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Abstract 

This study investigates the interaction between 
preschoolers’ initial theories and their ability to learn causal 
relations from patterns of data. Children observed 
ambiguous evidence in which sets of two candidate causes 
co-occurred with an effect (e.g. A&B  E, A&C  E, 
A&D   E, etc). In one condition, all candidate causes 
were from the appropriate domain (a biological cause for a 
biological effect); in another condition, the recurring 
candidate cause, A, crossed domains (a psychological cause 
for a biological effect).  When all causes were domain-
appropriate, children were able to use the data to identify A 
as a cause.  When the recurring cause crossed domains, 
children were less likely to endorse A.  However, 
preschoolers were significantly more willing to accept 
cross-domain causes after seeing the evidence than at 
baseline.  A Bayesian model is proposed to explain this 
interaction.  
 
Very young children have remarkably sophisticated 

causal knowledge about the world.  Children reason about 
the causes of mental states (e.g., Meltzoff, 1995), physical 
systems (e.g., Bullock, Gelman, & Baillargeon, 1982; 
Shultz, 1982), and biological events (e.g., Gelman & 
Wellman, 1991; Kalish, 1996).  Preschoolers can even 
make predictions about hidden variables and explain 
events in terms of unobservable causes (Schulz & 
Sommerville, in press).  

Many researchers have suggested that children’s causal 
knowledge can be characterized as intuitive theories: 
abstract, coherent, defeasible representations of causal 
structure (Carey, 1985; Gopnik & Meltzoff, 1997; 
Wellman, 1990; Keil, 1989).  However, relatively little is 
known about the process of causal learning. While some 
researchers have suggested that children’s naive theories 
might be instantiated in domain-specific modules (Leslie, 
1994; Scholl & Leslie, 1999) or innate concepts in core 
domains (Carey & Spelke, 1994; Keil, 1995), other 
researchers have emphasized the role of domain-general 
learning mechanisms (Gopnik et al., 2004; Schulz & 
Gopnik, 2004).  Very little research (though see Sobel, 
Tenenbaum, & Gopnik, 2004) has looked at how domain-
specific beliefs and domain-general learning mechanisms 

might interact.  In this paper, we provide a formal account 
of this interaction as rational Bayesian inference and then 
present two experiments in support of this account 
suggesting that preschoolers can integrate domain-
appropriate prior knowledge with domain-general patterns 
of evidence. 

Theories and Evidence 
In the literature on causal learning in children, some 

studies seem to suggest the relative strength of domain-
specific knowledge over domain general learning 
mechanisms while other findings suggest the opposite.  
Of the few studies that have directly compared domain-
specific and domain-general causal learning, some have 
suggested that both adults and children privilege domain-
specific information over domain-general evidence (e.g., 
Ahn, Kalish, Medin, & Gelman, 1995; Bullock, Gelman 
& Baillargeon, 1982; Shultz, 1982). Shultz (1982) for 
instance, suggests that preschoolers base their causal 
judgments on knowledge about domain-appropriate 
mechanisms of transmission rather than evidence of 
temporal covariation.  By contrast, other research 
suggests that children can use domain general learning 
mechanisms (such as the conditional probability of 
events) to override domain boundaries (Schulz & Gopnik, 
2004).  For example, children can use patterns of 
evidence to determine that a psychological rather than a 
physical cause produces a physical effect (Schulz & 
Gopnik, 2004).  Though see Andersson (1986) and Boo 
and Watson (2001) for examples of over-generalizations 
of domain general causal notions. 

It has been difficult to evaluate the interaction between 
domain-specific knowledge and domain-general learning 
mechanisms, because previous work has focused on 
extreme points.  For example, in the Shultz (1982) 
studies, children were asked to make a judgment after a 
single instance of temporal co-occurrence, thus there was 
little room for covariation evidence to affect children’s 
naïve theories.  By contrast, in the Schulz and Gopnik 
(2004) studies, the covariation data unambiguously 
supported the domain-inappropriate cause so there was 
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little room for children’s naïve theories to affect their 
evaluation of the evidence.   Thus, while some research 
has explored the relative strength of theories and 
evidence, few studies have demonstrated a graded 
interaction between the two.  

