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Abstract

Previous modeling efforts have demonstrated a set of ACT-R
mechanisms that match the effects of fatigue caused by sleep
deprivation in humans. This paper describes an extension of
that research, which involved integrating biomathematical
models of alertness with this architectural representation of
how fatigue affects cognition. We used the newly integrated
models to account for the combined effects of circadian
rhythm and sleep deprivation on cognition as it relates to
performance in a sustained-attention task. Using this system,
we were able to accurately reproduce changes over time in a
set of key performance measures. This represents a significant
advance toward the goal of developing models that predict
performance when the cognitive system is fatigued.

Introduction

Performance in task environments is typically assumed to be
at normative levels; this assumption is made both in and out
of the laboratory. However, there is an increasing awareness
within the cognitive science community that many (often
subtle) factors can affect performance, including emotion
(Gratch & Marsella, 2004; Hudlicka, 2003), motivation
(Belavkin, 2001), stimulants (Ritter, et al., 2004), and
fatigue (Gunzelmann, et al., 2005). These factors, generally
called cognitive moderators, provide a deeper understanding
of the sources of variance in human performance. They also
give rise to a more complete view of the multi-faceted
nature of cognition and a more holistic perspective on the
total cognitive system. This paper reports progress toward
predictive models of the effects of fatigue' on cognition.

Fatigue and Human Error

There are many documented cases in which restricted sleep
or total sleep deprivation have been implicated as a cause of

"' In this paper, lack of sleep is equated with the induction of
fatigue; space limitations prohibit discussion of more subtle
aspects of this relationship.
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human error that led to accidents. Famous examples include
the grounding of the Exxon Valdez and the reactor
meltdown at Chernobyl (Caldwell, 2003). These examples,
while dramatic, highlight a key concern in this paper: sleep
deprivation can have drastic effects on performance.

Despite the potential for negative consequences,
occasional sleep deprivation and insufficient sleep for long
periods are widespread problems in our society. For
instance, despite regulations requiring minimum rest
periods, truck drivers often fail to obtain adequate sleep
(Dinges, 1995). Military missions frequently require
extended wakefulness due to distance or complexity, and
nighttime operations have become the norm rather than the
exception (Caldwell, 2003). Computational models that
make a priori predictions regarding the performance
consequences of sleep loss can be used to help mitigate
human error from fatigue, and can thus contribute to
improved safety and optimal readiness to perform.

Predicting Performance Under Sleep Deprivation

Predicting performance under sleep deprivation is important
for anyone attempting to design schedules that maximize
human usefulness under resource limitations. Furthermore,
researchers in human-computer interaction (HCI) and
human factors (HF) can use performance predictions when
designing equipment or software likely to be used under
fatigued conditions. Extensive laboratory research into
fatigue has produced large amounts of human performance
data. These data provide a good foundation for developing
and evaluating methods for modeling fatigued performance,
as illustrated in the present paper.

Biomathematical Models A number of biomathematical
models of fatigue have been developed within the
biomedical research community (see Van Dongen, 2004).
These models are available in software tools that allow the
user to construct a protocol consisting of periods of sleep
and wakefulness. Using this protocol, one can generate



estimates of relative cognitive functioning, or alertness. We
chose to use two such models, in order to compare their
relative efficacy and accuracy, and to provide flexibility for
future research. These models are the Circadian
Neurobehavioral Performance and Alertness (CNPA)
(Jewett & Kronauer, 1999), and the Sleep, Activity, Fatigue,
and Task Effectiveness (SAFTE) (Hursh et al., 2004).

The alertness measures produced by CNPA and SAFTE
can be seen as an inverse measure of fatigue. The models
combine sleep-loss-induced decreases in performance with a
cyclical model of circadian rhythm (see Figure 1). Van
Dongen (2004) reviewed a number of such models and
showed that they capture some of the important dynamics
associated with fatigue under conditions of total sleep
deprivation. However, the models cannot make predictions
about performance on specific tasks. The alertness measures
produced can be scaled or transformed to fit particular
datasets, but this is necessarily a post hoc process.
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Figure 1: Biomathematical model predictions of alertness,
across 88 hours of total sleep deprivation (TSD). The 88-hr
period began at 7:30 AM on the baseline day, as indicated in
the Figure.

