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Abstract

This paper describes an experiment and a computational
cognitive model involving a spatial orientation task. The
experiment tests participants’ ability to identify their location
on a map, given a view of the space. The model performs this
task by applying an instantiation of a general strategy that has
been shown to be effective in other spatial orientation tasks. It
uses perceptual grouping to organize the space into
recognizable elements (clusters), combined with qualitative
(left wversus right) and quantitative (egocentric bearing)
information about those clusters to determine its response.
The model is compared to the empirical data, showing good
overall correspondence to human performance, including
response times and errors.

Introduction

There are countless applications of using a map, from
finding an attraction at an amusement park, to coordinating
complex military operations in unfamiliar territory. Most of
these applications require the map user to answer a very
basic question: ‘How does the map correspond to the
surrounding visible environment?’ Frequently, individuals
attempt to answer this question by trying to determine their
position on the map. This involves determining both the
appropriate location on the map and the direction the
individual is facing (i.e., orientation). Once these two pieces
of information are known, it is possible to effectively use
the map to guide decision-making. Without this
information, it is impossible to reason effectively to make
appropriate spatial and navigational decisions.

A large body of research has accumulated around the
topic of establishing correspondence between a map (both
physical and cognitive) and a visible space. Much of it has
concerned the relationship between the alignment of the
map and the orientation of the user. This research has shown
repeatedly that when the map’s vertical axis is misaligned
relative to the user’s orientation, performance is impaired.
Studies have demonstrated this in a variety of contexts,
involving familiar and novel spaces (Thorndyke & Hayes-
Roth, 1982), large geographic regions to small-scale room-
sized environments (Glicksohn, 1994; Hintzman, O’Dell, &
Arndt, 1981), and simple left-right judgments to complex
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locating tasks (Shepard & Hurwitz, 1984; Sholl, 1995).
They have shown that increasing misalignment results in
more errors and longer response times.

The existing research has established a map misalignment
effect, but it does not provide a process-level understanding
of map-use behavior. For this purpose, we need a valid
model of the cognitive processes that people employ when
they try to orient themselves using maps. We need to
understand how and why people make errors, and what
factors affect response times. The remainder of this paper
describes research that is targeted at producing detailed,
quantitative explanations of human performance on this
kind of spatial task. We have developed a computational
model that performs a version of a map-scene orientation
task (described below). It uses a strategy that is based on
previous work using a similar task (Gunzelmann &
Anderson, 2004; 2006). The model produces response times
and errors that are similar in important ways to data from
human participants performing the task.

Experiment

The task used here required participants to determine their
location on a map, based on information available in a
visual scene (see Figure 1). It involved a circular space
containing 10 identical objects. Each trial displayed an
egocentric perspective from a point on the edge of the space,
along with a map. All 10 objects were visible in both views,
and the center of the space is identified with a light (green)
dot on each view. The viewer was always facing toward the
center of the space (the light green dot visible in both
views), which allowed us to focus on understanding how
individuals determine their location in a space, without the
added complexity of an unknown orientation.

Surely, the task in Figure 1 represents a simplification of
naturalistic tasks, but it captures an important component of
them. Specifically, our task requires that local cues in the
environment be used to identify the current location on a
map. Therefore, this task provides an opportunity to look at
how people identify their location on a map in a controlled
way. This represents the first step in the process of using a
map to guide spatial decision making, a difficult process
that causes some trouble for many individuals.



Figure 1: Sample trial. Participants click on the map to
indicate where they believe the viewer is standing.

Method

There were 8 participants in this study (6 males and 2
females), with a mean age of 28.5 years. In each trial, a
space containing 10 objects was presented, as illustrated in
Figure 1. The locations of the objects were constrained by
dividing the space into quadrants and requiring that
quadrants opposite to each other contain equal numbers of
objects. For half of the trials, quadrants contained 1 or 4
objects (Figure 1); for the remaining trials, each quadrant
contained 2 or 3 objects. The location of each object within
the quadrant was random. To examine how the particular
locations of object clusters impacts performance, the axes
used to divide the space into quadrants on the map was
varied as well. By rotating those axes in 15° increments, it
was possible to create 12 unique orientations of the quadrant
boundaries (a rotation of 180 degrees produces a space with
an identical quadrant configuration as an unrotated space).

