature-based to relational categories. 
 However, there is evidence that relations and features 
may be psychologically distinct.  For example, Medin, 
Goldstone, and Gentner (1990, 1993) demonstrated strong 
empirical differences between relational and feature-based 
similarity, suggesting that relations and features may rely on 
separate, competing processes for assessing similarity.  
Consistent with these findings, some researchers have ar-
gued that feature lists are fundamentally inadequate to rep-
resent relational concepts, and that such concepts must in-
stead be mentally represented as relational structures such as 
“schemas” or “theories” (Gentner, 1983; Holland, Holyoak, 
Nibett, & Thagard, 1986; Hummel & Holyoak, 2003; Keil, 
1989; Murphy & Medin, 1985).  In such accounts, learning 
a relational category is more akin to inducing a schema than 
to learning a list of diagnostic features.  Most accounts of 
schema induction assume that a shared, deterministic cohe-
sive element is necessary to create the schema in the first 
place (Hummel & Holyoak, 2003; Kuehne et al., 2000). 
 We conducted an experiment to test whether relational 
and feature-based categories were learned in similar ways3.  
Specifically, we hypothesized that relational categories in 
which no single defining element existed—as is the case in 
family resemblance categories—would prove drastically 
more difficult to learn than feature-based categories with an 
                                                 
3 The experiment described here is based on pilot data reported in 
Kittur, Hummel, and Holyoak (2004), which describes in more 
detail the methods used and additional measures collected. 

identical family resemblance structure.  Whereas learning 
family resemblance categories based on simple features may 
be done implicitly through tracking and averaging the fea-
tures of the exemplars of each category, learning relational 
categories will be much more difficult because the same 
feature(s) may be associated with multiple categories, de-
pending on the relations involved.  To test this hypothesis 
we used a 2x2 between-subjects design, in which categories 
either had a single dimension perfectly predictive of cate-
gory membership (deterministic) or had a family resem-
blance structure in which three out of four dimensions were 
characteristic of the category but no single dimension was 
perfectly predictive.  Dimensions were defined either by 
individual feature values or by the relations between fea-
tures.  We predicted an interaction between category struc-
ture and type, such that the relational family resemblance 
condition would be much more difficult to learn than any of 
the other three conditions. 

Method 
Subjects.  96 University of California, Los Angeles under-
graduates participated for partial fulfillment of course re-
quirements. 

Figure 1.  Examples of family resemblance categories.  De-
terministic relational categories were formed by removing 
one exemplar from each category. The table depicts the di-
mensions categories were defined on, as well as the value of 
each exemplar on the dimensions (filled = value 1, empty = 
value 2).  For example, in relational category exemplar i, the
octagon (O) is bigger, darker, above, and behind the square 
(S).  Shown are only a small subset of all instantiations of 
the four exemplar types for a category. 
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Stimuli and Procedure.  All stimuli were composed of an 
octagon and a square set in a fixed background resembling a 
computer chip.  Either the relations between the two shapes 
(relational condition) or the individual features of each 
shape (feature-based condition) determined category mem-
bership of each exemplar.  Relational categories were de-
fined by whether the octagon was 1) larger, 2) darker, 3) 
vertically above, and 4) in front of the square (see Figure 1).  
Feature-based categories were defined by individual abso-
lute feature values: 1) size of the octagon, 2) color of the 
octagon, 3) size of the square, and 4) color of the square. 
 Crossed with the feature-based and relational conditions 
was the structure of each category.  In the family resem-
blance condition, each category member had three out of 
four dimensions consistent with its category and one incon-
sistent dimension.  In the deterministic condition one di-
mension was perfectly diagnostic across all exemplars.  This 
design yielded four conditions to which participants were 
randomly assigned: relational family resemblance or deter-
ministic (R-FR or R-D) and feature-based family resem-
blance or deterministic (F-FR or F-D). 
 On each trial of the acquisition phase, a participant 
viewed one exemplar, categorized it as a “math” or “graph-
ics” chip, and received accuracy feedback.  Acquisition con-
tinued until the participant reached criterion (>88% correct 
for two consecutive blocks4). 
  

