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Abstract 

Human scene understanding is remarkable: with only a brief 
glance at an image, an abundance of information is available -  
spatial layout, scene function, semantic label, etc. Here we 
propose a scene-centered model of rapid human scene 
understanding that uses a vocabulary of global, ecological 
scene properties that combine to categorize natural landscape 
images.  Behaviorally, we show human observers are 
sensitive to the underlying distributions of these global 
properties for use in basic-level categorization.  An ideal 
observer trained only on the distributions of these properties 
predicts human scene categorization performance (r=0.90) 
and human errors. 

Introduction 
 

Human scene understanding is truly remarkable: 
with the briefest of glimpses at an image, we 
instantaneously understand its content and meaning (Potter, 
1975; Thorpe et al., 1996).  Even more striking is the 
richness of the variety of information perceived within a 
glance: a few objects, spatial layout, functional and 
conceptual properties and even emotional valence 
(Maljkovic and Martini, 2005) are all available with well 
under 100 msec of exposure to a novel image.  The entirety 
of this information is termed a scene’s gist (Oliva, 2005).  
What is the nature of the representation that mediates rapid 
scene categorization? 

To the contrary of the traditional ideas of research 
in scene understanding that treat objects as the atoms of 
recognition, we consider that real world scenes can be 
recognized without necessarily identifying the objects they 
contain (Biederman et al, 1982; Greene and Oliva, 2005; 
Schyns & Oliva, 1994; Oliva & Schyns, 2000).  This scene-
centered approach to recognition emphasizes properties 
describing the structure and the meaning of the whole scene 
independent of object analysis. Recent computational 
models of scene recognition have shown indeed that a 
variety of low level features (color, texture) and spatial 
layout properties (e.g. its level of openness, perspective) are 
correlated with the semantic category of environmental 
scenes at both superordinate and basic level of 
representation (Fei Fei & Perona, 2005; Oliva & Torralba, 
2001; Walker-Renninger and Malik, 2001; Torralba & 
Oliva, 2003; Vogel & Schiele, 2004). A scene-centered 
schema would not preclude local object recognition, but 
would serve as a feed-forward and parallel pathway of 

visual processing, enabling the rapid estimation of scene 
gist. 

The behavioral and modeling experiments we 
propose here are meant to establish the psychological 
foundation of a scene-centered approach to scene 
understanding. Beyond the principle of recognizing the 
“forest before the trees” (Navon, 1977), we propose an 
operational definition of the global scene properties 
permitting the categorization of a scene as a “forest”.  
Faithful to a scene-centered representation which will 
capture the completeness of the gist of a scene, our selection 
of a vocabulary of global scene properties was influenced by 
the requirement to describe structural, functional and 
surface-based features of an environmental scene. Namely, 
which properties of a space allow the description of its 
semantic category, function and affordance?  

Previous research has shown that global properties 
of mean depth, openness and expansion describe the spatial 
layout of a scene well enough to be predictive of its 
probable semantic category (Oliva & Torralba, 2001). 
Properties of navigability and camouflage reflect the 
functionality of the space and the type of actions that can be 
afforded in outdoor natural scenes.  Movement (i.e. the 
transience of the elements in the scene) and temperature are 
relevant surface-based properties that influence human’s 
behavior, and refer to the material and texture qualities of 
image regions (i.e. rocky and sandy often imply hot and 
non-moving, while snow implies cold and rushing water 
implies movement).  These properties have been shown in 
previous work to be available for report with less exposure 
time than the semantic category of an image (Greene & 
Oliva, 2005). 
 The seven global properties we describe here are 
ecological in the sense that they are descriptive of the types 
of interactions a human could have in an outdoor natural 
landscape (e.g. can walk through without worry of 
occluding objects), or are descriptive of the space of a scene 
(e.g a panoramic environment), which can in turn, guide 
behavior. It is of note that such a scene-centered 
representation has no explicit declaration of objects or 
region segmentation.  Outdoor scenes have few objects that 
can be manipulated and interacted with by a human (e.g. a 
rock, a flower), but their size is almost entirely local and 
therefore not captured by global properties.  

Our principal hypothesis is that the initial image 
representation that facilitates semantic scene categorization 
can be built from the conjunctive detection of ecological 
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global properties. In the following, we evaluate the extent to 
which global properties uniquely describe the basic-level 
category of natural scenes (Experiment 1). Then, we show 
the causal relationship existing between global properties 
and rapid categorization (Experiment 2). Finally, we 
demonstrate that an ideal observer model whose only access 
to scene information is through global properties can predict 
human rapid categorization performance of natural scenes. 
All together, these results provide support for an initial 
image representation that is scene-centered, global and 
explicitly representing scene function. 