In this paper we look at children’s causal judgments in 
contexts in which we might observe the impact of both 
naïve theories and patterns of evidence.   Specifically, we 
look at whether children’s domain-specific theories affect 
their interpretation of evidence and whether patterns of 
evidence affect children’s domain-appropriate beliefs. 
Intuitively, a within-domain cause will always be favored 
over a cross-domain cause in the absence of evidence to 
the contrary.  However, as evidence accumulates in favor 
of the unlikely cause, domain-general learning may 
override domain-specific knowledge and a priori unlikely 
causes may be favored. First, we will present a rational 
account of this interaction, which is formalized in a 
theory-based Bayesian model. Second, we will use this 
model to predict children’s responses to complex patterns 
of evidence. 

Reasoning with Ambiguous Evidence Within 
and Across Domains 

In the current study, we show preschoolers storybooks 
in which two candidate causes covary with an effect; one 
cause recurs and the other causes are always novel (i.e., 
the evidence is in the form A&B E; A&C E; A&D E 
… etc.)  In the within-domain story, all the causes are 
domain-appropriate.  If children are able to learn from the 
data, they should infer that ‘A’ is the cause.  However, in 
the Cross-Domain story, the recurring cause (A) is 
domain-inappropriate.  Thus A is less plausible than the 
alternative cause given the children’s naïve theories but 
more plausible given the pattern of evidence. By 
comparing children’s judgments before and after seeing 
the evidence, we can evaluate the degree to which 
children can overcome the initial biases induced by their 
causal theories.  

Because we wanted to investigate processes that might 
underlie genuine instances of theory change, we chose a 
context in which children’s theories are both robust and 
distinct from adult theories.  As noted, considerable 
research has shown that children’s causal reasoning 
respects domain boundaries.  In particular, many 
researchers have suggested that children respect an 
ontological distinction between mental phenomena and 
bodily/physical phenomena (Carey, 1985; Estes, 
Wellman, & Woolley, 1989; Hatano & Inagaki, 1994; 
Notaro, Gelman, & Zimmerman, 2001; Wellman & Estes, 
1986).  Although adults accept that some events (e.g., 
psychosomatic phenomena) can cross the mental/physical 
divide, preschoolers typically deny that psychosomatic 
reactions are possible (e.g., they deny that feeling 
frustrated can cause a headache or that feeling 
embarrassed can make you blush; Notaro, Gelman & 
Zimmerman, 2001).  We were interested in how preschool 

children would interpret formal patterns of evidence 
suggesting the presence of a psychosomatic cause in light 
of a strong initial belief in domain boundaries.  

Theory-based Bayesian Inference 
Bayesian inference provides a natural framework in 
which to consider how prior knowledge and data interact. 
We propose to model children’s causal inferences in a 
framework with two critical components.  First, we 
assume that children’s judgments are the result of a 
Bayesian inference, comparing a set of hypotheses as to 
the causal structure that underlies the observed data.  
Second, we assume that these hypotheses are generated 
by a causal theory. This Bayesian model captures the two 
critical components of children’s reasoning: their ability 
to update their beliefs given new evidence, and the soft 
constraints imposed by their prior knowledge. 