In addition to the different object configurations, the
viewer’s position was varied systematically to manipulate
the degree of misalignment between the two views. The
viewer’s location was varied in 15 degree intervals as well,
beginning directly at the bottom of the map (a total of 24
possible locations). We used this many locations to make it
difficult to determine that a discrete set of viewer locations
was being used. The final design, then, comprises 576 trials
(2 different distributions of objects within quadrants, 12
rotations of the quadrant orientation on the map, and 24
possible viewer locations in each of these cases).

For each trial, a unique space was generated that met the
constraints specified by the combination of levels for the
three factors. The experiment incorporated a drop-out
procedure, such that when a participant made an error on a
particular trial, that trial was presented later in the
experiment. The constraint on this was that the same trial
could not be presented twice in a row (unless it was the last
remaining trial in the experiment). As a result, participants
had to respond correctly to all 576 possible trials in order to
complete the experiment. Each time a trial was presented, a
new and unique space was generated. Thus, participants
never saw the same configuration of objects twice.

To complete each trial, participants were asked to click on
the location on the map where they believed the viewer was
standing based on the visual scene on the left. Clicks not
falling on the dark ring around the outside of the map were
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ignored. Responses that fell within 15 degrees of the correct
location were counted as correct. All other responses were
errors. The experiment was broken into blocks of twenty
trials, and participants were allowed to take a short break
between those blocks. After each block, a window appeared
indicating the number of trials completed, and how many of
them were correct. Progress through the experiment was
indicated after every 100 trials by showing what percentage
of the total trials had been successfully completed. The
experiment was further divided into two-hour sessions.
Participants required from two to four sessions to complete
the experiment, and were paid $10/hour for their efforts.

Results

The data from this experiment provide a rich source of
information about the difficulty of the task. However,
because of limited space, this paper will only address a
subset of these results. We will not discuss effects of object
clustering (i.e., groups of 2 & 3 versus 1 & 4), nor of the
orientation of the quadrant axes on the map. We will instead
focus on the influence of misalignment on performance.
Although previous research found that greater misalignment
tends to result in more frequent errors, that was not the case
here (Figure 2; all figures show standard errors for human
data). There was no significant effect of misalignment on
the proportion of errors, F(12,84)=0.71, p>.50. Also, the
slope of the best-fitting line for this effect (—0.0007) was not
significantly different from 0, £(7)=0.07, p>.90.
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Figure 2: Error rate (proportion) as a function of the
misalignment between the two views.
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Though misalignment did not affect errors, it had a
substantial effect on response times (Figure 3). The average
response time for correct responses across the entire
experiment was 13.55 s. However, when the two views were
aligned, the average response time was 10.50 s, increasing
to 15.28 s when the two views were maximally misaligned
(180°). This effect was highly significant, F(23,161)=4.75,
p<.01. In addition, when the data are averaged over left and
right misalignments (as shown in Figure 3), there is



evidence of a linear trend, F(1,7)=13.36, p<.01, in line with
previous research.
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Figure 3: Response time (s) as a function of the
misalignment between the two views.

Discussion

The results discussed above illustrate that misalignment has
an impact on performance, but only in terms of response
times. This result provides important information about
human performance on this kind of task. It suggests that
misalignment causes participants to take longer to establish
correspondence between elements in the visual scene and
elements on the map, which is a necessary first step in
making comparisons between the elements in the two views.
In the next section, we describe a computational cognitive
model that provides a quantitative account of human
performance on this task, including errors. In addition to the
data presented so far, other details of human performance
are explored to evaluate the mechanisms in the model in
more detail.

Computational Model

The model presented here was developed in the ACT-R
cognitive architecture (Atomic Components of Thought,
Rational; Anderson et al., 2004). ACT-R is a unified theory
of cognition that has been implemented as a running
simulation. In ACT-R, a fundamental distinction is made
between declarative and procedural knowledge. Declarative
memory stores facts and information in the form of chunks
with various slot values, while procedural memory stores
actions and operators as productions.

