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Abstract

We propose the use of perceived affordances to computation-
ally model linguistic concepts in situated language use. Per-
ceived affordances are mental structures that capture the rela-
tionship between the language user and the embedding situa-
tion. We employ computational models of human perceived
affordances to understand situated language: language that dy-
namically depends on the current physical environment and
the goals and plans of communication partners. To support
this theory of situated language understanding, we describe an
implemented system that understands verbal commands situ-
ated in a virtual gaming environment. The implementation
uses probabilistic hierarchical plan recognition to generate per-
ceived affordances. We have evaluated the system on its ability
to correctly interpret free-form spontaneous verbal commands
recorded from unrehearsed game play between human players,
and find that it is able to “step into the shoes” of human players
and correctly respond to a broad range of verbal commands in
which linguistic meaning depends on social and physical con-
text.

Introduction

We have recently introduced the theory of Affordance-Based
Concepts (ABCs) (Gorniak, 20055 |Gorniak and Royl, 2006).
This theory has at its core the intentional link between lan-
guage users and the world treating predicted interactions as
the basic building block for conceptual representation. Other
theories often limit themselves to specifying the structure of
concepts as opposed to how concepts come to be about the
world. To tightly couple the internal structure of concepts
with their intentional and functional use, the theory proposes
that each element of a concept must make a prediction about
the world, thus crossing over from the mind to the world. Ev-
ery concept thus becomes both a property of the language us-
ing system, and of its relation to the embedding world. These
structural elements are called perceived affordances, yielding
a theory of Affordance-Based Concepts.

In this paper, we introduce a computational model that
employs plan recognition as a mechanism for finding and
ranking the perceived affordances of a person engaged in
co-operative tasks. Situated language interpretation is mod-
eled as a process of filtering perceived affordances. In effect,
the complete meaning of linguistic expressions is only un-
derstood when words are meshed with the situation in which
they are used. To evaluate the model, we describe an im-
plementation of the model that interprets situated language
collected from people playing a multiplayer computer game.
This implementation is based on a probabilistic, hierarchical
plan recognizer in the form of an Earley parser, To understand
the game players’ language, a syntactic parser filters the pre-
dictions (perceived affordances) this plan recognizer makes at
the time of an utterance. Language understanding thus is cast
as a filtering process on perceived affordances, which are ele-
ments that naturally span the boundary between the language
user’s mind (by virtue of being subjective predictions tak-
ing into account the language user’s goals) and the world (by
virtue of taking into account the structure of the world). Our
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results show that this implementation can accurately predict
how human players respond to spoken commands issued by
their human partners, demonstrating the viability of our ap-
proach for modeling the interpretation of context-dependent
language on the basis of perceived affordances.

Related Work

There exist a number of competing or complementary theo-
ries of concepts. [Laurence and Margolis|as well as|Prinz| give
overviews of the proposals and the debates surrounding them
(Laurence and Margolis}, [1999; |Prinz, 2002). Many theories
of concepts adopt a fundamental bias: that the use of concepts
by an actual language using system, and thus their connection
to the world, is secondary to their internal structure and for-
mal properties. This bias is exhibited most strongly by the
traditional definitional theories. Where they acknowledge a
link to the world at all, for example in the form of observa-
tion sentences (Carnapj, |1932), the link is portrayed as simple
and passive. In fact, the only function usually considered is
that of categorization, a feature shared with Prototype The-
ory (Rosch, [1975). Closest in spirit to our proposal here is
perhaps Theory-Theory (Carey,, |1985), but only in so far as it
acknowledges the importance of viewing concepts as embed-
ded in a structure used to reason about particular domains.
While Theory-Theory emphasizes internal mental theories,
however, it leaves unspecified their connection to the world
except, again, in the case of categorization where it explains a
human tendency towards essentialism. All these theories thus
largely deal with internal mental structures and at most tackle
the problem of categorization using these mental structures.
Categorization is only one possible use of concepts, however,
and arguably not the most basic one. Concepts are intimately
tied to the goals of the conceptualizer and thus a theory of
concepts should not only explain categorization behaviour,
but more importantly cover intentional aspects of concepts
such as the predictions they imply, and generally their use in
achieving goals.

