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Abstract

Similarity is often regarded as a fundamental construct
underlying stimulus generalization in category learning and
many other domains. The key assumption of this approach is
that multidimensional differences between stimuli are
summarized by a single value before entering the decision
process. The present study challenges this assumption by
showing that category judgments depend on the full
relationship between present and past stimuli, in a way that
cannot be mediated by a unidimensional similarity measure.
Approaches based on response generalization, knowledge
partitioning, and distributiona representations are also shown
to be insufficient to account for our findings.

Introduction

Similarity has long been held to underlie a wide range of
cognitive processes. Seminal work by Shepard (1957)
showed that stimulus generalization in conditioning and
identification tasks can be explained in terms of similarity
between stimuli. This approach has since been extended to
many other tasks, including categorization (Medin &
Schaffer, 1978) and inductive reasoning (Osherson, Smith,
Wilkie, Lopez, & Shafir, 1990). An important finding has
been that similarity is not constant; rather, it changes
systematically as a function of which stimulus attributes are
relevant to the task (Heit & Rubinstein, 1994; Nosofsky,
1986). However, it is still generally assumed that similarity
is well defined for any one judgment, context, and
attentional set. This critical assumption holds not only for
spatial models of similarity, but also for feature-set models
(Tversky, 1977) and approaches based on internal relational
structure (Markman & Gentner, 1993).

The present study challenges the assumption that
generalization is based directly on similarity. We describe
an experiment using a four-category classification task in
which subjects must attend to two dimensions
simultaneously, but must use these sources of information in
different ways. The principal finding is that multiple
generalization gradients are simultaneously active for
different aspects of the category judgment.  Thus
performance in this task cannot be explained in terms of a
single similarity function (even one that changes from trial
totrial). Weargue that the failing of the similarity approach
is that it assumes the relationships between
multidimensional stimuli are reduced to a single value
before this information is passed to the decision process.
That is, similarity acts as a mediator or sufficient statistic.
Instead, it appears that people use the full multidimensional
relationship between stimuli, and in particular the alignment
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between stimulus differences and category differences, in
making category judgments.

Recency approach to generalization

Jones, Love, and Maddox (2006) demonstrate how
stimulus generalization can be directly measured during a
probabilistic classification task through analysis of
decisional recency effects. Specifically, they found that
responses are biased towards the feedback given on the
previous trial, and that the strength of this bias is directly
determined by the difference between present and previous
stimuli. The effect of the previous feedback thus represents
generalization from the previous stimulus to the current one.

Jones, Maddox, and Love (2005) found that when one
stimulus dimension is predictive of the category label and
another dimension is irrelevant, generalization becomes
selectively dependent on the diagnostic dimension (Fig. 1).
This finding is consistent with accounts of selective
attention that assume similarity adapts to weight task-
relevant dimensions more heavily (Kruschke, 1992;
Nosofsky, 1986). In other words, stimuli differing along the
diagnostic dimension become less similar than stimuli
differing along the irrelevant dimension. This adaptation of
generalization is directly observable through analysis of
recency effects, as elaborated below.

Generalization

Figure 1: Selective generaization in a 2-category
classification task (Jones et al., 2005, Expt. 1, Condition
F). Horizontal axes indicate the difference between
successive stimuli.  Vertical axis shows strength of
generalization, defined as the effect (in log-odds) of the
previous feedback on the response to the present stimulus.



Empirical Investigation

The assumption that generalization is based on similarity
was tested using a four-category probabilistic classification
task. The structure of the categories used is illustrated in
Figure 2. Stimuli in the task are Gabor patches, varying in
frequency and orientation. Frequency is predictive of
whether a stimulus lies in category A or Cversus B or D,
whereas orientation is predictive of A or B versus Cor D.
Therefore both dimensions are equally relevant to the task,
but subjects’ responses can be decomposed into components
that, normatively, each depend on only one dimension.
Each component is isomorphic to a two-category
classification task with one diagnostic and one irrelevant
dimension.