In addition to the declarative and procedural components
of ACT-R, there are other modules that have been
integrated. For instance, there are perceptual and motor
modules, which process stimuli and elicit actions, using
realistic timing constraints for these processes. These
modules allow ACT-R to interact directly with software-
based tasks, which is essential for tasks like the one used
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here. Each module has one or more buffers, which hold the
results of processing from within the module.

The overall architecture is a production system, where the
current state, defined by the contents of the buffers, is used
to select an appropriate action (production). This production
is executed (fired), which serves to create a new state by
modifying the buffers or making requests of the modules.
For instance, if a production makes a retrieval request of the
declarative module, the module will replace the contents of
the retrieval buffer with the result of the request, allowing
the production system access to it. In addition to the
symbolic level consisting of chunks and productions, ACT-
R’s behavior is influenced by subsymbolic equations that
govern quantities like declarative activation and production
utility. These values can be learned through experience,
based upon the statistics of a model’s interaction with the
environment. Some of these mechanisms are described next.

Relevant Architectural Mechanisms

The model described here is influenced to a large extent
by information in declarative memory. Productions are able
to make retrieval requests of the declarative module, which
may include constraints on what information is desired.
When a retrieval request is made, the probability that a
particular chunk, i, will be retrieved (i.e., deposited into the
retrieval buffer) is governed by the equation:

et

ZeMip/t
]

where M,, is the “match score” of chunk i in the context of
the slot values indicated in the request in production p, and
the summation is over all chunks, j, of the appropriate type
in declarative memory (e.g., numbers). The parameter ¢ is
the temperature, which represents the amount of noise in the
system. The match score of a chunk is defined as:

Prob, =

Mip= Ai - Dip+ e

In this equation, 4; is the activation of chunk 7, and D, is the
degree of mismatch between chunk i and the chunk
requested in production p. Using this match score as the
basis for chunk selection makes it possible that a chunk with
different slot values from the requested chunk will be
retrieved from memory. The addition of noise, ¢, to this
calculation means that it is not always the best-matching
chunk that is retrieved. The activation of a chunk, i, is a
combination of the base-level activation of the chunk, plus
an associative component that allows the current context to
influence the level of activation. Base level activation is
affected by experience — it is higher for chunks that are used
(retrieved) more often and more recently.



Finally, the degree of mismatch between two chunks, i
and j, is a measure of how different they are. In ACT-R, this
value is reflected in a “similarity” value. This mechanism is
important in this model in the context of numbers. At
various points, the model encodes numerical quantities,
which need to be compared to information stored in
declarative memory. Following previous research on this
topic (Lebiere, 2005), similarity between numbers in this
model decreases exponentially as a function of the
difference between them. The equation is:

1

Sim;=-1+ ————
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Here, x and y are the numerical values represented by
chunks i and j. This equation means that no penalty is
assessed when the numbers match (sim; = 0). However, as
the difference between the numbers increases, the mismatch
penalty increases. Similarity is also relevant to the model’s
decision about when to make a response. This aspect of the
model is described in the next section, which focuses on the
details of the model we have developed.

Model Implementation

The strategy implemented in the model was derived from
the strategy described in Gunzelmann & Anderson (2004)
for performing a somewhat different orientation task. The
main principles in that model, including hierarchical
encoding and a focus on groups, or clusters, or objects, were
used to generate a strategy for the task used here. The
strategy relies on using clusters of objects as a means of
organizing the space, which constrains how the model
solves of the task.

The model uses clusters to identify the area of the map
where it believes the viewer is located. This is accomplished
in several steps, which serve to progressively narrow the
potential response area. The first and second passes utilize
qualitative spatial relations between the viewer and groups
of objects in the visual scene. For each, the model identifies
a group of objects in the visual scene, and encodes whether
it is in the left, right, or center of the field of view. The
model then locates the corresponding group on the map, and
identifies a portion of the edge where the same qualitative
relation exists between the edge and the cluster.