Computational Models The long-term goal of this research
project is to provide a comprehensive computational
account of the effects of fatigue on performance; this will
allow a priori predictions of the impact of sleep loss in
specific tasks. Performance changes can be seen in process
measures (such as response times (RT) and errors), as well
as overall task outcome measures (i.e. successful
completion). Prior research (Gunzelmann et al., 2005)
established preliminary aspects of this method, identifying a
neurobehaviorally-inspired approach to fatiguing the ACT-
R cognitive architecture. This approach was validated
against human data at a temporal resolution of whole days
of sleep deprivation (" measures averaged within each day).
This paper describes an extension of the earlier research,
which adopts a fusion of modeling approaches, capitalizing
on the strengths of both biomathematical fatigue models and
computational cognitive models. We used the alertness
predictions from the biomathematical models to drive
changes to architectural parameters in ACT-R (described
below). This process produced model performance changes
that very closely replicated human performance changes,
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illustrating the ability to account for changes in performance
that occur over 88 hours of total sleep deprivation (TSD)
due to the combined impact of sleep loss and circadian
rhythm. In addition to fitting the data, we illustrate how
biomathematical models, like those that have been
developed to describe the effects of fatigue, can be
integrated into a cognitive architecture, to expand the
explanatory power of both systems.

Human Subject Test Protocol

Van Dongen and Dinges (2005) reported the empirical study
that produced the human data used here. Participants were
brought into the lab for three days of acclimation and
baseline recordings, where they were given 8 hours time in
bed per night (23:30 to 07:30). Beginning at 07:30 after the
third night in the lab, participants were kept awake
continuously for 88 hours. During all waking periods,
participants performed a 30-minute battery of computer-
based tests and questionnaires every two hours.

The focus of this paper is on data from one of the
computer tests, the psychomotor vigilance task (PVT,;
Dinges & Powell, 1985). The PVT is a sustained-attention
task that requires the participant to monitor a computer
screen for a stimulus, which appears at a known location but
at a random interval between 2 and 12 seconds. The
participant’s task is to press a response button as soon as the
stimulus appears. The critical measure is the latency of that
response, i.e., the reaction time. Participants are instructed
to respond as quickly as possible, while avoiding false
starts. In addition to sustained attention, this task captures
performance for a general class of tasks that require both
vision and manual action, and for which reaction time (RT)
is crucial. In the Van Dongen and Dinges (2005) study, 13
participants performed a 10-minute session of this task
every 2 hours. Across the 88 hours of sleep deprivation,
then, all participants completed 44 of these sessions,
providing a rich source of data on this task.

Following conventions in the fatigue research community,
reaction time data are characterized as follows: false starts
(button presses before the stimulus appears or within 150
ms of stimulus onset), alert responses (RTs from 150 ms to
500 ms after stimulus onset), lapses (RTs greater than 500
ms but less than 30 s), and sleep attacks (no response within
30 s of stimulus onset).

Computational Cognitive Model

The computational model described here is implemented in
the ACT-R cognitive architecture (Anderson et al., 2004).
The critical components of the ACT-R model for the PVT
include the perceptual and motor modules, as well as the
central production system. The perceptual and motor
modules in the architecture allow ACT-R to interact directly
with software implementations of experimental tasks,
incorporating realistic timing constraints on those
operations. In a task like the PVT this is vital, since
performance is almost entirely dependent on perceptual-
motor processes.

Cognition in ACT-R is represented by the serial execution
of productions. At any point, the state of the system is



represented by the contents of a set of buffers, which serve
as the interface between peripheral modules (like the
perceptual and motor modules), and the central production
system. Productions match against the contents of those
buffers. When a matching production is executed (fired), it
serves to modify the contents of the buffers directly, or to
make requests of particular modules (e.g., to act or observe),
which result in changes to buffer contents (thus producing a
new state).

Mechanisms for Fatigue

The central production system is the component of the
architecture that was targeted for defining mechanisms for
fatigue effects based on previous research in ACT-R and on
neurobehavioral research on the effects of fatigue. In this
section we describe those mechanisms. Gunzelmann et al.
(in press) provide a more detailed discussion of the
empirical and theoretical motivations underlying this
implementation of fatigue in ACT-R.