Data were analyzed according to this decomposition, and
separate generalization gradients were obtained for each
subtask, following the same approach as Jones et al. (2005).
Importantly, the subtasks are merely constructs for the
purposes of data analysis. On each trial the subject gives a
single response from among the four categories, with
responses for each subtask inferred at the time of analysis.
Moreover, subjects were not given any instructions about
the structure of the categories; they were merely told that
there would be four categories for them to learn. In other
words, the two subtasks are facets of the same judgment,
and thus any similarity-based account must predict that they
rely on the same similarity function. Therefore, if
generalization is determined by similarity, then the
generdization gradients from the two subtasks should be
identical. However, if generalization & based on the full
multidimensional relationship between present and past
stimuli, then it might adapt in opposite directions for the
two subtasks. We term this the split-selective attention
effect, because it would indicate subjects are allocating their
attention in different ways for different aspects of the task.

M ethod

Participants. Forty members of the University of Texas,
Austin, participated for payment or course credit.

Simuli. Stimuli were 6cm square Gabor patterns (sine-
wave gratings within a Gaussian envelope), varying in the
frequency and orientation of the grating. The primary
category structure involved 113 stimuli, arranged as shown
in Figure 2. In addition, 13 extreme stimuli from each
category, not pictured, were used during training.

Design. Every subject was tested on the same category
structure (Fig. 2). The structure is fully probabilistic, such
that every stimulus has a positive probability of occurring in
any category. Outcome probabilities follow a logistic
function along each dimension; for example, the probability
that a stimulus lies in category C is given by
P[C] = [(L+ &S M)y (1 4 @8n (S M) )] 1 Here Sy
and S, are the dimension values of the stimulus, mye and
myi are the centers of the stimulus ranges, and Streq and Sri

are constants set such that the maximal outcome probability
for each category is 90%.
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Figure 2. Experiment design. Dark circles indicate
stimuli. Letters and blurred grey lines indicate category
structure, although feedback isfully probabilistic.

Procedure. The experiment consisted of atraining phase
followed by a testing phase. The training phase used 13
extreme stimuli for each category and lasted 100 trials.
Feedback during training was deterministic. This phase was
necessary because piloting showed subjects perform very
poorly on the probabilistic four-category task if they are not
first taught the general arrangement of the categories. The
testing phase used the 113 stimuli shown in Figure 2 and
lasted 400 trials.  Feedback during this phase was
probabilistic, following the formula given above. At the
start of the testing phase subjects were told that the
categories were the same but that they would now be shown
borderline items.

On each trial, a stimulus was randomly selected from the
pool for the current phase and presented in the center of a
43-cm computer monitor on a black background. The
subject then responded by pressing one of four keys on a
keyboard. The word “Correct” or “Wrong,” together with
the correct category for that trial, was then presented below
the stimulus for 1s. The monitor went blank for .5s before
the start of the next trial.

Analysis

Responses and feedback from each trial were decomposed
into two subtasks as shown in Table 1. Each subtask
contains data from every trial but collapses the four
categories to two. The effective categories are AEC and
BED in Subtask F and AEB and CED in Subtask O.
Therefore each subtask is logically identical to a two-
category task with only one relevant dimension: frequency
in Subtask F and orientation in Subtask O. The derived data
for each subtask were analyzed using the sequential
generalization model of Jones et al. (2005, 2006).
Parameters obtained from fits of this model provide an
estimate of the empirical generalization gradient.



Table 1: Decomposition of 4-category task into subtasks

Category/Response
Subtask A B C D
F 0 1 0 1
@) 1 1 0 0

Notes: Entries indicate how each category is coded for
each subtask. For Subtask F, only frequency is relevant;
for Subtask O, only orientation isrelevant.