In a similar vein, the computational theories and systems
addressing the problem of how a word comes to be about the
world, treat this problem as one of adding sensory categoriza-
tion functionality to a definitional theory of concepts (Harnad),
1990). There are a number of systems that have been built ac-
cording to this paradigm, including |Regier; (1996))’s work on
learning words for spatial relations, [Plunkett et al.| (1992)’s
image labelling investigations, Yu, Ballard, and Aslins model
of word learning |Yu et al.|(2003), as well as some of our own
previous models of word grounding (Roy et al., [2002; Roy},
2002). These systems often address additional aspects of this
type of grounding, such as how categories are learned by the
language user (Regier, |1996; Roy, 2003) and how concepts
grounded in this way can be combined (Gorniak and Roy}
2004). We have previously presented work on understanding
situated language using plan recognition (Gorniak and Roy,
2005alb), but that work separated the linguistic understanding
from the plan recognition, whereas they are tightly coupled



here. Few sensory grounded language systems can be found
that can act autonomously using the concepts they maintain.
Where action is involved, at hand is usually either once more
a sensory categorization problem (Siskind, [2001). Some sys-
tems, such as KARMA, do understand language in terms of
action representations, and these are perhaps most related to
the work presented here. So far, however, these systems have
not been shown to understand situated language dependent on
a dynamically evolving situation (Narayanan, [1997)). There
exists work on computationally modelling affordances more
abstractly as a theoretical tool to explore linguistic mecha-
nisms (Steedman, [2002)), as well as in a non-linguistic setting
to model a robot’s interactions with the real world (Stoytchev]
2005). Our robotics work has led Roy|to propose a theory for
grounding linguistic concepts in physical interaction (Roy,
2005). That work complements that presented here as a pro-
posal for linguistic meaning based on interactions with the
world at a far more detailed and fine grained level of physi-
cal (sensory-motor) experience than considered here. Finally,
Fleischman and Roy| (2005) have explored the word learning
problem using an intention recognition framework very sim-
ilar to the one presented here, but focusing on the difference
between learning nouns and verbs.

Theory

The term affordance was coined by |Gibson| (1977)). Rather
than focusing on image-like representations that are similar
to, or correspond to, the light information impinging on the
retina, he proposed that perception encodes what the exter-
nal world affords the perceiver. Thus, extended surfaces are
perceived to provide support for walking on, if the surface
is of an appropriate size relative to the perceiver and sturdy
enough to hold the perceiver’s weight, and the perceiver is ac-
tually able to walk. Perceived affordances, those affordances
mentally represented by a perceiver, fulfill our requirements
of a representation: they are the product of perception of the
world, they encode some aspect of the structure of the world
relative to the perceiver, and they predict a possible interac-
tion between perceiver and world. By implying a prediction,
they can be falsified.

In our context, a perceived affordance encodes some aspect
of the state of the world, as well as a prediction made based
upon this state. The world’s state might be represented by
encoding a fragment of the world’s history, as is common in
computational models. The perceived affordance’s prediction
may be representationally explicit, such as a list of possible
ways to pick up a cup, or it may be implicit, such as an encod-
ing of the cup’s geometry together with a model of possible
hand movements and configurations. A perceived affordance
addresses the possible action prediction problem at a single
level of representation. The possible ways to pick up a cup
versus the choice of possible breakfast foods one faces every
morning are on very different levels of representation. They
are connected, however, in that a possible breakfast choice
may include pouring a cup of milk, and thus picking up a
cup. To make mental representation feasible it is important to
keep these levels of affordances related yet distinct. Keeping
them distinct allows one to reason on a single level, to achieve
more concise yet still approximately Markovian state encod-
ings and to employ the representation and reasoning methods
that are best for that level. Keeping them loosely connected,
on the other hand, allows for predictions that span levels and
lets one fill in the details of high level plans, creating a hier-
archy of perceived affordances.
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Note that so far we have not invoked the notion of objects
per se — perceived affordances are about the structure of the
world that can be exploited to make predictions. This struc-
ture can be below the level of everyday objects, for example
when it concerns the geometry of a graspable surface, which
may or may not be part of a larger structure that we usually
label “doorknob.” Having replaced the notion of objects with
the notion of structural elements called affordances, we can
now re-introduce objects as bundles of affordances. A door-
knob yields a set of interactions, as determined by its physical
properties and the agent’s abilities. When we engage in an ac-
tive process of representation to distinguish objects within the
structure of the world, we carve out a set of local affordances
in the world and consider it an object. This process is not arbi-
trary, however, as it exploits the pre-existing structure of the
world, including our own abilities. Thus while concepts of
objects are the product of our perception, representation and
actions, and while we may decide to cut up the world into
different sets of objects at different times, we are externally
constrained in our object categorizations by our own structure
and that of our environment.