In the production system in ACT-R, productions are
matched against conditions (i.e., buffer contents) and one is
selected and fired, which generally produces some change.
Production selection is controlled by the following equation,
which is used to calculate a utility value (U) for each
production:

U=PG-C+e¢

In this equation, P is the probability of achieving the goal if
that production is used (by default, P=1), and C is the
anticipated cost. & is a noise parameter that produces
stochasticity in the selection process. G is a parameter that
has been cast as “motivation” or “arousal” (Belavkin, 2001;
Jongman, 1998), and we conceptualize it as a representation
of alertness.

In our approach, the value of G is decreased to represent
lower levels of alertness within the architecture. This has the
effect of lowering the utility value for any production where
P>0. As described below, the initial value of G for each
session is estimated using the biomathematical models of
fatigue.

A utility value (U) is calculated for each production that
matches the current state (that is, every viable production).
The production with the highest value for U is selected. This
production is executed, provided that the value for U
exceeds the utility threshold, 7. The value for 7, also varies
in the model, representing attempts to compensate for
fatigue. As alertness decreases, the value of T, decreases,
which makes it easier for productions to exceed the
threshold and fire. In cases where no production exceeds T,
no cognitive actions occur on that cycle, producing a
“micro-lapse” lasting for approximately 50 ms. Decreasing
G makes micro-lapses more likely to occur. An increasingly
long series of micro-lapses produces longer reaction times
in the PVT (including RTs categorized as lapses, as well as
sleep attacks).

The last mechanism in the model for representing the
impact of fatigue relates to the G parameter. As noted, we
take this value to represent alertness. The micro-lapses that
occur when no productions exceed 7, are indicative of
decreasing alertness (falling asleep). As alertness decreases,
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the likelihood of an inactive cycle increases. To capture this
phenomenon, the value of G is decremented on cognitive
cycles where no productions exceed T,. Each time this
occurs, the value of G is reduced by 0352 As a result, the
model becomes progressively less likely to execute an
action. The noise value used in the utility calculation
introduces stochasticity in each cycle. The value of G is
restored to its initial value (estimated from the
biomathematical models) at the beginning of each simulated
trial.

The most important aspect of this approach is that it
makes full use of ACT-R’s subsymbolic computational
layer to generate fatigue. This has two significant
advantages. First, the mechanisms can be generalized to
other ACT-R models, for other tasks (although parameter
values and additional controls may be necessary). Second,
the knowledge within the model itself is not modified to
simulate fatigue; this simplifies model development. It also
reflects the more cognitively plausible explanation that the
effects of fatigue occur at the architectural level of
cognition, rather than the knowledge or symbolic level.
While fatigue may result in changes in how knowledge is
used (e.g., strategy shifts), it does not cause changes in the
knowledge itself.

Model Dynamics

The fatigue mechanisms just described interact with default
ACT-R mechanisms and the knowledge incorporated into
the model to produce the task performance discussed below.
At any point in the PVT task, the model has three options
available (italics indicate productions in the model). First,
the model may behave appropriately, explicitly waiting
during the delay interval, then attending-to and responding-
to the stimulus once it appears.

Another production represents the capacity to just-
respond, regardless of whether the stimulus has been
presented or not. This production can fire at any point in the
task, producing false starts® in cases when it fires before the
stimulus appears or within 150 ms of stimulus onset.
Because it is unlikely to result in a correct response, it is
given a probability of success (P) of 0*; thus the utility of
the just-respond production is immune to changes in G.

Finally, the model may fail to execute any cognitive
action at all on any given cycle. If neither the appropriate
action nor the just-respond production have values of U that
exceed T,, then no productions are fired on that cycle, and G
is decremented as described above. With lower values of G,
this becomes more likely. The result is longer reaction times
and increasing proportions of responses that are classified as
lapses or sleep attacks.

2 This G-reduction parameter is a new architectural claim. There is
no previously existing default or common value for this parameter.
Its value was selected to best fit the observed data.

* An inhibition-lowering approach to generate false starts may be
more justifiable, but architectural limitations make this infeasible
at present, and it would not significantly alter the results.

