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Abstract

Many visually-guided behaviors rely critically on the ability
to maintain visual information in working memory. However,
to date, there are few formal models of visual working
memory (VWM) that directly interface with the growing
empirical literature on this basic cognitive system. In
particular, no current theories address both the maintenance of
multiple items in VWM and the process of change detection
within a neurally-plausible framework. In the present study,
we describe such an approach, along with initial data from a
change detection task that confirm a novel prediction of our
model.

Introduction

Visual working memory (VWM) plays a central role in
everyday activities ranging from the integration of visual
information obtained across successive saccadic eye
movements, to maintaining visual representations in an
active state in the service of complex cognitive tasks.
Moreover, impaired working memory functioning has been
implicated in the broad array of cognitive impairments
associated with illnesses such as schizophrenia (Keefe,
2000). Given these ties to both basic and applied issues,
there has been an explosion of interest in the function of the
working memory system in the past decade (see Miyake &
Shah, 1999). In addition, there has been a growing push to
develop neurally-plausible models of VWM that can both
synthesize the extant literature and shed light on the
profound impairments seen in atypical populations.

The current state-of-the-art in the study of VWM is to use
a canonical change detection task to assess the
characteristics of VWM. In this task, observers are shown
two visual displays separated by a brief delay interval and
are asked to report whether they are the same or different.
This task requires observers to maintain multiple stimuli in
memory, and compare these memory representations to
incoming perceptual representations in order to generate a
same or different response at test. = Research using this
paradigm has revealed that VWM has a very limited
capacity and appears to store items in the form of integrated
object representations rather than as individual features.
Additionally, electrophysiological and fMRI studies of
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change detection have begun to isolate the neural substrates
of these functions.

Although most theoretical accounts of these findings have
remained verbal/conceptual in nature, some have moved in
the direction of formal theory. For example, Raffone and
Wolters (2001) have developed a neural network model
where WM for objects is maintained by synchronized firing
among neurons representing an object’s features. Although
models of this type offer exciting links between brain and
behavior, they have several well-known limitations,
including a relatively low tolerance to noise, and a
simplified approach to the representation of space. Perhaps
most critically, such models have yet to specify an approach
to change detection that addresses how populations of
neurons compare incoming perceptual representations to
items stored in memory, giving rise to the “same” and
“different” responses required by the task.

In the present study, we describe a first step in the
development of a new approach to VWM and change
detection that builds on a neurally plausible, process-based
framework for understanding spatial cognition: the Dynamic
Neural Field Theory (DNFT) (Spencer & Schoner, 2003,
2006). This framework allows a tight relationship between
theory and experimentation, and has provided important
insights into the processes underlying spatial working
memory and the development of this cognitive system
(Schutte & Spencer, 2003). Here we extend this approach
to address multi-item VWM and change detection.

VWM for features and objects: Insights from
change detection.

Research investigating working memory for nonspatial
object properties—or visual working memory—began to
explode in the mid-1990s, due in large part to the
widespread use of change detection tasks. For example, in a
highly influential study, Luck and Vogel (1997; Vogel, et
al., 2001) investigated the storage of visual features and
feature bindings in VWM in a series of change-detection
experiments using visual arrays composed of simple colored
shapes. Participants were shown arrays of 1 to 12 items
(e.g., colored rectangles) for 100 ms, followed by a 900-ms
delay interval and then a test array that remained visible for
2000 ms. When the test array appeared, it was either



identical to the original display, or one item had been
changed (e.g., to a different color or orientation). They
found that same/different judgment accuracy sharply
declined for arrays containing more than four items,
prompting the conclusion that VWM has a limited capacity
of approximately 3-4 items, in keeping with other findings
(Cowan, 2001; Irwin & Andrews, 1996; Sperling, 1960).
Additional research using this paradigm has suggested that
VWM stores integrated object representations (Luck &
Vogel, 1997; Vogel, Woodman, & Luck, 2001), rather than
single features, although the exact nature of the
representations maintained in VWM remains a contentious
issue (see Alvarez & Cavanagh, 2004 and Wheeler &
Treisman, 2002, for alternative proposals).

