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Abstract 

Previous modeling efforts have demonstrated a set of ACT-R 
mechanisms that match the effects of fatigue caused by sleep 
deprivation in humans. This paper describes an extension of 
that research, which involved integrating biomathematical 
models of alertness with this architectural representation of 
how fatigue affects cognition. We used the newly integrated 
models to account for the combined effects of circadian 
rhythm and sleep deprivation on cognition as it relates to 
performance in a sustained-attention task. Using this system, 
we were able to accurately reproduce changes over time in a 
set of key performance measures. This represents a significant 
advance toward the goal of developing models that predict 
performance when the cognitive system is fatigued. 

Introduction 
Performance in task environments is typically assumed to be 
at normative levels; this assumption is made both in and out 
of the laboratory. However, there is an increasing awareness 
within the cognitive science community that many (often 
subtle) factors can affect performance, including emotion 
(Gratch & Marsella, 2004; Hudlicka, 2003), motivation 
(Belavkin, 2001), stimulants (Ritter, et al., 2004), and 
fatigue (Gunzelmann, et al., 2005). These factors, generally 
called cognitive moderators, provide a deeper understanding 
of the sources of variance in human performance. They also 
give rise to a more complete view of the multi-faceted 
nature of cognition and a more holistic perspective on the 
total cognitive system. This paper reports progress toward 
predictive models of the effects of fatigue1 on cognition. 

Fatigue and Human Error 
There are many documented cases in which restricted sleep 
or total sleep deprivation have been implicated as a cause of 

                                                             
1 In this paper, lack of sleep is equated with the induction of 
fatigue; space limitations prohibit discussion of more subtle 
aspects of this relationship. 

human error that led to accidents. Famous examples include 
the grounding of the Exxon Valdez and the reactor 
meltdown at Chernobyl (Caldwell, 2003). These examples, 
while dramatic, highlight a key concern in this paper: sleep 
deprivation can have drastic effects on performance. 

Despite the potential for negative consequences, 
occasional sleep deprivation and insufficient sleep for long 
periods are widespread problems in our society. For 
instance, despite regulations requiring minimum rest 
periods, truck drivers often fail to obtain adequate sleep 
(Dinges, 1995). Military missions frequently require 
extended wakefulness due to distance or complexity, and 
nighttime operations have become the norm rather than the 
exception (Caldwell, 2003). Computational models that 
make a priori predictions regarding the performance 
consequences of sleep loss can be used to help mitigate 
human error from fatigue, and can thus contribute to 
improved safety and optimal readiness to perform.  

Predicting Performance Under Sleep Deprivation 
Predicting performance under sleep deprivation is important 
for anyone attempting to design schedules that maximize 
human usefulness under resource limitations. Furthermore, 
researchers in human-computer interaction (HCI) and 
human factors (HF) can use performance predictions when 
designing equipment or software likely to be used under 
fatigued conditions. Extensive laboratory research into 
fatigue has produced large amounts of human performance 
data. These data provide a good foundation for developing 
and evaluating methods for modeling fatigued performance, 
as illustrated in the present paper.  

Biomathematical Models A number of biomathematical 
models of fatigue have been developed within the 
biomedical research community (see Van Dongen, 2004). 
These models are available in software tools that allow the 
user to construct a protocol consisting of periods of sleep 
and wakefulness. Using this protocol, one can generate 
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estimates of relative cognitive functioning, or alertness. We 
chose to use two such models, in order to compare their 
relative efficacy and accuracy, and to provide flexibility for 
future research. These models are the Circadian 
Neurobehavioral Performance and Alertness (CNPA) 
(Jewett & Kronauer, 1999), and the Sleep, Activity, Fatigue, 
and Task Effectiveness (SAFTE) (Hursh et al., 2004). 

The alertness measures produced by CNPA and SAFTE 
can be seen as an inverse measure of fatigue. The models 
combine sleep-loss-induced decreases in performance with a 
cyclical model of circadian rhythm (see Figure 1). Van 
Dongen (2004) reviewed a number of such models and 
showed that they capture some of the important dynamics 
associated with fatigue under conditions of total sleep 
deprivation. However, the models cannot make predictions 
about performance on specific tasks. The alertness measures 
produced can be scaled or transformed to fit particular 
datasets, but this is necessarily a post hoc process. 
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Figure 1: Biomathematical model predictions of alertness, 
across 88 hours of total sleep deprivation (TSD). The 88-hr 

period began at 7:30 AM on the baseline day, as indicated in 
the Figure. 