The forma characterization of the sequential
generalization model is as follows (for details and empirical
validation, see Jones et al., 2006):

logoddsR,) =F, ,G&(S,,, S,. 1) +

A W (S - €Sy.q1) +Wo. @)

I
This formula expresses the current response log-odds as a
sumof short- and long-term contributions. The first term on
the right side of Equation 1 represents generalization from
the previoustrial. The strength of generalization is given by
G, which is a function of the present and previous stimuli S,
and S,;. The direction of the generalization effect is
determined by the previous feedback F,., which is coded
here as 1. Thus the present response tends towards the
previous feedback to an extent determined by G The
remainder of Equation 1 represents the effect of long-term
knowledge, which is included in the model to allow
unbiased estimates of short-term generalization (Jones et al.,
2006). Here S,; represents the value of stimulus n on
dimension i, w; are association weights, and wg is an
intercept or response bias term. The previous stimulus is
included to model perceptual contrast effects, represented
by c.

Two approaches are wuseful for estimating the
generalization gradient G. First, G can be treated as a hon-
parametric function of the (vector) difference between S,
and S,.1, by estimating a separate value for every possible
difference. This approach yields a non-parametric mapping
of the empirical generalization gradient (asin Fig. 1). The
only assumption is that the two-dimensional gradient can be
expressed as a product of gradients on each dimension
(Nosofsky, 1986).

Second, G can be estimated from a parametric family. In
the present study, parametric estimation of G follows
previous research showing that generalization in category
learning is best modeled by a Gaussian function of the
distance between stimuli (Jones et al., 2005, 2006;
Nosofsky, 1986). Therefore Gis taken to be of the form

G(S, Sy 1) =m+ke 82 Gi-Sa)? @
The intercept term m s included because of the finding of
negative generalization between highly dissimilar stimuli
(Jones et al., 2006). The a parameters determine the degree
to which generalization depends on discrepancies along
each dimension. Selective generalization corresponds to
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changes in a in response to the category structure, with
larger values for more diagnostic dimensions (Jones et al.,
2005). According to accounts of generalization based on
similarity and selective attention, a large value of a
represents increased attention to the corresponding
dimension, which produces a decrease in similarity between
stimuli differing on that dimension (Nosofsky, 1986).

To summarize, the sequential generalization model allows
measurement of the pattern of generalization from the
previous trial as a function of the relationship between
present and previous stimuli. This is accomplished by
assessing the effect of the previous feedback while
controlling for the contribution of long-term knowledge.
Comparison of the gradients obtained for the two subtasks
of the present study provides a test of whether
generalization was uniform across different components of
the category judgment. This in turn tests the claim that
generalization is based on similarity.

In al analyses, frequency and orientation were
transformed to lie on a common scale, ranging from 1 to 15
in integer steps. All model fits are based on data from the
testing phase only, and are based on maximum likelihood.

Results and discussion

The seguential generalization model (Egs. 1 & 2) was
applied to the derived data for each subtask, both for the
group and for each subject. First, the nonparametric version
of the model was applied to the group data to obtain
nonparametric generalization gradients for each subtask.
Long-term knowledge (w and ¢ parameters) was allowed to
vary among subjects. The gradients obtained for each
subtask are displayed in Figure 3. As can be seen, the
gradient for Subtask F is steeper aong the frequency
dimension than aong the orientation dimension; the
opposite pattern holds for Subtask O. Thus generalization
for each subtask depends relatively more on the
corresponding diagnostic dimension. To test the reliability
of this difference, data from both subtasks were fit
simultaneously, with the constraint that the two gradients
were identical. The goodness of fit of this model was
significantly worse than the combined fits of the previous
models, c*(29) = 61.05, p < .001. Therefore the
generalization gradients differed between subtasks.

Second, the parametric version of the model (Eq. 2) was
fit separately for each subject. To compare generalization
between subtasks, a sdective generalization measure was
computed, separately for each subject and subtask, as b =
afeq/(@freg + Aori). This variable measures the relative
influence of the two dimensions in determining strength of
generalization, and is constrained to lie between 0 and 1.
The difference in b between the two subtasks is a measure
of the split-selective attention effect.