In a related line of research, the change-detection
paradigm has begun to be used to investigate the neural
substrates of VWM. For example, converging evidence
from event-related potential (ERP) (Vogel & Machizawa,
2005) and functional Magnetic Resonance Imaging (fMRI)
(Todd & Marois, 2004) studies of change detection have
revealed localized neural activity in the posterior parietal
cortex that is specifically related to the amount of
information being held in VWM. Additionally, Xu & Chun
(2006) have provided fMRI evidence suggesting that the
maintenance of object properties (e.g., the color or
orientation of a stimulus) and locations in WM rely on the
activation of distinct cortical networks in the occipital-
temporal cortex, and regions of the posterior parietal cortex,
respectively.

Additionally, ERP and fMRI studies have begun to focus
on neural activity associated with the detection of changes at
test. For example, using fMRI, Pessoa and Ungerleider
(2004) found that the detection of orientation changes was
associated with activation of a network of brain areas (e.g.,
frontal, parietal, and anterior cingulate cortex) known to be
involved in the control of attention (Kastner & Ungerleider,
2000). On the basis of these findings, they proposed that
these regions may be involved in orienting the eyes and/or
attention to the location of the change, facilitating further
processing of the changed item. Consistent with this
proposal, a recent series of ERP and eye-movement studies
looking at working memory for color (Hyun, 2005) have
demonstrated that both attention and the eyes are rapidly
shifted to the location of the changed item at test.

In summary, research using the change-detection task has
established several important facts about VWM. First,
VWM has a small storage capacity of approximately 3-4
items, which appears to be limited by the number of objects
that are stored rather than the number of features. Second,
the maintenance of information in VWM appears to rely on
activation of regions of the occipital-temporal and posterior
parietal cortex, which may be differentially involved in the
maintenance of object-property and spatial information,
respectively. Finally, the detection of change in WM tasks
engages neural systems that may play a role in rapidly
orienting attention and the eyes to the changed location.
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Although studies of change detection have begun to make
significant contributions to our understanding of VWM at
both the behavioral and neural levels, few theoretical
models have been formulated within a neurally-plausible
framework that could effectively address both lines of
research. Thus, a critical goal in this area is to move in the
direction of neurally plausible models that allow us to link
behavioral performance in change detection tasks to the
underlying neural substrate.

A neural synchrony approach to VWM

An important first step in this direction was suggested by
Vogel, et al. (2001), who proposed that VWM
representations are stored in cell assemblies in which
neurons that code the features of an object are linked by
virtue of synchronized firing. Raffone and Wolters (2001)
have created a detailed neural network model (hereafter
referred to as ‘Sync’) of this neural synchrony hypothesis
that captures many of the properties of VWM discussed
above. In Sync, assemblies of neurons modeling
inferotemporal cortex (IT) are linked to matching
assemblies that model prefrontal cortex (PF). Individual
neurons in IT code for the presence of individual feature
values, while the assemblies represent perceived objects.
When stimulated, the IT-PF system enters into sustained
oscillation. Synchronized activity within the IT-PF
assemblies establishes links among features, temporally
“binding” these features into objects. Inhibition among these
assemblies effectively chunk input into separate objects,
which are separately maintained in WM. The model
accounts for the limited capacity of VWM in terms of
spurious synchronization, that is, the increasing instability
of temporal binding as the number of chunks increases.
Because the assemblies code for bound feature sets, the
capacity is determined by the number of objects rather than
the number of features, consistent with observed data.

Limitations of Sync. Although Sync offers formal ties
between neural processes and capacity limits in VWM, there
are several limitations of this model. First, a central question
with any neurally plausible approach to working memory is
how stable sustained activation is in the face of noise. How
stable are self-sustaining oscillations in Sync? This is not
entirely clear. Raffone and Wolters (2001) demonstrated
that Sync can maintain synchronized oscillations for 300 ms
in the absence of input. Importantly, though, the amount of
noise was dramatically reduced during this rather short
memory delay (the noise was 10 times smaller during the
delay interval v. when the perceptual input was “on”).
Moreover, no data were presented from multiple simulations
of the model, so it is not clear whether Sync’s memory for
features captures a realistic balance between robust WM and
variability in performance.