 
 

 
 
Figure 1: Examples of scenes images ordered along four 
global properties. For each property, a scene image with a 
low, medium and high magnitude is shown.  

 
 

Experiment 1: Norming study 
 

The goal of the first experiment was to obtain a 
measure of the magnitude of each global property in 200 
images depicting a variety of natural landscapes.  First, the 
images in the database were selected as prototypical 
examples of one of the following eight categories: desert, 
field, forest, lake, mountain, ocean, river and waterfall (with 
25 images per category) by three independent observers. 
Next, we obtained rankings on each scene’s degree of 
openness, camouflage, navigation, etc. Figure 1 illustrates 
low, medium and high magnitude examples of four global 
properties. Fifty-five observers (25 males, mean age 28) 
with normal or corrected-to-normal vision, consented to 
rank the 200 pictures for monetary compensation. These 
rankings served as ground truth for image selection in 
Experiment 2 as well as training information for the model 
observer.   

The magnitude measures were obtained using a 
hierarchical grouping procedure (Oliva & Torralba, 2001).  
First, 100 picture thumbnails appeared on an Apple 30” 
monitor (size of 1.5 x 1.5 deg / thumbnail), placed in a 10 x 
10 grid. The interface allowed participants to drag images 
with a mouse to one side of the screen or the other and view 
a larger version of the image by double-clinking on the 
thumbnail.  Participants were instructed to divide the images 
into two groups based on a specific global property, such 
that, for example, images with a high degree of this property 
(e.g. openness) were on the right side of the screen and 
images with a low degree of openness on the left side.  In a 
second step, participants were asked to split each group into 
two finer divisions. Finally, the groups were split again to 
form a total of 8 groups, ordered from the highest to the 
lowest magnitude for a given property.  At any point during 
the trial, participants were allowed to move an image to a 
different subgroup, to refine the ranking, and participants 
had unlimited time to perform this task. Participants 
repeated this hierarchical sorting process on the remaining 
100 pictures in database along the specified global property. 
Each participant ranked the image database on one or more 
global properties such that each global property was finally 
ranked by ten participants. The global properties were 
described as follows: 
 
Camouflage: How efficiently and completely could you 
hide in the environment?  The possibility for camouflage 
ranges from complete exposure in an environment (no place 
to hide) to completely concealable due to dense foliage, etc. 
Movement: At what rate is the scene moving or changing? 
This can be related to actual physical movement such as a 
running river, or the transience of the scene (the sun setting, 
the fog lifting, etc.)  At one extreme, a scene will only be 
changing in geological time and at the other extreme, the 
gist of the picture depends on it having been taken at that 
moment. 
Navigation: How easy or difficult would it be for a human 
to traverse the environment from the given viewpoint to the 
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horizon?  This ranges from complete impenetrability of the 
environment to a human trying to walk through to the 
possibility of walking nearly infinitely in any direction 
without obstacle. Navigable images are not necessarily low 
camouflage as there can be a clear path through a dense 
forest, for example. 
Temperature: What is the physical temperature of the 
outdoor environment?  This ranges from the coldest place to 
the hottest place. 
Openness: Is there a clear view to the horizon line?  At one 
extreme, there is no horizon line or visible sky and the scene 
is entirely enclosed, and at the other, there is a clear 
definable horizon in the middle of the image. Openness is a 
property of the viewpoint of the image, and is therefore not 
correlated with camouflage. 
Expansion: Is there perspective in this image with 
converging parallel lines, or is the viewpoint flat on a single 
surface? Although somewhat correlated with navigability 
(e.g., many roads show strong linear perspective), expansion 
describes the space of the environment independently of its 
affordances. 
Depth: What volume does the scene subtend?  Is it a close-
up shot from 1 meter away, or is it a panorama where one 
can see for miles? A scene may have large volume 
independent of other spatial layout, interactive or surface 
properties. 
 
Results 
 

There was strong agreement among participants for 
global property rankings: between-observer Spearman’s 
rank-correlations ranged from 0.6 (movement) to 0.83 
(openness), and were all statistically significant (p <.01). 
This indicates that participants ranked the same images in 
very similar ways, suggesting that these properties 
correspond to objective interpretations of the image. 

The mean magnitude rank for each semantic 
category along the seven global properties is shown in 
Figure 2.  Interestingly, we observed that the distribution of 
global property magnitudes provide a unique description of 
each basic-level category. Some categories such as lake or 
mountain have equal weights for all global properties, 
whereas other categories such as desert, waterfall, and 
forest have properties that are clearly diagnostic (shown by 
high and low peaks). The set of magnitudes represents the 
average exemplar of a given category: for instance, a desert 
is a very hot and open environment, with low degree of 
movement and camouflage; waterfall and river have a high 
degree of movement (due to rushing water); forests are 
closed environment with a high potentiality for camouflage. 