Average values of b for each subtask, along with primary
parameters from the long-term component of the model, are
presented in Table 2. Ascan be seen, b is greater in Subtask
F than Subtask Q again indicating that generalization for
each subtask depends relatively more on the corresponding
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Figure 3: Non-parametric generalization gradients for
each subtask. In both cases, generalization is weaker

when successive stimuli  differ on the diagnostic
dimension (frequency for F, orientation for O) than when
they differ along theirrelevant dimension.

diagnostic dimension.> This difference is significant by a
paired-samples ttest, t(39) = 1.80, p < .05 (one-tailed).
Furthermore, the strength of the split-selective effect is
positively correlated to long-term knowledge of the
category structure, defined as WfFreq + ng (with superscripts
indicating subtask), r = .417, p < .01. Therefore the more
subjects learned the category structure, the more they were
able to differentially allocate their attention in the two
subtasks.

'The fact that b is further from .5 in Subtask F than in Subtask O
is merely a scaling effect — overall, generalization depends more
on frequency than on orientation. Thisis also evident in the non-
parametric gradients (Fig. 3). This observation and the fact that
long-term cue use (w) was stronger for frequency in Subtask F than
for orientation in Subtask O (see Table 2) suggest that frequency
enjoys greater baseline salience for these stimuli.
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Table2: Primary measures from individual model fits

Subtask b Wireq Wori
F .618 .299 .003
(@) 473 .011 195

Notes: b is selective generalization measure; greater
values indicate more attention to frequency over
orientation. w parameters measure long-term cue use.

Simulation

A series of simulations was conducted to test whether a
similarity-based model can account for the pattern of
generaization found in the present experiment. The
simulations were based on ALCOVE, a1 influential model
of category learning that has been used to explain a wide
variety of classification phenomena (Kruschke, 1992).
ALCOVE categorizes stimuli based on their similarity to
exemplars stored in memory. Associations between stored
exemplars and categories are updated by error-driven
learning. This iterated updating produces recency effects,
which are moderated by the similarity between successive
stimuli (Jones & Sieck, 2003). That is, ALCOVE predicts
similarity-based generalization from the previous trial.
Furthermore, ALCOVE includes an attentional learning
mechanism that modifies its similarity function, or
generalization gradient, to improve performance. Thus
ALCOVE is aso able to explain the selective generalization
effect found by Jones et a. (2005). ALCOVE therefore
seems one of the most likely candidates to explain the split-
selective attention effect from within the similarity
framework.

Two versions of ALCOVE were simulated (see Fig. 4).
The first is the standard version, in which each category is
represented by a single output node. We refer to this
version as the unified model. The second version, the split-
task model, assumes that categories are explicitly
represented in terms of the subtask decomposition used in
the empirical analyses, with a pair of output nodes for each
subtask. Response probabilities are calculated in the same
manner as in the unified model (see Eq. 3of Kruschke,
1992), but separately for each subtask. These values are
then multiplied to obtain response probabilities for the overt
categories (e.g., P[A] = PIAE B]P[AE C]).

The simulations showed that ALCOVE is unable to
explain the split-selective attention effect. For all parameter
values tested, the generalization gradients obtained from the
two subtasks were datistically identical, with each
depending equally on both dimensions. Thisistrue even for
the split-task version of the model, in which the
classification response is explicitly generated from separate
decisions on the two subtasks. The split-task version of
ALCOVE fails to exhibit split-selective attention because
decisions on the two subtasks still depend on the same
attentional weights and hence the same similarity function.
The activation of each hidden node, and hence the
information passed to the output layer, only indicates the
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Figure 4: lllustrations of the two versions of ALCOVE
used in simulations. See text for explanation.

similarity of that node’ s exemplar to the presented stimulus;
it does not separately indicate their difference on each
dimension. Prior to running the simulations it seemed
possible that ALCOVE would exhibit split-selective
attention via sequential effects from iterated learning,
similar to the mechanisms by which it produces short-term
generdlization in the first place. However, this is not the
case. Of course, our findings could be modeled by fully
separating the processing for the two subtasks, by assuming
two complete and independent copies of the model.
However, alowing for separate similarity functions
whenever an incompatibility arises, especialy in such a
post-hoc manner, undermines the predictive power of the
similarity approach and renders it largely meaningless.
Moreover, this approach abandons the assumption that
relationships among stimuli are collapsed to a single
similarity measure, and is more in line with our position that
generalization is based on multidimensional information.

