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Abstract

Human scene understanding is remarkable: with only a brief
glance at an image, an abundance of information is available -
spatial layout, scene function, semantic label, etc. Here we
propose a scene-centered model of rapid human scene
understanding that uses a vocabulary of global, ecological
scene properties that combine to categorize natural landscape
images. Behaviorally, we show human observers are
sensitive to the underlying distributions of these global
properties for use in basic-level categorization. An ideal
observer trained only on the distributions of these properties
predicts human scene categorization performance (r=0.90)
and human errors.

Introduction

Human scene understanding is truly remarkable:
with the briefest of glimpses at an image, we
instantaneously understand its content and meaning (Potter,
1975; Thorpe et al., 1996). Even more striking is the
richness of the variety of information perceived within a
glance: a few objects, spatial layout, functional and
conceptual properties and even emotional valence
(Maljkovic and Martini, 2005) are all available with well
under 100 msec of exposure to a novel image. The entirety
of this information is termed a scene’s gist (Oliva, 2005).
What is the nature of the representation that mediates rapid
scene categorization?

To the contrary of the traditional ideas of research
in scene understanding that treat objects as the atoms of
recognition, we consider that real world scenes can be
recognized without necessarily identifying the objects they
contain (Biederman et al, 1982; Greene and Oliva, 2005;
Schyns & Oliva, 1994; Oliva & Schyns, 2000). This scene-
centered approach to recognition emphasizes properties
describing the structure and the meaning of the whole scene
independent of object analysis. Recent computational
models of scene recognition have shown indeed that a
variety of low level features (color, texture) and spatial
layout properties (e.g. its level of openness, perspective) are
correlated with the semantic category of environmental
scenes at both superordinate and basic level of
representation (Fei Fei & Perona, 2005; Oliva & Torralba,
2001; Walker-Renninger and Malik, 2001; Torralba &
Oliva, 2003; Vogel & Schiele, 2004). A scene-centered
schema would not preclude local object recognition, but
would serve as a feed-forward and parallel pathway of
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visual processing, enabling the rapid estimation of scene
gist.

The behavioral and modeling experiments we
propose here are meant to establish the psychological
foundation of a scene-centered approach to scene
understanding. Beyond the principle of recognizing the
“forest before the trees” (Navon, 1977), we propose an
operational definition of the global scene properties
permitting the categorization of a scene as a “forest”.
Faithful to a scene-centered representation which will
capture the completeness of the gist of a scene, our selection
of a vocabulary of global scene properties was influenced by
the requirement to describe structural, functional and
surface-based features of an environmental scene. Namely,
which properties of a space allow the description of its
semantic category, function and affordance?

Previous research has shown that global properties
of mean depth, openness and expansion describe the spatial
layout of a scene well enough to be predictive of its
probable semantic category (Oliva & Torralba, 2001).
Properties of navigability and camouflage reflect the
functionality of the space and the type of actions that can be
afforded in outdoor natural scenes. Movement (i.e. the
transience of the elements in the scene) and temperature are
relevant surface-based properties that influence human’s
behavior, and refer to the material and texture qualities of
image regions (i.e. rocky and sandy often imply hot and
non-moving, while snow implies cold and rushing water
implies movement). These properties have been shown in
previous work to be available for report with less exposure
time than the semantic category of an image (Greene &
Oliva, 2005).

The seven global properties we describe here are
ecological in the sense that they are descriptive of the types
of interactions a human could have in an outdoor natural
landscape (e.g. can walk through without worry of
occluding objects), or are descriptive of the space of a scene
(e.g a panoramic environment), which can in turn, guide
behavior. It is of note that such a scene-centered
representation has no explicit declaration of objects or
region segmentation. Outdoor scenes have few objects that
can be manipulated and interacted with by a human (e.g. a
rock, a flower), but their size is almost entirely local and
therefore not captured by global properties.

Our principal hypothesis is that the initial image
representation that facilitates semantic scene categorization
can be built from the conjunctive detection of ecological



global properties. In the following, we evaluate the extent to
which global properties uniquely describe the basic-level
category of natural scenes (Experiment 1). Then, we show
the causal relationship existing between global properties
and rapid categorization (Experiment 2). Finally, we
demonstrate that an ideal observer model whose only access
to scene information is through global properties can predict
human rapid categorization performance of natural scenes.
All together, these results provide support for an initial
image representation that is scene-centered, global and
explicitly representing scene function.