4 While the probability of success is not in fact 0, a number slightly
above 0 would produce the same results.



An appropriate side effect of decreasing G is that the
architecture becomes increasingly likely to execute low-cost
alternatives, focusing less on the probability of success. In
the model, this produces a higher probability of committing
a false start. This is because decreased values for G serve to
diminish differences in U between the appropriate action
(where P=1) and the inappropriate action (P=0).

Using Alertness Predictions to Drive Parameters

The goal of this research is to enable predictive modeling of
the effects of fatigue. Since the biomathematical models
make a priori characterizations of global changes in
performance as a function of sleep loss, it makes sense to
utilize those predictions to control parameter values for the
fatigue mechanisms that have been introduced in ACT-R.

Our research hypothesis was that, if the fatigue levels
accurately measure relative performance, then a simple
linear scaling should be possible to map alertness to the
fatigue-controlling parameters of ACT-R (described above).
As noted, decreasing G results in a lower likelihood of any
production firing; this is consistent with increasing fatigue.
Also, because individuals are motivated to maintain
performance levels in these protocols (and are provided with
trial-by-trial performance feedback in the PVT), we include
a decrease in the utility threshold (7,) to represent
compensatory behavior. This allows lower utility values to
result in the execution of a production in the model.

To establish an initial link between parameter values in
ACT-R and alertness measures in the biomathematical
models, we identified the session during the experiment
where alertness measures were highest and the session
where they were lowest. For each of these, we identified the
best fitting values for G and T,, We used those values to set
the high and low boundaries for G and T7,. Finally, we
combined the alertness for each point into a linear scaling
equation that produced an ACT-R parameter value:

Gt = At 'Gr + Gmin
and
Tut = At .T'ur +Tumin
where G, is the value for G at time ¢, 4, is the calculated
alertness for time ¢ (from either CNPA or SAFTE), G, is the
range of G (Guox — Guin), and G,;, and G, are the
minimum & maximum values for G. The second formula is
identical, except substituting the 7, for G in inputs and
outputs. Again, our minima and maxima for these
parameters come from identifying the best-fitting
parameters for the sessions where the biomathematical
predictions of alertness were highest and lowest. The values
used in the fits described below are presented in Table 1.

Table 1: Parameter values used to calculate G and 7.

Parameter G T,
Minimum 1.54 1.68
Maximum 2.02 1.88
Range 48 2
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Once the predicted values for G and 7, were calculated
for each given time in the experiment, we ran the model
using those parameter values. The performance predictions
from these model runs (based on 100 repetitions of a 10-
minute PVT session) were then compared to the averaged
human participant data, as described in the next section.

Model Performance

As noted above, the human participants were sleep-
deprived for 88 hours and tested every 2 hours during that
time, resulting in 44 test points. We compared the human
performance data for each session with predictions from the
ACT-R model, using both CNPA and SAFTE estimates of
alertness. The performance measures included false starts,
lapse frequency, median alert reaciton times, and sleep
attacks. Figures 2-5 compare the performance of the ACT-R
model to human participant performance for each of these
dependent measures for both models of alertness.
Correlations and RMSDs for each of the dependent
measures are presented in Table 2.

Table 2: Quantitative comparison of ACT-R model
predictions to human data.

Dependent ACT-R using ACT-R using
Measure CNPA SAFTE
r RMSD r RMSD
False Starts 1 .022 .81 .019
Median Alert RT | .70 17.82 .67 16.57
Lapses .88 .055 .83 .060
Sleep Attacks 72 .014 .83 .026
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Figure 2: Human data and ACT-R predictions of false starts
based on CNPA and SAFTE across 88 hours TSD.

Circadian rhythm actually becomes more pronounced as
sleep deprivation continues. This is illustrated in Figure 1 by
the alertness predictions and is borne out in the human
performance data seen in Figures 2-5. For all performance
measures, we see a precipitous fall (in both model and
empirical data) at the expected nadir (early morning),
followed by an improvement in performance. In fact, the
worst performance (in most performance measures) is not,
as one might expect, near the end of the experiment, but



early in the morning on the last day; this is approximately
16 hours before the maximum amount of sleep deprivation.
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Figure 3: Human data and ACT-R predictions of median
alert reaction times based on CNPA and SAFTE across 88

hours TSD.
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Figure 4: Human data and ACT-R predictions of lapses
based on CNPA and SAFTE across 88 hours TSD.
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Figure 5: Human data and ACT-R predictions of sleep
attacks based on CNPA and SAFTE across 88 hours TSD.

