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Abstract

We consider the properties of motor components, also
known as synergies, arising from a computational theory
(in the sense of Marr, 1982) or theory of optimal motor
behavior. We study this topic in the domain of optimal
control of a two-joint arm for reaching and via-point
tasks. Studies of the motor synergies revealed several
interesting findings. First, optimal motor actions for a
new reaching or via-point movement can be generated
by summing a small number of scaled and time-shifted
motor synergies, indicating that optimal movements can
be planned in a low-dimensional space by using optimal
motor synergies as motor primitives or building blocks.
Second, some optimal synergies are task-independent—
they arise regardless of the task context—whereas other
synergies are task-dependent—they arise in the context
of one task but not in the contexts of other tasks. Bio-
logical organisms use a combination of task-independent
and task-dependent synergies. Our work suggests that
this may be an efficient combination for generating op-
timal motor actions from motor primitives. Lastly, op-
timal motor actions can be rapidly acquired by learn-
ing new linear combinations of optimal motor synergies.
This result provides further evidence that optimal motor
synergies are useful motor primitives.
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Introduction

Marr (1982) hypothesized that a complex information
processing device could be analyzed at three levels. The
top level, referred to as the computational theory, exam-
ines what the device does and why. The analysis at this
level provides an explanation for why a device does what
it does by studying the device’s goals. Although there
are many different ways of developing a computational
theory of aspects of human behavior, an increasingly
popular way is through optimal models that formalize
goals as mathematical constraints or criteria, search for
behaviors that optimize the criteria, and compare the
optimal behaviors with human behaviors. If there is a
close match, then it is hypothesized that people are be-
having as they do because they are efficiently satisfying
the same goals as were built into the optimal model.

This paper studies motor synergies that arise from
computational theories (in the sense of Marr, 1982) of
motor behavior. To understand motor synergies, it is
helpful to first understand the “degrees of freedom”
problem (Bernstein, 1967). Biological motor systems

typically have many degrees of freedom, where the de-
grees of freedom in a system are the number of di-
mensions in which the system can independently vary
(Rosenbaum, 1991). The number of degrees of freedom
of a system carrying out a task often exceeds the num-
ber of degrees of freedom needed to specify the task
and, thus, the degrees of freedom are typically redundant
(Jordan & Rosenbaum, 1989). For example, consider the
problem of touching the tip of your nose. The location
of your nose has 3 degrees of freedom (its x, y, and z po-
sition in Cartesian coordinates), but the joints of your
arm have 7 degrees of freedom (the shoulder has 3 de-
grees of freedom, and the elbow and wrist each have 2).
As a result, there are several different settings of your
arm’s joint positions that all allow you to touch your
nose. Which setting should you use?

A solution to this problem is to create motor syner-
gies, which are dependencies among dimensions of the
motor system. For example, a synergy might be a cou-
pling of the motions of your shoulder and elbow. Syn-
ergies provide two types of benefits to motor systems.
First, synergies ameliorate the problem of redundancy;
e.g., synergies can constrain the set of possible shoulder,
elbow, and wrist positions that allow you to touch your
nose. Second, synergies reduce the number of degrees of
freedom that must be independently controlled, thereby
making it easier to control a motor system (Bernstein,
1967). Because synergies make motor systems easier to
control, they are often hypothesized to serve as motor
primitives, building blocks, or basis functions. Impor-
tantly, they provide basic units of motor behavior that
can be linearly combined to form more complex units of
behavior.

This paper overviews the properties of synergies aris-
ing from a theory of optimal motor behavior. A more
detailed description of this work, and additional results,
can be found in Chhabra & Jacobs (2006). The motor
behavior that we studied is the control of a nonlinear dy-
namical system, namely a simulated two-joint arm that
resembles a human arm. We have created an optimal
controller for this arm that formalizes goals as mathe-
matical constraints, and searches for control signals that
optimize the constraints. This has been done both for
reaching tasks (move an end-effector from one point to
another) and for via-point tasks (move from one point
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to another while passing through an intermediate point).
This has also been done both for an arm controlled di-
rectly by torques applied at the joints, and for an arm in
which forces are applied by muscles (though this paper
only reports the results for the arm controlled directly
by torques applied at the joints). We then derived syner-
gies from the optimal control signals using an extension
to non-negative matrix factorization (d’Avella, Saltiel,
& Bizzi, 2003), and studied the properties of these syn-
ergies.