In the following studies this unified representation of ob-
jects as bundles of perceived affordances lets us capture the
situation in terms of its possible functions for the agent. For
example, a door is represented by the uses an agent might
have for it, such as unlocking it, opening it or walking through
it. This lets us interpret language in a representational sub-
strate that already includes predicted actions and abstractions
and thus turns understanding into a filtering process on this
substrate. For example, “open the door” selects a subset of
the perceived affordances of the listener in his or her present
situation that involve opening available doors.

Concepts of objects are instances of the more general class
of structures we call concepts. Each concept is a bundle of
perceived affordances. In addition to representing concrete
everyday objects, concepts can represent sets of structures in
the world not limited to a single agent and object. Allowing
arbitrary bundles of affordances gives the Affordance Based
Concept theory a unique representational power, but the use
of affordances imposes limits as it is subject to constraints
from the structure of subject and environment. One aspect of
this power is the ability to represent abstraction. For exam-
ple, the command “let me into the next room” in our stud-
ies selects a more abstract interaction of changing rooms that
at lower levels expands out into the listener unlocking or de-
stroying the door to the next room, or pulling the correct lever
to open it, followed by the speaker moving to the next room.
This is also an example of concept composition in which the
filter functions of lexical items are combined during the lin-
guistic parsing process. Thus, while “room” selects sets of
affordances available in any single room in the virtual envi-
ronment, “next room” selects only those requiring exactly one
room change by the speaker.

Implementation

In the implemented system, the structure of perceived affor-
dances hinges on the notion of a hierarchical plan. A planis a
sequence of one or more steps an agent takes or considers tak-
ing. A hierarchical plan is a plan in which a top level node is
expanded into sequences of lower level nodes each of which
in turn may expand into yet lower level nodes. The leaves
of the plan structure form a non-hierarchical plan of concrete
actions the agent can actually take. Humans explicitly or im-
plicitly maintain hierarchical plans all the time, such as when



planning to buy milk, which expands into going to the store
and purchasing milk, which in turn expands into walking to
the car, getting in the car, driving to the store, and so on. Hi-
erarchical plans have the advantage of making independence
assumptions: if your goal is to buy milk, how you get to the
store does not matter: you could walk, drive or bike.

Plans and planning are intimately related to perceived af-
fordances. In fact, perceived affordances are the basis for
planning. The current situation must contain an affordance
predicting one could go buy milk, as otherwise one would
not plan for it. Similarly, someone will only consider driving
to the store, at a different level of affordances, if that person
actually has access to a car, and if his or her encoding of the
situation contains the perceived affordance of driving. Per-
ceived affordances are thus not the elements of a plan, but at
each step they are the possible choices a planner faces when
making decisions. Thus a planner must maintain sets of per-
ceived affordances to perform its planning, and a hierarchical
planner maintains hierarchical trees of perceived affordances.

Parsing for Plan Recognition

Our implemented representation of perceived affordances is
based on context free parsing. Context free parsing recovers
hierarchical structures from a sequence of non-hierarchical
observations, so it is natural that context free grammars, and
especially PCFGs have been suggested as ideal paradigms for
performing hierarchical plan recognition (Bobick and Ivanov,
1998 |Pynadath and Wellman, 2000), a suggestion that orig-
inally dates back at least to Miller et al.|(1960). In this case,
the symbols in the terminal string correspond to observed
events in a temporal sequence, and the grammar specifies pos-
sible higher level event structures. The simplified example
depicted here is based on the studies that will be described in
the next section. The example involves two players, Roirry
(prefix 'R’) and Isania (prefix 'I’), that engage in the short
sequence of events depicted in Fig. [T} Isania pulls a lever to
open a door, and Roirry goes through the door and fetches a
key from a chest in the next room. A context free grammar
parser produces the parse tree shown in the upper part of Fig-
ure 1| given the input symbol sequence depicted in that figure
and the grammar in Table