The result of going through this process with two distinct
clusters is to identify a portion of the edge of the map that
satisfies the constraints imposed by the locations of both
clusters (the “overlap” of the areas). Much of the time, this
region will be small enough to allow for an accurate
response simply by clicking in the center of it. Indeed, one
of the options available to the model is to respond in this
manner. However, some of the time these constraints do not
sufficiently narrow the response region, and responding at
the center of the overlap area will result in an error. If the
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model chooses to further refine its estimate, it makes a third
pass, beginning with a quantitative estimate of the bearing
from the viewer to one of the clusters in the visual scene.
The model encodes this value and then estimates the bearing
to the corresponding cluster on the map from a location in
the overlap region on the edge. When the model finds a
location where the difference between these two estimates is
small enough, it responds by eliciting a mouse click at that
location.

Instance-Based Learning There are two critical decision
points in the model’s solution process. The first is deciding
whether to further refine the response using quantitative
estimates of bearing. The second is deciding whether each
estimated response is close enough. In both of these cases,
the decision is guided by an ACT-R implementation of
instance-based learning (cf. Gonzalez, Lerch, & Lebiere,
2003). This mechanism involves storing information about
the context and outcomes of past experiences, and using
those instances to guide current decision making.

Instance-based learning allows the model to become a bit
more accurate as it accumulates experience. This is because
each trial adds knowledge about the relationship between
the context and the outcome. The instances retrieved on a
given trial should come to more closely reflect the current
situation as the number of instances increases. This, in turn,
should lead to choices that more often reflect accurate
decision-making. Of course, noisy perceptual processes, the
noise included in the subsymbolic components of ACT-R
and variations in the stimuli mean that this learning never
leads to perfect performance.

At each decision point, the model essentially asks the
question: ‘In previous situations like this, what did | do and
what happened?’ For the first decision, retrieval of an
instance of a correct response where no refinement was
done is evidence that responding at the midpoint of the
overlap arc is a good strategy. Other retrievals suggest that
further refinement would be helpful. The critical piece of
information used to guide this retrieval is the size (in
degrees) of the overlap area on the map. This is a numerical
value that allows the similarities between the numbers to
influence which instance is actually retrieved (see above).

In the refinement stage, the model encodes an estimate of
the bearing to one of the clusters in the visual scene and
estimates the bearing from a potential response location to
the corresponding cluster on the map. Both of these values
are noisy, with the noise value randomly sampled from a
normal distribution with a mean of 0 and a standard
deviation that increases as a function of the bearing, to
reflect biases and error in perceptual encoding (e.g.,
Appelle, 1972). The model retrieves an instance from
memory based upon the difference between these two noisy
values. Again, this is a numerical value. Chunks in
declarative memory with more similar values are more
likely to be retrieved.



If the previous instance that is retrieved was correct, the
model responds at the estimated response location. If an
instance of an incorrect response is retrieved, the model
revises its estimate a little in the direction that serves to
reduce the difference, estimates a new bearing, and retrieves
a new instance based upon the resulting difference using the
updated information. This process repeats until the model
retrieves a previous correct response from memory.

Experience with the task teaches the model that smaller
overlap areas and smaller discrepancies between bearing
estimates are more likely to result in correct responses. This
allows the model to show a small increase in accuracy over
the course of the experiment (Figure 4). This application of
instance-based learning makes the mechanisms governing
the retrieval of chunks from declarative memory critical in
determining the model’s performance, particularly similarity
values. The more similar two values are, the more likely
they are to be confused. So, the model will tend to retrieve
instances that are more similar to the current context, but
often not exactly the same.
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Figure 4: Error rate (proportion) as a function of practice.

Parameters and Details The previous section illustrated
the importance of similarity between numbers in influencing
the model’s performance. There is one other similarity value
that plays an important role in the model’s performance.
This is the similarity between correct and incorrect, which
influences the decisions of whether to refine its response
and when to respond. Essentially, the similarity between
these two values provides the resolution to the speed-
accuracy tradeoff for the model. A greater focus on
retrieving a previous correct response reflects an emphasis
on speed, whereas focusing on previous errors places more
weight on accuracy. This parameter may provide a useful
way of understanding some of the individual differences in
performance on this task. The model here is moderately
biased toward accuracy. That is, at the decision points in the
model, it attempts to retrieve a previous error from memory,
with the similarity between correct and incorrect set to -
0.58 (about the same as the similarity between two numbers
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that are 1 unit apart). This parameter was estimated for the
current data set.