Second, Sync treats spatial dimensions like any other
feature dimension; consequently, this model does not
address several lines of evidence suggesting that space has a
special status in VWM tasks. For example, space plays an
important role in the calibration of reference frames and in



linking perceptual and cognitive systems to action systems.
Additionally, one of the central insights in the field of visual
attention is that attending to a spatial location can bind the
features at that location together into an object
representation (Treisman & Gelade, 1980). Thus, space may
function as the medium or ground that facilitates binding,
rather than being just another object property.

Finally, and perhaps most importantly, the framework
provided by Sync only addresses the maintenance of
information in VWM and does not provide a process model
of the primary task used to probe working memory—change
detection. That is, the process of comparing incoming
perceptual information (e.g. the test array) with VWM
representations and generating the “same” and “different”
responses required by the task has not been specified to
date. Rather, Raffone and Wolters relied solely on single
simulations to capture aspects of results from Luck and
Vogel (1997). In particular, they simply observed whether
oscillations were maintained (or not) as the set size was
increased. This provides very limited ties to participants’
performance.

In summary, the Sync framework represents an important
first step toward a formal model of VWM based on neural
principles. However, a number of concrete limitations
suggest that it might be fruitful to look at other models of
WM to help explain the rapidly accumulating empirical
database on VWM.

The Dynamic Neural Field Theory of SWM

Over the last several years, we have developed a neurally-
plausible theoretical framework—the Dynamic Neural Field
Theory (DNFT)—to capture the processes that underlie
spatial working memory (SWM) (Schutte & Spencer, 2003;
Spencer & Schoner, 2003, 2006). To describe the theory,
consider an activation field defined over a metric spatial
dimension, x (e.g., the direction of a target). The continuous
evolution of the activation field is described by an activation
dynamics, that is, a differential equation which generates the
temporal evolution of the field by specifying a rate of
change, dw(x,f)/dt, for every activation level, w(x,f), at every
field location, x, and any moment in time, ¢. The field
achieves stable patterns of activation through time via an
inverse relationship between the rate of change and the
current level of activation. This means that at high levels of
activation, negative rates of change drive activation down,
while at low levels, positive rates of change drive activation
up.

The activation level that emerges from this basic
stabilization mechanism is a function of the balance of
different inputs to the field (e.g., from perceptual systems,
long-term memory, etc.) and neural interactions within the
field. We use a locally excitatory/laterally inhibitory form of
interaction captured in Figure 1A (see also Amari, 1989;
Amari & Arbib, 1977; Compte, Brunel, Goldman-Rakic, &
Wang, 2000 for similar formulations). According to this
type of interaction, neurons that “code” for similar values
along the spatial dimension, x (e.g., similar directions in
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space), excite one another while neurons that code for very
different values (e.g., different directions in space) inhibit
one another. This form of interaction allows self-sustained
peaks of activation to be maintained following the
withdrawal of the stimulus (i.e., the memory display). In
addition, such interaction can cause peaks of activation to
“drift” over delays, depending on activation at other field
sites and the current noise level.

The basic architecture of the DNF model within which
these concepts are implemented can be seen in Figure 1.
Figure 1B shows the excitatory layer of a two-layered
perceptual field, PF («), and Figure 1C shows the excitatory
layer of a two-layered spatial working memory field, SWM
(w). Both of these layers are coupled to a single layer of
inhibitory interneurons, Inhib (v) (see reciprocal solid
(excitatory) and dashed (inibitory) arrows between PF and
Inhib as well as between SWM and Inhib). In addition, the
perceptual layer passes excitatory input to the SWM field.

The simulation shown in Figure 1, panels B-D, depicts a
single trial in a SWM task. In each panel, the direction of
the targets in the task space is shown along x; y captures the
elapsed time from the start of the trial; and z shows the
activation of each site in the field. At the start of the trial PF
(u) builds a small peak of activation at 180°, reflecting
perception of a salient reference frame in the environment
(e.g., the midline of the task space). Next, the target appears
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Figure 1. The DNFT of Spatial Working Memory



location. When the target disappears, a peak re-forms in PF
(u) at 180° as the system locks onto the reference cues in the
task space. Panel D shows the effect of coupling PF () to
SWM (w). At the start of the trial, SWM (w) receives
relatively weak reference input from PF (). Next, the target
is turned on, passing strong target-related input into the
working memory field. This event—combined with a boost
in the resting level of SWM (w) and Inhib (v)—moves the
working memory field into a strongly self-sustaining state.
An active memory of the target location is maintained in
working memory throughout the delay as a result of
coupling between the SWM (w) and Inhib (v) fields, which
implements the form of interaction depicted in Figure 1A.
Importantly, this occurs even though PF (u) has re-acquired
the reference frame. However, weak reference-related input
to the inhibitory layer (v) causes the peak of activation in
SWM to “drift” away from the midline of the task space,
consistent with observed data.