Table 1: Sample Plan Recognition Grammar Fragment

R_RETRIEVE_KEY — R_.ROOM_1_TO_ROOM_2
R_OPEN_CHEST R_TAKE_KEY

R_RETRIEVE KEY — R_ROOM_1_TO_ROOM_2
R_OPEN_CHEST R_TAKE_KEY
R_ROOM_1_.TO_ROOM_2 — I MAKE_DOOR_PASSABLE
R_.ROOMCHANGE_ROOM_1_.TO_ROOM_2
R_.ROOMCHANGE_ROOM_1_TO_ROOM_2 —
R_THROUGH_DOOR R_ENTER_ROOM_2
I_.MAKE_DOOR_PASSABLE — I PULL_LEVER
O_OPEN_DOOR

I_'MAKE_DOOR_PASSABLE — I_ BREAK_DOOR
I_MAKE_DOOR_PASSABLE — I_.UNLOCK_DOOR
I_.OPEN_DOOR

R_OPEN_CHEST — R_.UNLOCK_CHEST R_LIFT_LID
R_OPEN_CHEST — R_.BREAK_CHEST

As we aim to use the internal states of a plan recognizer to
represent a set of affordances, we need to be careful to select
an algorithm that does predict all possible interactions at all
levels at any given point in time, but that uses the symbols
observed to constrain its search. The ideal candidate for an
efficient parser along these lines is an Earley parser, which

281

performs a combination of top-down prediction and bottom-
up completion of parse trees to optimize its search behaviour
(Earley}, [1970). An Earley parser is based on the notion of an
Earley state, a structure that concisely summarizes the state
of the parser at a particular point in the observation sequence,
and at one level of the current parse. That is, each state con-
cerns exactly one grammatical rule, and marks how far in
this rule the parse has progressed. In the probabilistic Ear-
ley parser we use here (Stolcke| |1995)), a state also computes
a probability of the grammar having produced the input se-
quence so far, and entering this state. We can take a state
that has not completed its grammatical rule (i.e. that still has
symbols left to parse in the tail of the rule) to be predicting the
next symbol in the tail with a certain probability. These states
are coloured green in Figure Complete states (that have
successfully advanced beyond all the symbols in the rule tail)
correspond to the nodes in a parse tree - they assert that a
higher level element of the hierarchy is indeed present in the
input stream. These are coloured blue in Figure|T]

A parse state in an Earley parser used for plan recognition
is an ideal candidate for a computational manifestation of a
perceived affordance. Assuming that the parser is used to
recognize the plans of a particular agent, it 1) predicts possi-
ble future interactions with the world at a particular point in
time (the symbols to the right of the dot in the state), 2) ranks
the likelihood of possible future interactions given the inter-
action seen so far through its forward probability, 3) applies
to a particular level of abstraction, but is related to other levels
due to the hierarchical nature of the grammar and 4) summa-
rizes a segment of past interaction to predict the future. As
an Earley parser progresses, it maintains complete state sets
for each point in time, thus providing a complete history of
past actions and predictions in addition to currently relevant
predictions. We call the grammar used by this Earley parser
an affordance grammar. This grammar is a predictive model
of the structure of the world, representing a certain agent’s
predictions about and possible interactions with the world.

Language Grounding

The linguistic parsing step uses the same Earley parser as de-
scribed earlier, this time parsing a string of words. Whenever
the parser produces a complete state, it attempts to ground
the constituent just produced in terms of ABCs. For this pur-
pose, constituents can be associated with concept definitions.
A concept definition takes the form of a nested function call
expressing how the current set of perceived affordances is to
be filtered to arrive at the ABC for this constituent. Every
lexical item can be associated with one or more non-nested
function calls. Such a call includes the name of the filtering
function to apply to the set of affordances, and the argument
positions used in the function call. Upon completion of a
grammatical rule, the parser attempts to form a valid nested
function call from the call present in the tail of the rule. Fig-
ure [2] shows a simple parse tree with associated filter func-
tions. This method of incremental composition driven by lan-
guage syntax is akin to other work that associates grammat-
ical rules with lambda calculus expressions (Schuler, [2003)
and our own work that performs compositional grounding ac-
cording to explicit composition rules in the grammar (Gor-
niak and Roy, [2004).