Computing the optimal control signals
We simulated a two-joint arm that can be characterized
as a second-order nonlinear dynamical system:

M(θ)θ̈ + C(θ, θ̇) + Bθ̇ = τ (1)

where τ is a vector of torques, θ is a vector of joint angles,
M(θ) is an inertial matrix, C(θ, θ̇) is a vector of coriolis
forces, and B is a joint friction matrix. We used the same
parameter values for the arm as Li & Todorov (2004).

We studied both a reaching and a via-point task. In
the reaching task, the arm must be controlled so that its
end-effector moves from a start location to a target lo-
cation. The via-point task is identical except that there
is an additional requirement that the end-effector move
through an intermediate location known as a via-point.

For any reaching or via-point task, there are many
time-varying torque vectors τ(t) that will move the arm
so that it successfully performs the task. As discussed
above, this multiplicity of control solutions is due to
redundancy in the two-joint arm, and is known as the
degrees-of-freedom problem. How do we choose a par-
ticular solution? According to the optimality framework,
an actor’s goals are formalized as mathematical con-
straints that are combined in a cost function, and the
optimal control signal is the signal that minimizes this
function.

For the reaching task, we used the following cost func-
tion:

J(τ(t)) =
1
2
‖ e(T )− e∗ ‖2 +k1 ‖ ė(T ) ‖2

+
k2

2

∫ T

0

τ(t)T τ(t)dt (2)

where k1 and k2 are constants (we used the same val-
ues as Todorov & Li, 2005, namely k1 = 0.001 and
k2 = 0.0001), T is the duration of the movement, e(T ) is
the end-effector location at time T , and e∗ is the target
location at time T . The first term penalizes reaches that
deviate from the target location, the second term penal-
izes reaches that do not have a zero velocity at the end
of the movement, and the third term penalizes reaches
that require large torques (or “energy”). This cost func-
tion has previously been used by Li & Todorov (2004;
see also Todorov & Li, 2005).

For the via-point task, we modified the above cost
function to penalize movements that do not pass through
the via-point mid-way through the movement. The cost

function has the form:

J(τ(t)) =
1
2
‖ e(T )− e∗ ‖2 +

1
2
‖ e(T/2)− e∗v ‖2

+k1 ‖ ė(T ) ‖2 +
k2

2

∫ T

0

τ(t)T τ(t)dt (3)

where e∗v is the via-point or desired end-effector location
at the middle of the movement. This function penalizes
reaches that deviate from the via-point at time T/2.

To find the optimal control signal for a reaching or via-
point task, the corresponding cost function must be min-
imized. Unfortunately, when using nonlinear systems
such as the two-joint arm described above, this min-
imization is computationally intractable. Researchers
typically resort to approximate methods to find locally
optimal solutions. We used one such method, known
as the iterative linear quadratic regulator (iLQR), de-
veloped by Li & Todorov (2004; see also Todorov & Li,
2005). In brief, the iLQR linearly approximates the sys-
tem’s dynamics and quadratically approximates the cost
function at each moment in time, and then solves the
approximate control problem. We have found that the
iLQR works well on both reaching and via-point tasks
when using the two-joint arm.

Obtaining optimal synergies
As discussed above, motor synergies are dependencies
among dimensions of a motor system. They are use-
ful because they ameliorate the problem of redundancy,
and reduce the number of degrees of freedom that must
be independently controlled, thereby making it easier to
control a motor system. Synergies are often hypothe-
sized to serve as motor primitives, building blocks, or
basis functions.