Behavioral Results 
 The relational family resemblance condition proved much 
more difficult to learn than the other three conditions: 22% 
of participants in the relational family resemblance condi-
tion did not learn to criterion within 600 trials (no partici-
pants in any other conditions failed to learn).  All results 
make the extremely conservative assumption that partici-
pants who failed to learn would have succeeded on trial 601. 
 The mean number of trials to criterion for each condition 
is shown in Figure 2a.  There were main effects of both 
category type (relations vs. features, F(1, 95) = 4.71, p 
= .032, and category structure (family resemblance vs. de-
terministic, F(1, 95) = 9.83, p = .002; importantly, there was 
also a significant interaction of category type and structure, 
F(1,95) = 6.14, p = .015, due to extremely impaired acquisi-
tion when the category was defined by relations and had a 
family resemblance structure. 

Ideal Observer Analysis   
 One explanation of these results is that relations and fea-
tures are represented and processed differently in the brain, 
and that relational categories may not have access to the 
machinery that is used to learn feature-based family resem-
blance categories.  However, another explanation could be 
that the selective impairment of the relational family resem-

                                                 
4 This criterion was chosen so that simple feature-tracking strate-
gies (e.g., memorizing the associations of single features with 
categories) would lead to sub-criterion performance. 

blance condition is instead due to a difference in the amount 
of available diagnostic information.  In other words, are 
people worse only because some conditions are inherently 
more difficult to learn due to lack of information? 
 To answer this question we adapted the ideal observer 
model described earlier to the current experimental task.  
The features and relations available to participants were 
coded as discrete values on separate dimensions and used as 
inputs to the model.  For example, the model received as 
separate inputs the size of the square, the size of the octagon, 
and the relation of which was bigger.  The same information 
was available to participants, who could use information 
about either the features or the relations on each trial.  How-
ever, the relational and featural information on a dimension 
were not independent: in the example above, if the relation 
was “octagon bigger than square”, then knowing the size of 
the octagon provides information about the size of the 
square (which must be smaller; see Figure 3).  To account 
for this dependency, relations were modeled as independent 

Figure 2. (a) Mean trials to criterion taken by participants to 
learn the categories.  Det=Deterministic, FR=Family Re-
semblance.  (b) Mean trials to criterion for the model to 
learn the categories given the same stimuli in the same order 
as each individual participant.  (c) Efficiency of human per-
formance compared to model performance measured by the 
ratio of the number of trials needed by the model to learn to 
criterion to the number of trials needed by human learners.  
(Note that efficiency is calculated on a per-subject basis, 
and so cannot be determined from panels (a) and (b) alone.)
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inputs, whereas feature inputs were conditional on their re-
spective relation.5 
 For the ideal observer described here to be truly optimal, 
the generating model must meet certain assumptions.  First, 
the distribution of category members must be sampled from 
independent multinomial distributions with Dirichlet-
distributed parameters.  This assumption holds true: cate-
gory members were generated by sampling from independ-
ent multinomial distributions with an equal likelihood of 
each member appearing.  Second, all dependencies that arise 
in generating feature values for each category member must 
be captured in the conditional probabilities (i.e., relations 
constraining features).  This assumption is also valid: the 
dependencies shown in Figure 3 reflect how the exemplars 
were generated.  
 The ideal observer model was run on each participant’s 
data, and the number of trials necessary to learn to criterion 
was measured6 (see Figure 2b).  We then computed each 
participant’s efficiency according to Equation 6.  These effi-
ciencies are depicted in Figure 2c.  Human performance as 
measured by statistical efficiency was much worse in the 
relational family resemblance condition than in any other 
condition.  An ANOVA was performed on the efficiency 
measure following a log transformation to normalize the 
variances.  The results demonstrated that the critical interac-
tion was significant, F(1, 95) = 3.93, p < .05.  Since effi-
ciency takes into account differences in model as well as 
human performance, finding an interaction on this measure 
indicates that the human learning rates for these conditions 
were more different than would expected given the inherent 
difficulty of the conditions.  That is, inherent informational 
differences between the conditions were insufficient to ac-
count for the disparities in human performance.  
 