Limitations of the DNFT

As with Sync, the DNFT is limited in several respects.
Most critically, the model described above focuses solely on
SWM for single items. To capture performance in change
detection tasks, we must modify the model in three key
ways. First, we must extend this approach to capture WM
for non-spatial object properties such as color and
orientation. Second, the model must be expanded to address
WM for multiple items. Finally, we must specify the
processes that underlie change detection decisions (i.e.,
‘same’ or ‘different’ responses).

A Dynamic Neural Field Theory of Multi-Item
VWM and Change Detection

To address these limitations, we have extended the DNFT
to address multi-item WM, where the to-be-remembered
stimulus can be either featural or spatial in nature. To
capture this, we have introduced the concept of a 1D feature
WM field (FWM), which has all of the characteristics of a
1D SWM field, but the metric dimension along which
activation is defined is featural in nature (e.g. hue,
orientation, line length). Note that the FWM field captures
more than just a re-labeling of an axis in our model. The
claim here is that WM for metric features shares all of the
properties captured by dynamic neural fields—WM as
stabilized peaks, coupling between perception, WM and

LTM, metric interactions leading to “drift”, and so on. The
“Mexican-Hat” interaction profile depicted in Figure 1A,
where inhibition is stronger near the focus of excitation,
allows a multi-peak solution of the field dynamics with
moderate levels of global inhibition. This allows the locally
excitatory interactions associated with each peak to be
isolated by lateral inhibition, while keeping the total amount
of inhibition in the field low enough that multiple items can
be maintained. However, as more items are encoded in
working memory, the overall amount of inhibition is also
increased, which, together with metric interactions between
peaks, provides a natural basis for capacity limits in the
model.

To capture performance in change-detection tasks, we
have extended a recent dynamic field model of position
discrimination (Simmering et al., in press). A 1D version of
the model is shown in Figure 2. As with the DNF model of
SWM described above, this model consists of a 1D feature-
selective perceptual field that provides afferent input to a
layer of inhibitory neurons and to an excitatory feature WM
field (FWM (w)). Excitatory and inhibitory interactions
between each of these three fields allow the network as a
whole to function as a “difference” detector. Specifically,
peaks in WM produce localized regions of inhibition in PF
(u) via inhibitory feedback from Inhib (v). Thus, PF (u) is
only able to build a new peak when a change occurs at test,
which signals the presence of a new input that needs to be
attended to.

The simulations shown in Figure 2A and 2B illustrate
how “same” and “different” responses emerge in the model.
Both simulations show three peaks of activation that are
built following the presentation of a memory array (e.g.
three colored squares). Note that these peaks are only
transiently sustained in PF (u), but are maintained
throughout the delay interval in the FWM (w) field (bottom
panels). Each of the peaks in WM activates similarly-tuned
neurons in the Inhib (v) field through excitatory feedback,
which then projects localized inhibition back to PF (u),
inhibiting similarly-tuned neurons in that field. At the end of
the delay, a single test item is presented to probe WM for
color. At the same time, the resting levels of PF (u) and
Inhib (v) are boosted, which prepares PF (1) for new inputs
and stabilizes the peaks in WM. In panel A, the test item is
the same as one of the items being held in working memory.
As a result, PF (u) is unable to build a peak due to strong
localized inhibition from the Inhib (v) field at that location,
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Figure 2. DNFT of multi-item WM and change detectlon
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and therefore the three peaks remain stable in WM at test
and a “same” response is produced. In panel B, however,
the test item is a new color that wasn’t present in the
memory array, and thus the input comes in at a relatively
uninhibited region of PF (u). In this case, a stable self-
sustained peak builds in PF («), which suppresses each of
the peaks in WM, producing a “different” response.