Magnitude of a global property

closeup

Mean Deptr-l far

low Movement high

Figure 1: Examples of scenes images ordered along four
global properties. For each property, a scene image with a
low, medium and high magnitude is shown.

Experiment 1: Norming study

The goal of the first experiment was to obtain a
measure of the magnitude of each global property in 200
images depicting a variety of natural landscapes. First, the
images in the database were selected as prototypical
examples of one of the following eight categories: desert,
field, forest, lake, mountain, ocean, river and waterfall (with
25 images per category) by three independent observers.
Next, we obtained rankings on each scene’s degree of
openness, camouflage, navigation, etc. Figure 1 illustrates
low, medium and high magnitude examples of four global
properties. Fifty-five observers (25 males, mean age 28)
with normal or corrected-to-normal vision, consented to
rank the 200 pictures for monetary compensation. These
rankings served as ground truth for image selection in
Experiment 2 as well as training information for the model
observer.

The magnitude measures were obtained using a
hierarchical grouping procedure (Oliva & Torralba, 2001).
First, 100 picture thumbnails appeared on an Apple 30”
monitor (size of 1.5 x 1.5 deg / thumbnail), placed in a 10 x
10 grid. The interface allowed participants to drag images
with a mouse to one side of the screen or the other and view
a larger version of the image by double-clinking on the
thumbnail. Participants were instructed to divide the images
into two groups based on a specific global property, such
that, for example, images with a high degree of this property
(e.g. openness) were on the right side of the screen and
images with a low degree of openness on the left side. Ina
second step, participants were asked to split each group into
two finer divisions. Finally, the groups were split again to
form a total of 8 groups, ordered from the highest to the
lowest magnitude for a given property. At any point during
the trial, participants were allowed to move an image to a
different subgroup, to refine the ranking, and participants
had unlimited time to perform this task. Participants
repeated this hierarchical sorting process on the remaining
100 pictures in database along the specified global property.
Each participant ranked the image database on one or more
global properties such that each global property was finally
ranked by ten participants. The global properties were
described as follows:

Camouflage: How efficiently and completely could you
hide in the environment? The possibility for camouflage
ranges from complete exposure in an environment (no place
to hide) to completely concealable due to dense foliage, etc.
Movement: At what rate is the scene moving or changing?
This can be related to actual physical movement such as a
running river, or the transience of the scene (the sun setting,
the fog lifting, etc.) At one extreme, a scene will only be
changing in geological time and at the other extreme, the
gist of the picture depends on it having been taken at that
moment.

Navigation: How easy or difficult would it be for a human
to traverse the environment from the given viewpoint to the



horizon? This ranges from complete impenetrability of the
environment to a human trying to walk through to the
possibility of walking nearly infinitely in any direction
without obstacle. Navigable images are not necessarily low
camouflage as there can be a clear path through a dense
forest, for example.

Temperature: What is the physical temperature of the
outdoor environment? This ranges from the coldest place to
the hottest place.

Openness: Is there a clear view to the horizon line? At one
extreme, there is no horizon line or visible sky and the scene
is entirely enclosed, and at the other, there is a clear
definable horizon in the middle of the image. Openness is a
property of the viewpoint of the image, and is therefore not
correlated with camouflage.

Expansion: Is there perspective in this image with
converging parallel lines, or is the viewpoint flat on a single
surface? Although somewhat correlated with navigability
(e.g., many roads show strong linear perspective), expansion
describes the space of the environment independently of its
affordances.

Depth: What volume does the scene subtend? Is it a close-
up shot from 1 meter away, or is it a panorama where one
can see for miles? A scene may have large volume
independent of other spatial layout, interactive or surface
properties.

Results

There was strong agreement among participants for
global property rankings: between-observer Spearman’s
rank-correlations ranged from 0.6 (movement) to 0.83
(openness), and were all statistically significant (p <.01).
This indicates that participants ranked the same images in
very similar ways, suggesting that these properties
correspond to objective interpretations of the image.

The mean magnitude rank for each semantic
category along the seven global properties is shown in
Figure 2. Interestingly, we observed that the distribution of
global property magnitudes provide a unique description of
each basic-level category. Some categories such as lake or
mountain have equal weights for all global properties,
whereas other categories such as desert, waterfall, and
forest have properties that are clearly diagnostic (shown by
high and low peaks). The set of magnitudes represents the
average exemplar of a given category: for instance, a desert
is a very hot and open environment, with low degree of
movement and camouflage; waterfall and river have a high
degree of movement (due to rushing water); forests are
closed environment with a high potentiality for camouflage.