Computational Models The long-term goal of this research 
project is to provide a comprehensive computational 
account of the effects of fatigue on performance; this will 
allow a priori predictions of the impact of sleep loss in 
specific tasks. Performance changes can be seen in process 
measures (such as response times (RT) and errors), as well 
as overall task outcome measures (i.e. successful 
completion). Prior research (Gunzelmann et al., 2005) 
established preliminary aspects of this method, identifying a 
neurobehaviorally-inspired approach to fatiguing the ACT-
R cognitive architecture. This approach was validated 
against human data at a temporal resolution of whole days 
of sleep deprivation (` measures averaged within each day). 

This paper describes an extension of the earlier research, 
which adopts a fusion of modeling approaches, capitalizing 
on the strengths of both biomathematical fatigue models and 
computational cognitive models. We used the alertness 
predictions from the biomathematical models to drive 
changes to architectural parameters in ACT-R (described 
below). This process produced model performance changes 
that very closely replicated human performance changes, 

illustrating the ability to account for changes in performance 
that occur over 88 hours of total sleep deprivation (TSD) 
due to the combined impact of sleep loss and circadian 
rhythm. In addition to fitting the data, we illustrate how 
biomathematical models, like those that have been 
developed to describe the effects of fatigue, can be 
integrated into a cognitive architecture, to expand the 
explanatory power of both systems.  

Human Subject Test Protocol 
Van Dongen and Dinges (2005) reported the empirical study 
that produced the human data used here. Participants were 
brought into the lab for three days of acclimation and 
baseline recordings, where they were given 8 hours time in 
bed per night (23:30 to 07:30). Beginning at 07:30 after the 
third night in the lab, participants were kept awake 
continuously for 88 hours. During all waking periods, 
participants performed a 30-minute battery of computer-
based tests and questionnaires every two hours. 

The focus of this paper is on data from one of the 
computer tests, the psychomotor vigilance task (PVT; 
Dinges & Powell, 1985). The PVT is a sustained-attention 
task that requires the participant to monitor a computer 
screen for a stimulus, which appears at a known location but 
at a random interval between 2 and 12 seconds. The 
participant’s task is to press a response button as soon as the 
stimulus appears. The critical measure is the latency of that 
response, i.e., the reaction time. Participants are instructed 
to respond as quickly as possible, while avoiding false 
starts. In addition to sustained attention, this task captures 
performance for a general class of tasks that require both 
vision and manual action, and for which reaction time (RT) 
is crucial. In the Van Dongen and Dinges (2005) study, 13 
participants performed a 10-minute session of this task 
every 2 hours. Across the 88 hours of sleep deprivation, 
then, all participants completed 44 of these sessions, 
providing a rich source of data on this task. 

Following conventions in the fatigue research community, 
reaction time data are characterized as follows: false starts 
(button presses before the stimulus appears or within 150 
ms of stimulus onset), alert responses (RTs from 150 ms to 
500 ms after stimulus onset), lapses (RTs greater than 500 
ms but less than 30 s), and sleep attacks (no response within 
30 s of stimulus onset). 

Computational Cognitive Model 
The computational model described here is implemented in 
the ACT-R cognitive architecture (Anderson et al., 2004). 
The critical components of the ACT-R model for the PVT 
include the perceptual and motor modules, as well as the 
central production system. The perceptual and motor 
modules in the architecture allow ACT-R to interact directly 
with software implementations of experimental tasks, 
incorporating realistic timing constraints on those 
operations. In a task like the PVT this is vital, since 
performance is almost entirely dependent on perceptual-
motor processes. 

Cognition in ACT-R is represented by the serial execution 
of productions. At any point, the state of the system is 
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represented by the contents of a set of buffers, which serve 
as the interface between peripheral modules (like the 
perceptual and motor modules), and the central production 
system. Productions match against the contents of those 
buffers. When a matching production is executed (fired), it 
serves to modify the contents of the buffers directly, or to 
make requests of particular modules (e.g., to act or observe), 
which result in changes to buffer contents (thus producing a 
new state). 

Mechanisms for Fatigue 
The central production system is the component of the 
architecture that was targeted for defining mechanisms for 
fatigue effects based on previous research in ACT-R and on 
neurobehavioral research on the effects of fatigue. In this 
section we describe those mechanisms. Gunzelmann et al. 
(in press) provide a more detailed discussion of the 
empirical and theoretical motivations underlying this 
implementation of fatigue in ACT-R. 