The only other ACT-R parameter that was explicitly
manipulated for this model was the execution time for one
of the productions. The default execution time in ACT-R is
50 ms. In the model, there is a production that performs
mental rotation to align the perspective of the viewer with
an estimated location on the map. This production was
given an execution time of 200 ms, to reflect the cognitive
effort required to perform this spatial transformation. The
need for such a parameter illustrates that the ACT-R
architecture lacks a strong theory of mental imagery and
performing spatial transformations. This is a focus of
current research. Hopefully, future versions of the model
will have a more elaborate mental image manipulation
system with mechanisms based on research in the area.

Model Performance

Although the trial drop-out procedure should have
motivated participants to be accurate, overall accuracy was
only 71.7%, ranging from 61.7% to 80.8% for individual
participants. While the model showed a smaller range of
accuracy (from 69.7% to 75.5%), it corresponds well in
terms of overall accuracy (72.7%). It would be possible to
capture the range of performance by using different
correctlincorrect similarity values for different model runs,
but that was not the goal of this effort.

As shown in Figure 2, misalignment was not a key
influence on accuracy. The slope of this effect in the model
is 0.0004 (compared to -0.0007 for the human data), and its
predictions are comparable to the human data
(RMSD=0.027). In addition, Figure 4 illustrates that
experience with the task did not provide much benefit in
terms of accuracy. Although the model generally matched
human accuracy throughout the experiment (r=.551;
RMSD=0.020), it showed gradual improvement over the
course of the experiment as a result of the instance-based
learning mechanism, whereas the human participants did
not.

Finally, it is possible to examine participants’ responses
as a function of how far off they were from the correct
location. Recall from the task description that responses that
were within 15 degrees of the viewer’s actual location were
counted as correct. If errors represent confusion about how
the spaces correspond, then they should be randomly
distributed in terms of discrepancy from the correct answer.
In contrast to that view, Figure 5 shows that the vast
majority of errors were relatively close to being correct.
This finding suggests that participants were able to establish
a relatively good qualitative sense of the viewer’s location,
but that they failed to get close enough in their quantitative
estimate. The model produces the same pattern (r=.991;
RMSD=0.010), which stems from the model’s use of
instance-based learning as well. Similar values tend to be
confused more easily. Therefore, when the model is close to
the correct answer, but not quite close enough, there is a



higher probability that the instance retrieved from memory
will reflect a previous correct response than in cases where
the estimated location is further from the correct region.
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In addition to the accuracy data, there were some
interesting results from the response time data. Participants
took a considerable amount of time to make a correct
response on some trials; up to 138 s! The average response
time for the human participants was 13.55 s per trial.
Interestingly, the model’s average response time was 13.57
s per trial, with a maximum response time of 135.67 s. In
contrast to the accuracy data, the response times were
greatly affected by the extent of the misalignment between
the views (Figure 3), and the model captures this trend
(r=.968; RMSD=0.518 s). The model produces this result
because it updates its frame of reference when it is
processing the map. As noted above, however, more work is
needed to increase the cognitive fidelity with which the
model accomplishes this kind of transformation.

Conclusion

The strategy in the current model is derived from an existing
model for a different task, completed by different
participants, yet it still produces performance that captures
major trends in the human data. In addition, this model
represents a substantial increase in sophistication over the
model described in Gunzelmann and Anderson (2004). This
model incorporates an instance-based learning mechanism,
which allows the model to both make errors and learn about
the task. Consequently we believe that this model is a better
representation of human performance in the task.

Finally, since the model gathers the information needed to
perform the task by shifting its visual attention to the
relevant areas of the display, it generates a set of predictions
about the eye movements of individuals as they solve the
task. In the experiment described above, eye movement data
were collected from participants as they performed the task.
These data provide a rich source of information about the
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moment-to-moment activities of individuals as they decide
on a solution. The predictions of the model will be validated
against these data, which will provide evidence about the
appropriateness of the current model as well as additional
constraints to be used in refining and extending the account
of performance it represents.
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