The results suggest that the global properties
constitute a conceptual signature of the meaning of a
specific basic-level natural category and suggest the
possibility that scene understanding may be built upon these
global signatures, a hypothesis we further investigate in
Experiment 2.
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Experiment 2

According to a scene-centered approach to image
understanding, the semantic category can be represented as
a conjunction of global properties, describing diagnostic
information about the scene spatial layout and its functional
properties. Here we test the extent to which global property
information is used by people in rapid scene categorization.

From the ranking study, we know that particular
magnitudes of global properties are diagnostic for certain
semantic categories (e.g. high temperature is a robust
regularity in deserts). We reason that if global property
information is being used by human observers to identify
the scene category, then presenting images from one
category among distractors from other categories but with a
similar global property magnitude (e.g. a hot beach scene)
should lead to more false alarms in a yes-no forced choice
categorization task.
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Figure 2: Mean magnitude of each global property, for each

scene semantic category. (Cam= camouflage; Mov
movement, Nav=navigation, Tem = temperature, Ope

openness, Exp = expansion, Dep = mean depth).



Method

Thirty-two observers, with normal or corrected to
normal vision, participated in Experiment 2 (11 males, mean
age 22.4). Participants were given the name of a category
and asked to answer as quickly and as accurately as possible
whether the briefly presented full-color picture (30 msec
duration followed by a 1/f noise mask) belonged to the
target category. The procedure consisted of a full confusion
matrix of experimental blocks, where each target category
was compared to distractor sets with particularly “high” or
“low” magnitudes on one of the seven global properties,
yielding 112 conditions (8 target categories * 7 global
properties * 2 magnitudes). For instance, if “forest” was the
selected target category, pictures of forests would be
categorized among distractors from images from a variety of
semantic categories but who shared a particular global
property magnitude, such as “high movement”. Each
individual completed at least 8 blocks that were
diagonalized such that no participant saw the same
distractor set twice. Each experimental block was composed
of 25 target images and 25 distractor images and
participants were told to answer as quickly and as accurately
as possible whether the briefly presented scenes belonged to
the target category by pressing a ‘yes’ or ‘no’ key. Finally,
each of the 112 experimental blocks was completed by six
meta-subjects.

Results

As expected, human hit performances on all
categories was high: ranging from 0.72 for oceans to 0.90
for forest and 0.94 for waterfalls.

We analyzed the false alarms for the confusion matrix,
comparing them to errors predicted from the ranking
experiment. For each category, predicted false alarms for
the confusion matrix were created by expressing the mean
global property magnitude values as a distance from the
mean values of these properties for all categories. From
Figure 2, this corresponds to the absolute magnitude
difference of each property from the 0.5 level. The greater
this number, the more diagnostic a property is for this
category (for instance, high camouflage for forest). Again,
we predict that the normalized false alarm rate will be
highly correlated with this measured diagnosticity value.

Figure 3 shows that the normalized false alarm rate for the
confusion matrix is significantly correlated with global
property diagnosticity (r=0.47, p=0.0003). Red bars going
below the 0.5 line indicate an increase in false alarms in the
direction of the low magnitude end of the global property,
whereas bars above this line indicate false alarm increases
towards the high end. Different distractor sets produced
radically different false alarm rates, even within the same
category. This result indicates that human observers are
sensitive to a category’s distribution of global properties,
and use this information to aid rapid categorization.
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Figure 3: False alarms (in % above category baseline,
shown in red), are significantly correlated with predictions
made from the ranking experiment, indicating that global
property information for a category is weighted in a rapid
categorization task proportional to how it is diagnostic of
the category.

Ideal observer model

Experiments 1 and 2 have
property information is useful to
categorization tasks. We next asked:
human performances be predicted
property information? To test this, we built an ideal
observer model to do this task. While most ideal observer
analyses examine how close human observers are to the
mathematical optimum for a given task, ideal observers
have also been used to test hypotheses about perceptual
mechanism (Geisler, 2003). Here we test the hypothesis
that scene categorization can be done by conjunctions of
global properties by building a conceptual ideal observer
whose only information about scene categories is from the
categories’ distributions of global properties.

shown that global
humans in rapid
to what extent can
using only global



Using the global property rankings to train the
model, we ran the model 25 times, testing each image in
turn. In each run, 24 images from each semantic category
(192 total) served as training, and the last eight (one from
each category) were used for testing. The observer was
given the semantic category labels for each of the training
images, and computed the mean and variance along each of
the global properties for each category.