In the production system in ACT-R, productions are 
matched against conditions (i.e., buffer contents) and one is 
selected and fired, which generally produces some change. 
Production selection is controlled by the following equation, 
which is used to calculate a utility value (U) for each 
production: 

!+"= CPGU  
In this equation, P is the probability of achieving the goal if 
that production is used (by default, P=1), and C is the 
anticipated cost. ε is a noise parameter that produces 
stochasticity in the selection process. G is a parameter that 
has been cast as “motivation” or “arousal” (Belavkin, 2001; 
Jongman, 1998), and we conceptualize it as a representation 
of alertness. 

In our approach, the value of G is decreased to represent 
lower levels of alertness within the architecture. This has the 
effect of lowering the utility value for any production where 
P>0. As described below, the initial value of G for each 
session is estimated using the biomathematical models of 
fatigue. 

A utility value (U) is calculated for each production that 
matches the current state (that is, every viable production). 
The production with the highest value for U is selected. This 
production is executed, provided that the value for U 
exceeds the utility threshold, Tu. The value for Tu also varies 
in the model, representing attempts to compensate for 
fatigue. As alertness decreases, the value of Tu decreases, 
which makes it easier for productions to exceed the 
threshold and fire. In cases where no production exceeds Tu, 
no cognitive actions occur on that cycle, producing a 
“micro-lapse” lasting for approximately 50 ms. Decreasing 
G makes micro-lapses more likely to occur. An increasingly 
long series of micro-lapses produces longer reaction times 
in the PVT (including RTs categorized as lapses, as well as 
sleep attacks). 

The last mechanism in the model for representing the 
impact of fatigue relates to the G parameter. As noted, we 
take this value to represent alertness. The micro-lapses that 
occur when no productions exceed Tu are indicative of 
decreasing alertness (falling asleep). As alertness decreases, 

the likelihood of an inactive cycle increases. To capture this 
phenomenon, the value of G is decremented on cognitive 
cycles where no productions exceed Tu. Each time this 
occurs, the value of G is reduced by .0352. As a result, the 
model becomes progressively less likely to execute an 
action. The noise value used in the utility calculation 
introduces stochasticity in each cycle.  The value of G is 
restored to its initial value (estimated from the 
biomathematical models) at the beginning of each simulated 
trial. 

The most important aspect of this approach is that it 
makes full use of ACT-R’s subsymbolic computational 
layer to generate fatigue. This has two significant 
advantages. First, the mechanisms can be generalized to 
other ACT-R models, for other tasks (although parameter 
values and additional controls may be necessary). Second, 
the knowledge within the model itself is not modified to 
simulate fatigue; this simplifies model development. It also 
reflects the more cognitively plausible explanation that the 
effects of fatigue occur at the architectural level of 
cognition, rather than the knowledge or symbolic level. 
While fatigue may result in changes in how knowledge is 
used (e.g., strategy shifts), it does not cause changes in the 
knowledge itself.  

Model Dynamics 
The fatigue mechanisms just described interact with default 
ACT-R mechanisms and the knowledge incorporated into 
the model to produce the task performance discussed below. 
At any point in the PVT task, the model has three options 
available (italics indicate productions in the model). First, 
the model may behave appropriately, explicitly waiting 
during the delay interval, then attending-to and responding-
to the stimulus once it appears.  

Another production represents the capacity to just-
respond, regardless of whether the stimulus has been 
presented or not. This production can fire at any point in the 
task, producing false starts3 in cases when it fires before the 
stimulus appears or within 150 ms of stimulus onset. 
Because it is unlikely to result in a correct response, it is 
given a probability of success (P) of 04; thus the utility of 
the just-respond production is immune to changes in G. 

Finally, the model may fail to execute any cognitive 
action at all on any given cycle. If neither the appropriate 
action nor the just-respond production have values of U that 
exceed Tu, then no productions are fired on that cycle, and G 
is decremented as described above. With lower values of G, 
this becomes more likely. The result is longer reaction times 
and increasing proportions of responses that are classified as 
lapses or sleep attacks. 

                                                             
2 This G-reduction parameter is a new architectural claim. There is 
no previously existing default or common value for this parameter. 
Its value was selected to best fit the observed data. 
3 An inhibition-lowering approach to generate false starts may be 
more justifiable, but architectural limitations make this infeasible 
at present, and it would not significantly alter the results. 
4 While the probability of success is not in fact 0, a number slightly 
above 0 would produce the same results. 
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An appropriate side effect of decreasing G is that the 
architecture becomes increasingly likely to execute low-cost 
alternatives, focusing less on the probability of success. In 
the model, this produces a higher probability of committing 
a false start. This is because decreased values for G serve to 
diminish differences in U between the appropriate action 
(where P=1) and the inappropriate action (P=0). 