Discussion 
 The behavioral results revealed a clear impairment in ac-
quisition for relational categories defined by a family re-
semblance structure, as compared to categories based on 
features, which are learned quickly whether they had family 
resemblance or deterministic structure.  Relational catego-
                                                 
5 A natural question is: should the features be defining in the featu-
ral conditions, rather than the relations?  No change is needed in 
the model because in the featural conditions the dimensions on 
which the features were considered dependent (relative size and 
shade) had the same relational value for both categories.  Thus the 
features become effectively independent. 
6 A more statistically accurate phrasing of this would read: “the 
number of samples needed to learn the distribution to a certain 
degree of accuracy.” 

ries with deterministic structure were learned as quickly as 
deterministic feature-based categories, suggesting that the 
effect is not merely due to the relational nature of the task.  
This interaction is inconsistent with the hypothesis that rela-
tional categories are learned in the same way as feature-
based categories. 
 An ideal observer analysis was used to determine whether 
this impaired learning might be due to inherent informa-
tional differences between conditions. By comparing the 
efficiency of human performance to that of the ideal model, 
we were able to show that objective differences in difficulty 
between conditions did not account for the experimental 
data.  Rather, it appears that relations and features are repre-
sented or processed differently in human category learning. 
 Identifying exactly how relations and features differ is an 
important subject for future research.  One potentially useful 
approach is to determine what changes to the ideal observer 
could make it more closely match human data.  For example, 
what happens when the model does not have perfect mem-
ory, or cannot perfectly update its prior?  Or when its 
“working memory” is impaired so it cannot attend to all 
relations and features at once?  Observing how the model 
degrades as additional constraints are added could provide 
valuable insights into human information processing. 
 Alternatively, it is possible that no processing-related 
changes in the ideal observer will capture the dissociation in 
the human data.  Instead, it may be necessary to take into 
account the representational difference between simple fea-
tures and relational predicates. It remains an open question 
how to incorporate structured predicates into a Bayesian 
framework; extant analyses of categorization using Bayes-
ian inference treat relations as correlations or unstructured 
features rather than as structured predicates (e.g., Kemp et 
al., 2004).  Indeed, one possible explanation of our results 
may be that the likelihood updating mechanism at work in 
featural categorization may not be used for relational cate-
gorization, resulting in impairment of relational family re-
semblance learning.  
 At first glance the present results appear counterintuitive: 
relational category learning is severely impaired if no ele-
ments are constant across all exemplars, yet people seem 
able to conceptualize family resemblance relational catego-
ries, such as Wittgenstein’s (1953) classic example of 
“game”.  This paradox highlights the need for additional 
empirical studies.  One approach to exploring this seeming 
inconsistency may be to examine prior knowledge and ex-
perience.  While a single constant element may be necessary 
to learn novel relational categories, when prior knowledge 
and experience are brought into play this critical need may 
be reduced.  It is possible that a coherent theory that ex-
plains a relational family resemblance structure might make 
learning easier (Rehder & Hastie, 2004; Rehder & Ross, 
2001).  In addition, repeated experience with the relevant 
relations may lead to low-level chunking of a stimulus, as in 
chess experts’ memory for board positions. Thus both 
higher-order causal explanations and lower-order experience 
may facilitate relational learning. 

Figure 3.  Relations and features involved in category gen-
eration.  Arrows depict dependencies (i.e., constraints) be-
tween relations and features. 
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 In summary, the dissociation between feature-based cate-
gory learning, which is robust to family-resemblance struc-
ture, and relation-based category learning, which is not, 
suggests that current feature-based models of category 
learning may have limited applicability to relational catego-
ries. The difficulty for such models is not only that feature 
lists are inadequate to represent relations, but that the two 
kinds of categories are processed differently as well. 
 The present study also demonstrates how ideal observer 
methods can be applied in higher-order category learning.  
Here we used an ideal observer to provide an objective 
measure of the ease of learning in each condition.  The 
model is easy to implement in category learning studies 
with discrete stimuli for which the generating model is 
known.  We believe that the ideal-observer approach can 
have general applicability for studies of category learning in 
which different learning conditions may have different in-
formational content.   
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