Researchers have used a variety of methods to com-
pute motor synergies. We used a variant of non-negative
matrix factorization developed by d’Avella, Saltiel, &
Bizzi (2003). This algorithm requires two inputs. One
input is the number of synergies, denoted N . The other
input is a matrix of control signals, where each control
signal is a 2 × T matrix of optimal torques computed
by the iLQR for a given task (this matrix has 2 × T
elements because torques are applied to both joints of
the two-joint arm at each time step of a movement, and
there are T time steps per movement). The input matrix
of control signals is a vertical stack of individual control
signal matrices. As its output, the algorithm seeks a set
of synergies such that every control signal can be ex-
pressed as a sum of scaled and time-shifted synergies.
Mathematically, it seeks a set of N synergies, denoted
{wi, i = 1, . . . , N}, such that control signal m can be
written as follows:

m(t) =
N∑

i=1

ciwi(t− ti) (4)

where {ci, i = 1, . . . , N} is a set of coefficients that scale
the synergies, and {ti, i = 1, . . . , N} is a set of times
that time-shift the synergies. The algorithm searches for
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the synergies, scaling coefficients, and time-shifts that
minimize the sum of squared errors between the actual
control signals and the reconstructed signals.

A technical detail is that the algorithm requires a set
of non-negative control signals (each element of a con-
trol vector must be non-negative). In our case, a torque
vector might have negative elements. We overcame this
problem in a manner inspired by biological motor sys-
tems’ use of agonist and antagonist muscles to apply
torques at joints. We recoded a 2 × 1 torque vector as
a 4 × 1 vector in which the first two elements give the
anti-clockwise and clockwise torques for the first joint,
and the last two elements provide the same information
for the second joint.

Simulation Results
This section reports the results of four experiments. All
experiments used the same collection of reaching and via-
point tasks. Three hundred twenty instances of each task
were created as follows. Ten initial positions of the arm
were randomly generated by uniformly sampling the first
joint angle from the set [−π/4, π/2] and the second joint
angle from the set [0, 3π/4]. For each initial position, 32
target locations were generated. A target was gener-
ated by randomly selecting a movement distance (sam-
pled uniformly from the range 10-50 cm) and an angle
of movement (sampled uniformly from the range 0-2π).
For the via-point task, a via-point was placed at a ran-
dom angle (sampled uniformly from the set [−π/3, π/3])
from the line joining the initial and target locations. The
via-point’s distance from the initial location was selected
randomly to be between one-third and two-thirds of the
distance between initial and target locations. The dura-
tion of a movement was 350 msec, and new torques were
applied every 7 msec.

Experiment 1: A small set of synergies can re-
construct optimal movements The first experiment
evaluated whether optimal reaching or via-point control
signals can be expressed as a sum of a small number of
scaled and time-shifted synergies. If so, then the syner-
gies can be regarded as useful motor primitives.

For each type of task, the iLQR was applied to each
instance of the task to generate 320 optimal control sig-
nals. These signals were divided into five equal-sized sets
which were then used by a five-fold cross-validation pro-
cedure to create training and test data items. Four sets
of control signals were used for training and the remain-
ing set was used for testing. This was repeated for all
five such combinations of training and test sets. Dur-
ing training, non-negative matrix factorization was used
as described above to discover a set of synergies. Dur-
ing testing, these synergies were time-shifted and lin-
early combined to reconstruct the test control signals.
Non-negative matrix factorization was used to find the
time-shifts and linear coefficients.

The results for the reaching and via-point tasks are
shown in the left and right graphs of Figure 1, respec-
tively. The horizontal axes give the number of syner-
gies. The vertical axes give the root mean squared error
(RMSE) between actual and reconstructed test control

signals. The error bars show the standard errors of the
means. With both reaching and via-point tasks, the er-
ror is near its minimum when 6-7 synergies were used.
This is an important result because it means that the
synergies are useful motor primitives—optimal move-
ments can be planned in a relatively low-dimensional
space by time-shifting and linearly combining a small
number of synergies.

Experiment 2: Task-independent and task-
dependent synergies The second experiment eval-
uated whether optimal motor synergies are task-
independent or task-dependent. This issue is interest-
ing due to recent neurophysiological findings. For exam-
ple, d’Avella & Bizzi (2005) recorded electromyographic
activity from 13 muscles of the hind limb of frogs per-
forming jumping, swimming, and walking movements.
An analysis of the underlying motor synergies revealed
that some synergies were used in all types of movements
whereas other synergies were movement-dependent.