Using Alertness Predictions to Drive Parameters 
The goal of this research is to enable predictive modeling of 
the effects of fatigue. Since the biomathematical models 
make a priori characterizations of global changes in 
performance as a function of sleep loss, it makes sense to 
utilize those predictions to control parameter values for the 
fatigue mechanisms that have been introduced in ACT-R. 

Our research hypothesis was that, if the fatigue levels 
accurately measure relative performance, then a simple 
linear scaling should be possible to map alertness to the 
fatigue-controlling parameters of ACT-R (described above). 
As noted, decreasing G results in a lower likelihood of any 
production firing; this is consistent with increasing fatigue. 
Also, because individuals are motivated to maintain 
performance levels in these protocols (and are provided with 
trial-by-trial performance feedback in the PVT), we include 
a decrease in the utility threshold (Tu) to represent 
compensatory behavior. This allows lower utility values to 
result in the execution of a production in the model. 

To establish an initial link between parameter values in 
ACT-R and alertness measures in the biomathematical 
models, we identified the session during the experiment 
where alertness measures were highest and the session 
where they were lowest. For each of these, we identified the 
best fitting values for G and Tu, We used those values to set 
the high and low boundaries for G and Tu. Finally, we 
combined the alertness for each point into a linear scaling 
equation that produced an ACT-R parameter value: 

min
GGAG

rtt
+!=  

and 

min
u

r
u

tt
u TTAT +!=  

where Gt is the value for G at time t, At is the calculated 
alertness for time t (from either CNPA or SAFTE), Gr is the 
range of G (Gmax – Gmin), and Gmin and Gmax are the 
minimum & maximum values for G. The second formula is 
identical, except substituting the Tu for G in inputs and 
outputs. Again, our minima and maxima for these 
parameters come from identifying the best-fitting 
parameters for the sessions where the biomathematical 
predictions of alertness were highest and lowest. The values 
used in the fits described below are presented in Table 1. 

 
Table 1:  Parameter values used to calculate G and Tu. 

 
Parameter G Tu 

Minimum 1.54 1.68 
Maximum 2.02 1.88 
Range .48 .2 

 

Once the predicted values for G and Tu were calculated 
for each given time in the experiment, we ran the model 
using those parameter values. The performance predictions 
from these model runs (based on 100 repetitions of a 10-
minute PVT session) were then compared to the averaged 
human participant data, as described in the next section. 

Model Performance 
As noted above, the human participants were sleep-

deprived for 88 hours and tested every 2 hours during that 
time, resulting in 44 test points. We compared the human 
performance data for each session with predictions from the 
ACT-R model, using both CNPA and SAFTE estimates of 
alertness. The performance measures included false starts, 
lapse frequency, median alert reaciton times, and sleep 
attacks. Figures 2-5 compare the performance of the ACT-R 
model to human participant performance for each of these 
dependent measures for both models of alertness. 
Correlations and RMSDs for each of the dependent 
measures are presented in Table 2. 

 
Table 2:  Quantitative comparison of ACT-R model 

predictions to human data. 
 

ACT-R using 
CNPA 

ACT-R using 
SAFTE 

Dependent 
Measure 

r RMSD r RMSD 
False Starts .71 .022 .81 .019 

Median Alert RT .70 17.82 .67 16.57 
Lapses .88 .055 .83 .060 

Sleep Attacks .72 .014 .83 .026 
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Figure 2: Human data and ACT-R predictions of false starts 
based on CNPA and SAFTE across 88 hours TSD. 

Circadian rhythm actually becomes more pronounced as 
sleep deprivation continues. This is illustrated in Figure 1 by 
the alertness predictions and is borne out in the human 
performance data seen in Figures 2-5. For all performance 
measures, we see a precipitous fall (in both model and 
empirical data) at the expected nadir (early morning), 
followed by an improvement in performance. In fact, the 
worst performance (in most performance measures) is not, 
as one might expect, near the end of the experiment, but 
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early in the morning on the last day; this is approximately 
16 hours before the maximum amount of sleep deprivation. 
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Figure 3: Human data and ACT-R predictions of median 
alert reaction times based on CNPA and SAFTE across 88 

hours TSD. 
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Figure 4: Human data and ACT-R predictions of lapses 
based on CNPA and SAFTE across 88 hours TSD. 
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Figure 5: Human data and ACT-R predictions of sleep 
attacks based on CNPA and SAFTE across 88 hours TSD. 