Although the model shown in Figure 2 is capable of
detecting color changes, it isn’t clear how the system could
identify where in the world the change occurred. This is an
important issue because adaptive, visually-guided behavior
depends critically on knowing not only that a change has
occurred but where it has occurred. To address this, we
have developed a 2D version of the basic change detection
model (see Figure 2C). This model introduces the concept
of a two-dimensional feature-space field (FSWM) that
captures WM for what-where conjunctions.

The generation of a “change” response in the 2D version
of the model is shown in Figure 2C. As with the 1D model,
the presence of a peak in the perceptual field at test globally
suppresses activation in the WM field. However, in
addition to signaling the presence of a feature change, the
2D perceptual field also contains information about where
in the task space the change occurred. This signal could
serve as the basis for shifting attention and/or the eyes to the
location of the change, in keeping with recent evidence
(Hyun, 2005; Pessoa & Ungerleider, 2004).

Additionally, metric properties of FSWM fields together
with the change detection process described previously
leads to a set of novel predictions. In particular, the local
excitation/lateral inhibition function underlying sustained
activation in the DNFT leads to interactions between peaks
when more than one item is being held in WM. The specific
form of the interaction depends critically on how similar the
items are along a given dimension (e.g., color). For ease of
exposition, the full pattern of multi-peak interactions as
items are made more similar is illustrated in Figure 3 using
the 1D change detection model described above (see Figure
1 B-D). It should be noted, however, that the same metric
interactions are also present in the 2D version of the model.

As the far left panel of Figure 3 shows, when stimuli are
far apart along a given dimension (e.g., color), WM peaks
will be broad and will not interact. At smaller separations,
peaks repel one another due to strong lateral inhibition
between the peaks (compare the positioning of the large
WM peaks at the end of the delay to the position of the
stimulus input). At even smaller separations, peaks should
be stable and narrow with only slight repulsion, because
lateral inhibition from one peak begins to extend to the “far”
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side of the other peak. At still smaller separations, peaks
should compete, leading to the destabilization of one peak in
favor of the other. Finally, at the extreme limit, the
activation profiles associated with each item will fuse,
forming a single WM peak.

This pattern of multi-peak interactions combined with the
change detection mechanism described above leads to a set
of novel predictions we have begun to test in our lab. First,
the model predicts enhanced change detection when items
are highly similar! This occurs due to the narrowing of
close peaks. When WM peaks are narrower, they leave
narrower inhibitory traces PF (u), allowing this field to
detect even small changes in input. For instance, for the
simulations shown in Figure 3, a 30-unit change was
required to produce a different response for the unique
target on the right, compared to a 20-unit change when each
of the similar targets on the left were probed.

This highly counterintuitive prediction has been
confirmed in a recent study comparing color change
detection accuracy for close vs. far colors (Luck, Lin, &
Hollingworth, 2005). In this study, target items were
presented sequentially to prevent color contrast effects, and
a single item was probed at test. As can be seen in Figure 4,
color change-detection accuracy was significantly better
when target colors were drawn from a close color set vs. a
far color set. Importantly, this was the case regardless of the
serial position of the probed item (i.e., probing the 1%, 2™,
or 3" target item presented).

A second prediction of the model is derived from the
“repulsion” type of interaction shown in Figure 3. Such
interactions predict that there will be asymmetries in change
detection for similar items depending on the probed
direction. In particular, change detection should be worse
when probed in directions consistent with repulsion vs. in
the opposite direction. We are currently testing this novel
prediction in our lab.
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Figure 4. Enhanced change detection with close colors



Conclusion

To our knowledge, the model proposed here provides the
first neurally-plausible theory of the processes that underlie
change detection. Thus, unlike Sync, our approach makes
explicit how incoming perceptual representations are
compared to items in WM, and how this process leads to the
generation of the same/different responses required by the
task. Our approach also retains the characteristics of our
previous model of SWM, making the link between feature-
based WM and spatially-based action systems (e.g. visual
attention and eye movement systems) explicit and relatively
straightforward. The proposed model represents a first step
in the development of a comprehensive theory of visual
working memory based on neural principles. Future efforts
will focus on extending the model to more fully explore the
integration of what and where in feature-space working
memory fields (see Figure 2C), and to address working
memory for more complex, multi-feature objects.
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