Figure 2 shows the similarity matrix when 6 syner-
gies were obtained for the reaching task and 6 syner-
gies were obtained for the via-point task. The light-
ness of the square at row i and column j gives the co-
sine of the angle between the ith reaching-task synergy
vector and the jth via-point task synergy vector—white
is a value of one, black is a value of zero, and inter-
mediate gray-scale values represent intermediate values.
Some synergies, such as the 4th reaching-task synergy
and the 2nd via-point task synergy are highly similar,
indicating that these synergies are task-independent. In
contrast, other synergies, such as the 2nd reaching-task
synergy or the 3rd via-point task synergy, are dissimilar
from all other synergies indicating that they are task-
dependent. This result suggests that the combination of
task-independent and task-dependent synergies found in
biological organisms (e.g., d’Avella & Bizzi, 2005; Jing,
Cropper, Hurwitz, & Weiss, 2004) may be an efficient
combination for generating optimal motor actions from
motor primitives.

Experiment 3: Visualization of synergies In Ex-
periment 3, we obtained synergies for the purpose of vi-
sualizing the movements induced by these synergies. Us-
ing our collections of instances of each type of task, six
synergies for the reaching task and six synergies for the
via-point task were calculated as described above. The
scaling coefficients for the reaching-task or via-point task
synergies were set to their average values over the col-
lection of reaching tasks or via-point tasks, respectively.
The time-shift parameters were set to zero.

Figure 3 illustrates movements based on the six syn-
ergies obtained for the reaching task. The left graph
shows the induced movements when the initial arm con-
figuration was near the center of the workspace. The
horizontal and vertical axes of the graph give the x and
y coordinates of the end-effector in Cartesian space, the
gray lines show the initial configuration of the arm, and
the black lines show the movements of the end-effector.
The induced movements tend to be relatively straight
(though some are curved), and tend to cover a wide range
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Figure 1: The graphs plot the root mean squared error (RMSE) between actual and reconstructed test items for
reaching (left graph) and via-point (right graph) tasks as a function of the number of synergies used in the recon-
structions. The error bars give the standard errors of the means.

of directions. The right graph of Figure 3 shows the in-
duced movements when the initial arm configuration was
at a far edge of the workspace. Again, the movements
tend to be relatively straight. As should be expected,
movements in this case are directed toward the center
of the workspace. Figure 3 demonstrates that synergies
tend to broadly cover all possible directions of motion.

Figure 4 illustrates movements based on the six syn-
ergies from the via-point task. The left graph illustrates
movements induced by two synergies that were highly
similar to synergies obtained from the reaching task—
that is, these are task-independent synergies. The in-
duced movements are relatively straight. Consequently,
the underlying synergies are useful for both reaching and
via-point tasks. The right graph illustrates movements
based on four synergies that are task-dependent—these
synergies were not similar to synergies obtained from
the reaching task. The induced movements tend to be
almost piecewise linear, with a region of large curvature
near the middle of the movement which is proceeded and
followed by regions of relatively straight motion.

Experiment 4: Learning with synergies Experi-
ment 4 evaluated whether the use of optimal motor syn-
ergies makes it easier to learn to perform new optimal
motor actions. If motor synergies are useful motor prim-
itives, then this ought to be the case.

The task was to learn to generate a reaching move-
ment starting from an initial configuration of the arm
so that the arm’s endpoint reached a randomly selected
target location. When synergies were used, control sig-
nals were expressed as linear combinations of synergies
(to minimize computational demands, we did not time-
shift synergies), meaning that the parameter values that
needed to be learned were the linear coefficients. When
synergies were not used, the values that needed to be
learned were the torques applied to each joint at each
moment in time.

From a collection of 320 instances of the reaching task,
five-fold cross-validation was used to create training and
test sets. Policy gradient, a type of reinforcement learn-
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Figure 2: Similarity matrix when 6 synergies were ob-
tained from the reaching task and from the via-point
task. See text for details.

ing algorithm, was used to learn estimates of the relevant
parameter values (Sutton, McAllester, Singh, & Man-
sour, 2000). This algorithm was applied for 300 itera-
tions. Learning with synergies occurred as follows. We
calculated the optimal movements for each instance in
a training set using the iLQR, and obtained four motor
synergies using non-negative matrix factorization. The
policy gradient algorithm was then used to learn to per-
form each instance of the reaching task in the test set.
At each iteration of the learning process, we numeri-
cally computed the derivatives of the reaching-task cost
function (Equation 2) with respect to the linear coeffi-
cients used in the linear combination of synergies, and
performed gradient descent with the constraint that the
coefficients had to be non-negative. When learning with-
out synergies, we numerically computed the derivatives
of the reaching-task cost function with respect to the
torques at each joint and at each time step, and per-
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formed gradient descent. Step sizes or learning rates that
produced near-optimal performance were used when per-
forming gradient descent with and without synergies.