General Discussion

In one of the first empirical studies of categorization,
Shepard, Hovland, and Jenkins (1961) investigated whether
category learning can be explained by similarity-based
generalization. Based on comparisons of error patterns
between identification and categorization tasks, they
concluded that it cannot. This conclusion was seemingly
overturned by Nosofsky (1986), who showed how category
learning can be well modeled by similarity-based
generalization, given the additional assumption that
similarity is systematically altered by selective attention.

Using the sequential method for directly measuring
generalization gradients in category learning, Jones et al.
(2005) found that subjects learning different category
structures exhibit different gradients, but again it could be
assumed that this is due to shifts in attention leading
subjects in different conditions to use different similarity
metrics. Thus it could be argued that for each subject at
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each stage of learning, there exists a well-defined similarity
metric underlying generalization.

The present study presents a much stronger challenge to
similarity-based  accounts of  generalization, by
demonstrating two different generalization gradients
simultaneously active within the same judgment. The four-
category classification task used here can be thought of as a
superposition of two, two-category structures, each with a
different relevant dimension (see Fig. 2). Just as was found
when these structures were run separately, between subjects
(Jones et al., 2005), generalization in each subtask was
selectively more dependent on the relevant dimension.
However, because in this study the two subtasks were in
reality aspects of a single judgment, the differing gradients
cannot be explained by a shift in similarity due to selective
attention. This finding, termed the split-selective attention
effect, demonstrates that the cognitive processes underlying
generalization are more sophisticated than similarity
accounts allow for. This conclusion is further supported by
the simulations with ALCOVE, which is unable to exhibit
split-selective attention.

An additional implication of this study is that subjects
systematically generalize among categories. Extant models
of category learning assume that observation of a stimulus
in a given category is used as evidence regarding the
membership of subsequent stimuli in that same category,
but not as evidence about other categories (except indirectly,
through response competition). However, in the present
experiment it was seen that observation of a stimulus in one
category can be taken as evidence in favor of other
categories. For example, observation of a stimulus in
category A led to an increased tendency to place the
following stimulus in category B, provided the two stimuli
were similar in orientation.

The idea that reinforcement of one response can increase
the tendency for other responses is termed response
generalization, and was predicted by Shepard's (1957)
original generalization model. The present study
demonstrates that response generalization is an important
component of category learning.  However, response
generalization alone is not sufficient to explain our results.
Shepard's model of stimulus and response generalization
assumes that the two processes occur independently.
Presentation of a stimulus activates knowledge about other
stimuli based on their similarity, and the resulting response
tendencies generalize to other responses, again based on
similarity. Thus the degree to which observation of
stimulus X lying in category A will be used as evidence for
classifying stimulus Y into category B is a function of the
similarities between X and Y and between A and B. In
contrast, generalization in the present experiment was
determined by the correspondence between the relationship
between successive stimuli and the relationship between
successive categories. Specifically, generalization is strong
only when the dimensions on which the stimuli differ are
the same as those on which the categories differ. Collapsing
the multidimensional differences into unidimensional
similarities before combining information about stimuli with



that about responses eliminates information about this
critical correspondence.

Our proposal, then, is that generalization is based on
alignment of stimulus differences with response differences,
much like in analogy formation (Gentner, 1983). For each
dimension, if the difference between present and previous
stimuli is small, then categories are favored that are close to
the previously reinforced category on that dimension. If the
difference is large then categories that differ on that
dimension are favored. This process is consistent with the
pattern of generalization seen with unidimensional stimuli
(Jones et al., 2006), and in that case is equivalent to an
explanation based on similarity. However, the two
explanations diverge in the multidimensional case because
similarity does not contain the information necessary to
support generalization decisions on multiple dimensions
simultaneously.