Figure 4 shows the ability of our approach to predict 
lapses accurately. This can been seen in the high correlation 
and low RMSD for lapses shown in Table 2. The trends for 
false starts (Figure 2) and median reaction time (Figure 3) 
are also captured by the model. These results illustrate the 
importance of having a model that actually performs the 
task. Biomathematical models must be fit to each of the 
dependent measures independently, while the model makes 
relatively accurate predictions across dependent measures 
using the same model with the same parameter values. 

Sleep attacks (Figure 5) turned out to be more difficult to 
predict, due in part to a lack of sleep attacks early in the 
experiment, followed by a large increase late in the 
experiment. Although the model captured the overall 
increase and the qualitative trend fairly well, the paucity and 
irregularity of sleep attacks make this performance measure 
specifically susceptible to model misfit resulting merely 
from stochastic variability. This is exacerbated by the 
relatively small sample size (N=13).  

Overall, these results indicate that it is possible to predict 
performance on the PVT with a relatively high degree of 
accuracy. The model successfully captured the performance 
of human participants on this task, with a degree of detail 
that has not been presented in any other attempt at modeling 
PVT data under conditions of fatigue.  

Conclusion and Future Directions 
The mechanisms in the model that generate the effects on 
performance may seem, at first glance, to be complicated. 
They involve a cognitive architecture (ACT-R), a task 
model (PVT), two ACT-R parameters (G and Tu), and a 
biomathematical model of fatigue (CNPA or SAFTE).  
However, this sophisticated approach is necessary in order 
capture the dynamics of performance with fatigue as a 
moderator. In addition, all of the components of this 
approach are supported by empirical and theoretical 
evidence (Gunzelmann et al., in press). 

There are limitations to the model described here and 
there remains work to be done to improve on it. For 
instance, although the model does replicate the general ebb 
and flow of performance, it does not always capture 
smaller-grained variations, which exposes current 
limitations in mathematical models of alertness. In addition, 
theoretically grounded values and ranges for parameters 
(including G-decrement) will need to be determined in the 
future. Despite these limitations, this model represents a 
significant advance toward predictive modeling of the 
effects of fatigue on cognition. The biomathematical models 
of fatigue predict values for the control parameters in ACT-
R, while ACT-R provides us with an implementation of the 
mechanisms of human cognition, complete with 
subsymbolic mechanisms that allow us to control aspects of 
the processing that occurs, By combining these approaches 
we have created a more complete, mechanistic explanation 
of how sleepiness moderates cognitive effectiveness. 

This research extends and provides additional validation 
for the model of fatigued ACT-R produced by Gunzelmann 
et al. (2005; in press). The model is able to accurately 
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reproduce the circadian ebb and flow of human 
performance, not merely composite performance over 
daylong periods. The mechanisms that have been developed 
are the initial step in achieving a larger research goal of 
predicting the effects of fatigue on human task performance. 
This work also extends and helps to validate the ACT-R 
theory and architecture, and the biomathematical models of 
fatigue as well.  

A critical contribution of this research is the integration 
across several disciplines of research to support the overall 
account. ACT-R could not simply be combined with the 
biomathematical models to produce these predictions. A 
theory and method for integration was also necessary. The 
different disciplines of origin of the tools and theories used 
(ACT-R, biomathematical fatigue models, neurobehavioral 
research) might suggest a potential for incompatibility. 
However, integrated approaches are imperative for cognitive 
science precisely because of its interdisciplinary 
foundations. The successful integration of these tools and 
methods also gives credence to a congruence between the 
respective underlying theories. This work fits well into the 
ongoing mission of cognitive science to study various 
aspects of cognition from the perspective of multiple 
disciplines. 

From an applied perspective, the success of this research 
so far is encouraging. The ability to reproduce much of the 
variance in human performance under conditions of total 
sleep deprivation suggests that it may be possible to make 
informed decisions about sleep protocols with fewer 
expensive human subject experiments. Further work will 
extend this approach to individual performance, additional 
tasks, and different sleep deprivation and restriction 
protocols (see Van Dongen et al., 2003). One issue we wish 
to address with the current method is that it requires data to 
establish the relationship between the ACT-R parameter G 
and alertness as predicted by the biomathematical models. 
The only way to acquire bottom-end data is to perform 
controlled studies, and as part of the value for a predictive 
model comes from obviating such studies, further work on 
this problem will be necessary. 
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