Figure 4 shows the ability of our approach to predict
lapses accurately. This can been seen in the high correlation
and low RMSD for lapses shown in Table 2. The trends for
false starts (Figure 2) and median reaction time (Figure 3)
are also captured by the model. These results illustrate the
importance of having a model that actually performs the
task. Biomathematical models must be fit to each of the
dependent measures independently, while the model makes
relatively accurate predictions across dependent measures
using the same model with the same parameter values.

Sleep attacks (Figure 5) turned out to be more difficult to
predict, due in part to a lack of sleep attacks early in the
experiment, followed by a large increase late in the
experiment. Although the model captured the overall
increase and the qualitative trend fairly well, the paucity and
irregularity of sleep attacks make this performance measure
specifically susceptible to model misfit resulting merely
from stochastic variability. This is exacerbated by the
relatively small sample size (N=13).

Overall, these results indicate that it is possible to predict
performance on the PVT with a relatively high degree of
accuracy. The model successfully captured the performance
of human participants on this task, with a degree of detail
that has not been presented in any other attempt at modeling
PVT data under conditions of fatigue.

Conclusion and Future Directions

The mechanisms in the model that generate the effects on
performance may seem, at first glance, to be complicated.
They involve a cognitive architecture (ACT-R), a task
model (PVT), two ACT-R parameters (G and T,), and a
biomathematical model of fatigue (CNPA or SAFTE).
However, this sophisticated approach is necessary in order
capture the dynamics of performance with fatigue as a
moderator. In addition, all of the components of this
approach are supported by empirical and theoretical
evidence (Gunzelmann et al., in press).

There are limitations to the model described here and
there remains work to be done to improve on it. For
instance, although the model does replicate the general ebb
and flow of performance, it does not always capture
smaller-grained  variations, which exposes current
limitations in mathematical models of alertness. In addition,
theoretically grounded values and ranges for parameters
(including G-decrement) will need to be determined in the
future. Despite these limitations, this model represents a
significant advance toward predictive modeling of the
effects of fatigue on cognition. The biomathematical models
of fatigue predict values for the control parameters in ACT-
R, while ACT-R provides us with an implementation of the
mechanisms of human cognition, complete with
subsymbolic mechanisms that allow us to control aspects of
the processing that occurs, By combining these approaches
we have created a more complete, mechanistic explanation
of how sleepiness moderates cognitive effectiveness.

This research extends and provides additional validation
for the model of fatigued ACT-R produced by Gunzelmann
et al. (2005; in press). The model is able to accurately



reproduce the circadian ebb and flow of human
performance, not merely composite performance over
daylong periods. The mechanisms that have been developed
are the initial step in achieving a larger research goal of
predicting the effects of fatigue on human task performance.
This work also extends and helps to validate the ACT-R
theory and architecture, and the biomathematical models of
fatigue as well.

A critical contribution of this research is the integration
across several disciplines of research to support the overall
account. ACT-R could not simply be combined with the
biomathematical models to produce these predictions. A
theory and method for integration was also necessary. The
different disciplines of origin of the tools and theories used
(ACT-R, biomathematical fatigue models, neurobehavioral
research) might suggest a potential for incompatibility.
However, integrated approaches are imperative for cognitive
science precisely because of its interdisciplinary
foundations. The successful integration of these tools and
methods also gives credence to a congruence between the
respective underlying theories. This work fits well into the
ongoing mission of cognitive science to study various
aspects of cognition from the perspective of multiple
disciplines.

From an applied perspective, the success of this research
so far is encouraging. The ability to reproduce much of the
variance in human performance under conditions of total
sleep deprivation suggests that it may be possible to make
informed decisions about sleep protocols with fewer
expensive human subject experiments. Further work will
extend this approach to individual performance, additional
tasks, and different sleep deprivation and restriction
protocols (see Van Dongen et al., 2003). One issue we wish
to address with the current method is that it requires data to
establish the relationship between the ACT-R parameter G
and alertness as predicted by the biomathematical models.
The only way to acquire bottom-end data is to perform
controlled studies, and as part of the value for a predictive
model comes from obviating such studies, further work on
this problem will be necessary.
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