In testing, the model was presented with the global property
descriptors of the eight test images. The model computed

the maximum likelihood category (h,, ) for this image

given the distributions of global properties learned in
training.
1 1
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Results
The ideal observer’s categorization performance
(hits) was remarkably similar to that of the human observers
in the behavioral experiment (r=0.90, p=0.0002, Figure 4).

Error analysis

Does the ideal observer make the same kinds of
errors that human observers do? There was a significant
correlation between the number of false alarms made to an
image by human observers and failure of the ideal observer
(r=0.66, p=0.001). Furthermore, the nature of the errors was
highly similar. Given an error of the ideal observer (i.e.
outputting that an image is a lake when it is really an
ocean), human observers made the same mistake in 69% of
the images. (Chance is 12.5%). Examples of the correct
responses and the false alarms made by the model and/or
human observers are shown in Figure 5. Figure 5a shows
images well-classified by both human and the model. Some
images are not well classified by either (Figure 5b), and
seem to correspond to less prototypical instances of the
scene category Figure 5¢ and 5d show examples of images
classified incorrectly by humans, but not by the ideal
observer model, and vice versa.

Diagnosticity of global properties for model

The ideal observer shows that these seven global
properties are sufficient to predict human performance in a
rapid scene categorization task. However, it does not
indicate whether all of the properties are necessary for
categorization. To test, we compared the confusion matrix
of human categorizations to runs of the ideal observer
model that was trained without a particular global property.
Both of these "knock-out" a global property for use in
categorization: for the humans, as the distractor set had a
uniform distribution for this global property, it cannot
inform categorization. In other words, assuming movement
is diagnostic of ocean, classifying oceans among high
movement distractors will render movement useless for the
task. For the model, the global property is knocked out
because there is no representation of the property at all.

For the ideal observer, knocking out any global
property significantly decreased the model’s categorization
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performance to a similar degree (hit rate decreasing from
mean of 74% to a mean of 67%). However, each global
property had unequal contributions across categories. Each
category had a unique set of necessary global properties.
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Figure 4: Ideal observer categorization performance (hits) is
well-correlated  with  human  rapid categorization
performance. Scene categories that are well-classified by
humans are well-classified using only global property
information.
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Figure 5: A (bold titles) corresponds to the correct responses
made by both humans and the ideal observer model for the
above scene pictures. The other rows (with titles in quotes)
represent categorization errors made respectively by both
humans and the model (B); by the model only (C); by the
humans only (D), for the respective scene pictures.



In addition, for both the human and ideal observers, we
converted false alarm rates into percent increases in false
alarms over the baseline false alarm rate for the given
category (as some categories are intrinsically more difficult
than others). The correlation between human and model
false alarms was 0.83 (p<0.0001), indicating that human and
ideal observers are impaired by the loss of particular global
properties for categorization and suggesting that the
information used by both observers might be the same.

Discussion

In this work, we have shown that a scene-centered
approach to image understanding predicts human rapid
scene categorization. Our approach uses a short vocabulary
of global and ecological scene properties that combine to
categorize a variety of natural landscape environments. In
this work, we have shown that human observers classify
images as points along global property dimensions in a
consistent way (Experiment 1), and that information from
these properties is weighted in rapid categorization tasks in
a way that follows the distribution of the properties’
regularities in the database (Experiment 2). Finally, we
have shown that a model can predict human performance in
terms of accuracy and error type with only information from
these global properties.

It has been known for some time that visual
perception tends to proceed in a global-to-local manner, but
for stimuli as complex as a natural image, it is not
immediately obvious what the nature of the global features
are. By grounding our search in the principles of
environmental affordance (Gibson, 1979; Rosch, 1978), we
have been able to find a collection of properties that are
necessary and sufficient to capture the essence of many
landscape image categories. These global properties are also
unique in the sense that they span other types of scene
descriptors such as spatial layout (openness, expansion and
mean depth), function (camouflage and navigability) and
surface type (movement and camouflage). However, all of
these are ecological because layout and surfaces also guide
the types of action (or affordances) of the environment.

All together, our results provide support for an
initial scene-centered visual representation used by human
observers, and built on conjunctions of global properties
that explicitly represent scene function and spatial layout.
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