We suggest that the similarity approach has been
successful to date because it was only tested in relatively
simple tasks, generally involving only two categories. The
present task goes beyond past research in that it includes
multiple categories having different relationships to one
another. Therefore the relevance of one stimulus’ category
membership to that of another is not a unitary proposition,
but varies between the different aspects of the judgment.
These relevancies cannot be summarized by any global
similarity metric,c but depend on the detailed,
multidimensional relationship between the two stimuli.

Two other theoretical approaches deserve mention as they
relate to split-selective attention. First, theories based on
general recognition theory (Ashby & Townsend, 1986)
assume that categories are represented in terms of their
distributional properties, such as mean and variance on each
dimension. If different categories are associated with
different variance structures, then generalization of different
category labels might be assumed to follow different
gradients. However, categoriesin the present experiment all
depended equally on both dimensions. Moreover, the
pattern of generalization found did not vary according to
individual categories but according to the relationship
between pairs of categories (i.e., generalization between A
& B and between C & D depended nore on orientation,
whereas generalization between A & C and between B & D
depended more on frequency).

Second, Yang and Lewandowsky (2003) propose that
people faced with a complex categorization task develop
separate parcels of knowledge each applicable to a subset of
the stimulus space. This strategy is referred to as
knowledge partitioning. Knowledge partitioning can lead to
more complex patterns of generalization than simpler
similarity-based theories (e.g., Kruschke, 1992; Nosofsky,
1986), as attention might be allocated differently depending
on which context is activated.  However, knowledge
partitioning cannot explain split-selective attention, because
the phenomenon does not involve different generalization in
different contexts, but rather different generalization for
different aspects of the same judgment.

410

Acknowledgments

This work was supported by NRSA F32-MH068965 from
the NIH to MJ, NIH Grant R0O1-MH59196 to WTM, and
AFOSR Grant FA9550-04-1-0226 and NSF CAREER Grant
0349101 to BCL.

References

Ashby, F. G.,, & Townsend, J. T. (1986). Varieties of
perceptual independence. Psychological Review, 93, 154-
179.

Heit, E., & Rubinstein, J. (1994). Similarity and property
effects in inductive reasoning. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 20, 411- 422.

Gentner, D. (1983). Structure-mapping: A theoretical
framework for analogy. Cognitive Science, 7, 155-170.

Jones, M., Love, B. C.,, & Maddox, W. T. (2006).
Recency as a window to generaization: Separating
decisional and perceptual sequential effects in category
learning. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 32, 316-332.

Jones, M., Maddox, W. T., & Love, B. C. (2005).
Stimulus generalization in category learning. Proceedings of
the 27" Annual Meeti ng of the Cognitive Science Society,
1066-1071.

Jones, M. & Sieck, W. R. (2003). Learning myopia: An
adaptive recency effect in category learning. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 29, 626-640.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based
connectionist model of category learning. Psychological
Review, 99, 22-44.

Markman, A. B., & Gentner, D. (1993). Splitting the
differences: A structural alignment view of similarity.
Journal of Memory and Language, 32, 517-535.

Medin, D. L., & Schaffer, M. M. (1978). Context theory
of classification learning. Psychological Review, 85, 207-
238.

Nosofsky, R. M. (1986). Attention, similarity, and the
identification-categorization relationship. Journal  of
Experimental Psychology: General, 115, 39-57.

Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., &
Shafir, E. (1990). Category-based induction. Psychological
Review, 97, 185-200.

Shepard, R. N. (1957). Stimulus and response
generalization: A stochastic model relating generalization to
distance in psychological space. Psychometrika, 22, 325
345.

Shepard, R., Hovland, C. L., & Jenkins, H. M. (1961).
Learning and memorization of classifications. Psychological
Monographs: General and Applied, 75, 1-42.

Tversky, A. (1977). Features of similarity. Psychological
Review, 84, 327-52.

Yang, L.-X., & Lewandowsky, S. (2003). Context-gated
knowledge partitioning in categorization. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 29, 663-679.