The results suggest that the global properties 
constitute a conceptual signature of the meaning of a 
specific basic-level natural category and suggest the 
possibility that scene understanding may be built upon these 
global signatures, a hypothesis we further investigate in 
Experiment 2. 

Experiment 2 
 According to a scene-centered approach to image 
understanding, the semantic category can be represented as 
a conjunction of global properties, describing diagnostic 
information about the scene spatial layout and its functional 
properties. Here we test the extent to which global property 
information is used by people in rapid scene categorization.   
 From the ranking study, we know that particular 
magnitudes of global properties are diagnostic for certain 
semantic categories (e.g. high temperature is a robust 
regularity in deserts). We reason that if global property 
information is being used by human observers to identify 
the scene category, then presenting images from one 
category among distractors from other categories but with a 
similar global property magnitude (e.g. a hot beach scene) 
should lead to more false alarms in a yes-no forced choice 
categorization task. 

 

 
 
Figure 2: Mean magnitude of each global property, for each 
scene semantic category. (Cam= camouflage; Mov = 
movement, Nav=navigation, Tem = temperature, Ope = 
openness, Exp = expansion, Dep = mean depth). 
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Method 
 Thirty-two observers, with normal or corrected to 
normal vision, participated in Experiment 2 (11 males, mean 
age 22.4). Participants were given the name of a category 
and asked to answer as quickly and as accurately as possible 
whether the briefly presented full-color picture (30 msec 
duration followed by a 1/f noise mask) belonged to the 
target category. The procedure consisted of a full confusion 
matrix of experimental blocks, where each target category 
was compared to distractor sets with particularly “high” or 
“low” magnitudes on one of the seven global properties, 
yielding 112 conditions (8 target categories * 7 global 
properties * 2 magnitudes). For instance, if “forest” was the 
selected target category, pictures of forests would be 
categorized among distractors from images from a variety of 
semantic categories but who shared a particular global 
property magnitude, such as “high movement”. Each 
individual completed at least 8 blocks that were 
diagonalized such that no participant saw the same 
distractor set twice. Each experimental block was composed 
of 25 target images and 25 distractor images and 
participants were told to answer as quickly and as accurately 
as possible whether the briefly presented scenes belonged to 
the target category by pressing a ‘yes’ or ‘no’ key. Finally, 
each of the 112 experimental blocks was completed by six 
meta-subjects. 
 
Results  

As expected, human hit performances on all 
categories was high: ranging from 0.72 for oceans to 0.90 
for forest and 0.94 for waterfalls. 

 
We analyzed the false alarms for the confusion matrix, 
comparing them to errors predicted from the ranking 
experiment. For each category, predicted false alarms for 
the confusion matrix were created by expressing the mean 
global property magnitude values as a distance from the 
mean values of these properties for all categories.  From 
Figure 2, this corresponds to the absolute magnitude 
difference of each property from the 0.5 level. The greater 
this number, the more diagnostic a property is for this 
category (for instance, high camouflage for forest).  Again, 
we predict that the normalized false alarm rate will be 
highly correlated with this measured diagnosticity value. 
  
Figure 3 shows that the normalized false alarm rate for the 
confusion matrix is significantly correlated with global 
property diagnosticity (r=0.47, p=0.0003). Red bars going 
below the 0.5 line indicate an increase in false alarms in the 
direction of the low magnitude end of the global property, 
whereas bars above this line indicate false alarm increases 
towards the high end. Different distractor sets produced 
radically different false alarm rates, even within the same 
category. This result indicates that human observers are 
sensitive to a category’s distribution of global properties, 
and use this information to aid rapid categorization.  
 

   

 
 

Figure 3: False alarms (in % above category baseline, 
shown in red), are significantly correlated with predictions 
made from the ranking experiment, indicating that global 
property information for a category is weighted in a rapid 
categorization task proportional to how it is diagnostic of 
the category. 

 
Ideal observer model 

 
Experiments 1 and 2 have shown that global 

property information is useful to humans in rapid 
categorization tasks.  We next asked: to what extent can 
human performances be predicted using only global 
property information? To test this, we built an ideal 
observer model to do this task. While most ideal observer 
analyses examine how close human observers are to the 
mathematical optimum for a given task, ideal observers 
have also been used to test hypotheses about perceptual 
mechanism (Geisler, 2003).  Here we test the hypothesis 
that scene categorization can be done by conjunctions of 
global properties by building a conceptual ideal observer 
whose only information about scene categories is from the 
categories’ distributions of global properties. 
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 Using the global property rankings to train the 
model, we ran the model 25 times, testing each image in 
turn.  In each run, 24 images from each semantic category 
(192 total) served as training, and the last eight (one from 
each category) were used for testing.  The observer was 
given the semantic category labels for each of the training 
images, and computed the mean and variance along each of 
the global properties for each category.   
In testing, the model was presented with the global property 
descriptors of the eight test images.  The model computed 
the maximum likelihood category ( ) for this image 
given the distributions of global properties learned in 
training. 
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Results 
The ideal observer’s categorization performance 

(hits) was remarkably similar to that of the human observers 
in the behavioral experiment (r=0.90, p=0.0002, Figure 4).   
 