An utterance occurs at a specific point in time, and at
that time the plan recognition Earley parsers will have a par-
ticular set of current and past Earley states under consid-
eration. To interpret a concept definition, the nested func-
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Figure 1: Sample Event Trace and Plan Parse Tree

tion call it represents is interpreted as an incremental fil-
ter on the full set of perceived affordances. Thus, for ex-
ample, a noun like “gate” might select all interactions in-
volving opening, unlocking, breaking and walking through
doors at all present and past points in time, whereas a verb
like “open” might filter these to only include the possible
and actual interactions of opening doors. This simple ex-
ample is shown in Fig. Fig. [l on the other hand,
shows the filter expressions from this simple parse tree ap-
plied to the previous affordance example. In sequence, the se-
lected affordances for select(DOOR), select(OPEN) and
select(OPEN, select(DOOR)) are highlighted.

y: ve ] |
Jeren ] |
|

Figure 2: Simple parse tree example and affordance filters

Studies and Results

We have evaluated our implementation of the ABC theory
by employing it to interpret situated language recorded from
human-human communication during co-operative game
play. To do so, it is not only necessary to record and anal-
yse human language, but also to apply the machinery intro-
duced in the last section to model the situation in which the
language occurs. Here, we turn to multi-user graphical online
role playing games to provide a rich and easily sensed world
to support and capture human interaction.

We describe a set of studies using a commercial game,
Neverwinter Nights, that includes an editor allowing the cre-
ation of custom game worlds. Fig. [ shows the map used
for the study presented here. Dependencies between objects
in the map are indicated with dotted arrows (for example, an
arrow links and lever that opens a door, and any chest con-
taining a key for another chest or a door). The only objective
of the puzzle is to reach the goal indicated on the map. When
the two players start the puzzle, they only know that there is
a goal they need to step on somewhere in the module. This
puzzle is designed for players to separate and communicate
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Figure 4: The map of the module used in studies.

their instructions and goals by using typed text. To limit di-
alogue phenomena, which are not the focus of the study, one
of the players is randomly chosen in the beginning and forced
to only use the following phrases: “Yes”, “No”, “I Can’t”,
“Done”, “Now”, “What’s going on?”, “OK.” The other player
is free to use unrestricted language.

The study included 26 players who played in 13 dyads after
responding to ads on the bulletin boards on the Neverwinter
Nights website. Eleven of these dyads completed the puzzle
in times ranging from 25 minutes to one hour, whereas the
others gave up after one hour. Nine sessions served for de-
velopment purposes, such as writing the affordance grammar
and training the linguistic parser, and a group of four ses-
sions formed an unbiased evaluation set. We first annotated
the development data and built and trained the system, then
annotated the evaluation data and tested the implementation
on this previously unseen data.

Events presented to the plan recognizer were at the level
of opening a door, walking into the next room or activating a
lever. The recognizer used a grammar of about 6500 proba-
bilistic rules that were automatically generated from a hand-
coded grammar of about 90 meta-rules capturing the structure
of the puzzle as shown in Figure[d The current evaluation fo-
cuses on directives because their effect on the second human
player is relatively easy to measure. We annotated 302 ut-
terances in the development sessions and 69 utterances in the
testing sessions as directives, and all results shown here are
from these sets of utterances. The language parser uses 13
different affordance filter functions, including ones capturing
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Figure 3: Filter functions applied to affordance example

spatial location (“west”, “left”), spatial indexicality (“this”,
“that”), temporal indexicality (“let’s try that again’) and pos-
session (“my lever”) encoding some specific meanings for the
game context. For example, a lever belongs to a player (“my
lever”) if the player was the one to most recently interact with
it.