The results for a typical instance of a reaching task
from a test set are shown in Figure 5. The graph on
the left shows the learning curves for learning with and
without motor synergies. The horizontal axis gives the
iteration number, and the vertical axis gives the value of
the reaching-task cost function. Whereas learning with-
out synergies was slow and never achieved good perfor-
mance, learning with synergies was rapid and achieved
excellent performance. Indeed, learning with synergies
achieved roughly the same cost as that achieved by the
movement calculated by the iLQR. The graph on the
right shows the movements learned with and without
synergies in Cartesian coordinates, and the movement
calculated by the iLQR. The movement learned without
synergies never reached the target location. Overall, the
results indicate that optimal synergies are useful motor
primitives or building blocks in the sense that their use
in linear combinations leads to rapid and accurate ac-
quisition of new optimal motor actions.

Summary and Conclusions

In summary, this paper has considered the properties of
synergies arising from a computational theory (in the
sense of Marr, 1982) or theory of optimal motor behav-
ior. Studies of the motor synergies revealed several inter-
esting findings. First, optimal motor actions can be gen-
erated by summing a small number of scaled and time-
shifted motor synergies, indicating that optimal move-
ments can be planned in a low-dimensional space by
using optimal motor synergies as motor primitives. Sec-
ond, some optimal synergies are task-independent—they
arise regardless of the task context—whereas other syn-
ergies are task-dependent—they arise in the context of
one task but not in the contexts of other tasks. Biologi-
cal organisms use a combination of task-independent and
task-dependent synergies. Our work suggests that this
may be an efficient combination for generating optimal
motor actions from motor primitives. Lastly, optimal
motor actions can be rapidly acquired by learning new
linear combinations of optimal motor synergies. This
result provides further evidence that optimal motor syn-
ergies are useful motor primitives.

Future work will need to address shortcomings of our
experiments. Our findings were obtained with simple
motor tasks and a two-joint arm. We conjecture that our
basic results will still be found with more complex tasks
(note that many complex movements can be regarded
as combinations of simpler reaching and via-point move-
ments) and more complex arms (we obtained similar re-
sults with a two-joint arm controlled by forces applied
by muscles; see Chhabra & Jacobs, 2006). Computa-
tionally, an obstacle to using more complex tasks and
arms is the fact that the calculation of optimal controls
for nonlinear systems with many degrees of freedom is
typically not possible with current computer technology.

Our findings were also obtained using specific math-
ematical techniques, such as the iLQR optimization

method and the non-negative matrix factorization
method. We believe that our choices of mathematical
techniques were reasonable. Again, this is an area in
which important computational issues will need to be
addressed before future studies can consider more com-
plex motor tasks and arms. In particular, there is a
need to develop improved dimensionality-reduction tech-
niques for obtaining synergies. For example, the non-
negative matrix factorization method, like other meth-
ods, cannot be applied when movements have widely dif-
ferent durations and, thus, control signals have widely
different dimensions. Future work will need to address
this, and many other, unsolved problems.
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Figure 3: Movements induced by six synergies obtained for the reaching task. The left and right graphs illustrate
induced movements when the initial configuration of the arm was near the center of the workspace or at a far edge
of the workspace, respectively.
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Figure 4: Movements induced by synergies obtained from the via-point task. The left and right graphs illustrate
movements induced by task-independent and task-dependent synergies, respectively.
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Figure 5: The graph on the left shows the learning curves (value of the reaching-task cost function as a function
of iteration number) for learning with and without motor synergies on a typical instance of a reaching task. The
graph on the right shows the movements learned with and without synergies in Cartesian space, and the movement
calculated by the iLQR.
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