Error analysis 

Does the ideal observer make the same kinds of 
errors that human observers do?  There was a significant 
correlation between the number of false alarms made to an 
image by human observers and failure of the ideal observer 
(r=0.66, p=0.001). Furthermore, the nature of the errors was 
highly similar.  Given an error of the ideal observer (i.e. 
outputting that an image is a lake when it is really an 
ocean), human observers made the same mistake in 69% of 
the images. (Chance is 12.5%). Examples of the correct 
responses and the false alarms made by the model and/or 
human observers are shown in Figure 5.  Figure 5a shows 
images well-classified by both human and the model.  Some 
images are not well classified by either (Figure 5b), and 
seem to correspond to less prototypical instances of the 
scene category  Figure 5c and 5d show examples of images 
classified incorrectly by humans, but not by the ideal 
observer model, and vice versa. 
 
Diagnosticity of global properties for model 
 The ideal observer shows that these seven global 
properties are sufficient to predict human performance in a 
rapid scene categorization task.  However, it does not 
indicate whether all of the properties are necessary for 
categorization.  To test, we compared the confusion matrix 
of human categorizations to runs of the ideal observer 
model that was trained without a particular global property. 
Both of these "knock-out" a global property for use in 
categorization: for the humans, as the distractor set had a 
uniform distribution for this global property, it cannot 
inform categorization.  In other words, assuming movement 
is diagnostic of ocean, classifying oceans among high 
movement distractors will render movement useless for the 
task.  For the model, the global property is knocked out 
because there is no representation of the property at all.  
 For the ideal observer, knocking out any global 
property significantly decreased the model’s categorization 

performance to a similar degree (hit rate decreasing from 
mean of 74% to a mean of 67%). However, each global 
property had unequal contributions across categories.  Each 
category had a unique set of necessary global properties. 
 
 

 
 
Figure 4: Ideal observer categorization performance (hits) is 
well-correlated with human rapid categorization 
performance.  Scene categories that are well-classified by 
humans are well-classified using only global property 
information.  
 

 
 
Figure 5: A (bold titles) corresponds to the correct responses 
made by both humans and the ideal observer model for the 
above scene pictures. The other rows (with titles in quotes) 
represent categorization errors made respectively by both  
humans and the model (B); by the model only (C); by the 
humans only (D), for the respective scene pictures. 
 

295



       In addition, for both the human and ideal observers, we 
converted false alarm rates into percent increases in false 
alarms over the baseline false alarm rate for the given 
category (as some categories are intrinsically more difficult 
than others).  The correlation between human and model 
false alarms was 0.83 (p<0.0001), indicating that human and 
ideal observers are impaired by the loss of particular global 
properties for categorization and suggesting that the 
information used by both observers might be the same. 
 

Discussion 
 
 In this work, we have shown that a scene-centered 
approach to image understanding predicts human rapid 
scene categorization.  Our approach uses a short vocabulary 
of global and ecological scene properties that combine to 
categorize a variety of natural landscape environments.  In 
this work, we have shown that human observers classify 
images as points along global property dimensions in a 
consistent way (Experiment 1), and that information from 
these properties is weighted in rapid categorization tasks in 
a way that follows the distribution of the properties’ 
regularities in the database (Experiment 2).  Finally, we 
have shown that a model can predict human performance in 
terms of accuracy and error type with only information from 
these global properties. 
 
 It has been known for some time that visual 
perception tends to proceed in a global-to-local manner, but 
for stimuli as complex as a natural image, it is not 
immediately obvious what the nature of the global features 
are.  By grounding our search in the principles of 
environmental affordance (Gibson, 1979; Rosch, 1978), we 
have been able to find a collection of properties that are 
necessary and sufficient to capture the essence of many 
landscape image categories. These global properties are also 
unique in the sense that they span other types of scene 
descriptors such as spatial layout (openness, expansion and 
mean depth), function (camouflage and navigability) and 
surface type (movement and camouflage).  However, all of 
these are ecological because layout and surfaces also guide 
the types of action (or affordances) of the environment. 
 

All together, our results provide support for an 
initial scene-centered visual representation used by human 
observers, and built on conjunctions of global properties 
that explicitly represent scene function and spatial layout.        
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