Whenever one player gives the other a directive, the ut-
terance is parsed by the language parser to produce an af-
fordance filter specification. The plan recognizer then runs
this filter specification on the complete set of affordances pro-
duced up to this point in the game, which yields a filtered set
of affordances. These are then ranked using their probabil-
ities. If the best result is not currently applicable, the sys-
tem plans towards a state in which it would be applicable and
makes its prediction the first step along that plan. To mea-
sure performance, the final prediction is compared to the next
action the player in question actually takes, and counted as
correct if it matches.

The first row of Table |Z| (All Directives (AD)) shows the
performance on the complete set of directives. However,
players do not always follow instructions, so the second row
(Followed Directives (FD)) shows performance only on the
281 cases where the player actually performs an action that
matches the directive as determined by the annotator (64 in
the testing session). As many directives are short utterances
marking the time to take and action rather than providing lin-
guistic content (we call them action markers), the row Fol-
lowed Long Directives (FLD) in Table |Z| shows performance
on the half of the directives that contain more than one word.
The gap to the pure plan recognition baseline widens sig-
nificantly on this utterance set, showing that the system can
understand more complex language and produce the correct
concept for many of these directives.

Table [3] shows a number of prediction baseline results for
the same data sets. Row 1 of Table[3|shows the performance if
language is ignored - that is, if we simply pick the most prob-
able prediction of the plan recognizer at the point an utter-
ance occurs, without paying attention to the words in the ut-
terance. As above Plan Recognition (FLD) restricts the pure
plan recognition baseline to those directives that were cor-
rectly acted upon by the listener and use more than one word.
Finally, State Based Random randomly picks amongst all the
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actions players were ever observed to perform in a room com-
bination.

Table 2: Accuracy Results for Understanding Directives

Selected Utterances Development | Test
All Directives (AD) 70% 68%
Followed Directives (FD) 72% 70%
Followed Long Directives (FLD) | 61% 68%
Table 3: Prediction Baselines
Prediction Type Development | Test
Plan Recognition (AD) | 65% 63%
Plan Recognition (FLD) | 50% 60%
Random (AD) 15% 17%

When interpreting these results, it is important to keep
in mind that perfect prediction cannot and should not be
achieved in any of these cases. The puzzle naturally causes
much exploration by the players, and, as will be discussed fur-
ther below, situations and directives often do not limit play-
ers to a single next action. Some amount of variability is
thus inherent in the scenario. The best overall performance
of the complete system was 72%. Given the complexity of
the problem and the leeway players appear to give each other
in following their own utterance, this figure indicates that the
theory and implementation presented in this paper make for
an effective substrate for language understanding systems.

The low random baseline shows that prediction is no sim-
ple task (even this baseline does not pick amongst all possi-
ble actions, but only those players performed in the develop-
ment data). Language understanding heavily relies on plan
recognition - often the meaning of an utterance is highly con-
strained by the player’s states and plans. Taking the words
into account, however, improves again on the pure plan recog-
nition performance. The best measure of this improvement
is the 11% gain (8% in the test set) seen when considering
the set of correctly followed directives longer than one word.



The performance gain is smaller when considering all utter-
ances because performance is dominated by action markers,
for which linguistic content plays little role, and thus yields
no improvement in performance.

Performance on the test utterances is entirely comparable
to that on the development utterances, showing that the plan
recognition grammar and linguistic parser, while restricted in
their coverage, generalize well to unseen data. Of note is
that individual sessions differ greatly in playing and commu-
nication style. In fact, there is a single session in the test
set that contains very repetitive and easily predicted player
behaviour. When it is omitted, the test set performance base-
lines are equals to or lower than the development set base-
lines.

Conclusion

We have outlined a theory of concepts based on perceived
affordances: structured units of mental representation that
make predictions about possible interactions. We believe the
ABC theory to be a useful new view of mental representa-
tion of concepts. It is unique in its computational interpre-
tation of Gibsonian affordances based on plan recognition,
and its successful realization in a language understanding task
dealing with spontaneous, situated human language. The im-
plementation presented in this article provides a convenient
framework for probabilistic hierarchical reasoning about af-
fordances while understanding situated language. It will be
important to integrate this framework with other approaches
and views on affordances (Steedman, 2002} Royl, [2005)) and
to re-phrase existing approaches dealing with other aspects
of grounded language understanding in an affordance-based
framework.
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