To capture children’s reasoning on the storybook task, 
we model their inferences as weighing the probability of 
one explanation over another.  That is, children are 
explicitly asked in the task, “Why does {character} have 
{symptom}? Is it because of {Explanation 1} or is it 
because of {Explanation 2}?”  We model the probability 
that the child chooses Explanation 1 as 

 
       P(Explanation 1 | D)

P(Explanation 1 | D) + P(Explanation 2 | D)
         (1) 

 
which directly contrasts the two potential explanations 
given the data, D, observed. The probability of each 
possible explanation given the data is computed by 
summing over all causal models that are consistent with 
the explanation. This is formalized as: 

 
 P(Explanation 1 | D) = P(Explanation 1 | h)P(h | D)

h∈H
∑  (2) 

where h is a hypothesis as to the underlying causal 
structure, and H is the space of all hypotheses. We 
represent hypothetical causal structures as causal 
graphical models (Pearl, 2000; Spirtes, Glymour, & 
Schienes, 1993), consisting of a graphical structure 
indicating the causal relationships among a set of 
variables, where nodes are variables and relationships are 
indicated by arrows from cause to effect, and a set of 
conditional probability distributions giving the probability 
that each variable takes on a particular value given the 
values of its causes. We assume that the probability of the 
explanation given a particular causal structure h is 1/k, 
where k is the set of candidate causes that are present and 
possess a causal relationship with the effect in h.  

The probability of a particular causal structure given the 
data is expanded via Bayes rule as  
 

             P(h | D)∝P(D | h)P(h)   (3) 
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where P(h) is the prior probability of a particular causal 
structure, implementing the constraints imposed by the 
prior knowledge of the learner, and P(D|h) is the 
“likelihood”, indicating the probability of the data D 
under the causal model h. The precise values of these two 
probabilities are determined by the causal theory 
entertained by the observer. 

Generating Causal Models from a Causal Theory 
An important notion in developmental psychology is the 
idea that children have rich causal theories of the world.  
As proposed by Tenenbaum and Niyogi (2003) and 
Tenenbaum, Griffiths, and Niyogi (in press), we model 
the theory that guides the inferences made by children in 
our task as a simple scheme for generating causal 
graphical models. In this scheme, we allow for several 
types of domains. These domains can include biological 
causes, psychological causes, physical effects, biological 
effects, etc., as illustrated schematically in Figure 1. 
Causal relationships can only exist between nodes on the 
top line (causes) and nodes on the bottom line (effects).  
Causes are likely to have relationships with their domain-
related effects, as given by the thick, solid arrows. 
However, we also allow a small probability that a cause 
from one domain can lead to an effect in another domain.  
This assumption is illustrated by the thin arrows 
connecting elements across domains.  

This framework theory provides a simple recipe for 
generating the space of causal graphical models that could 
describe a particular situation. The prior probability 
associated with each model is simply its probability of 
being generated by the theory. The process of generating 
a model breaks down into four steps: 

 
1. Represent all possible causes and all possible effects 
as a set of nodes in a causal graphical model. 
2. For each cause and effect in the same domain, 
generate a causal relationship (an arrow) between the 
corresponding nodes with probability p. 
3. For each cause and effect in different domains, 
generate a causal relationship (an arrow) between the 
corresponding nodes with probability q. 
4. Specify the conditional probability distribution for 
the effects given their causes. 
 

We will now describe these steps in detail. 
 
Causal nodes  In our model, the number of nodes are 
given by the number of different variables observed. In 
the current study, we only learn about the presence of a 
single effect over seven days, following the A&B E, 
A&C E, etc, pattern discussed above.  This produces 
eight candidate causes, so there are 28 possible causal 
models (each candidate cause either does or does not 
influence the effect).  
 
Causal arrows Causal arrows between nodes are 
generated according to the theory.  As expressed above, if  

Figure 1: Schematic of framework theory that includes 
causal connections within-domain and cross-domain. 
 
a cause and effect are both within the same domain, then 
the probability a relationship exists is relatively high and 
given by p.  In contrast, if the link between two nodes is 
cross domain, then a relationship is very unlikely, and is 
given a lower probability, q. Assuming that each 
relationship is generated independently, we can evaluate 
the prior probability of each of the 256 possible models 
by multiplying the probabilities of the existence or non-
existence of the causal relationships involved. 
 
Conditional probability distribution The conditional 
probability distribution allows us to evaluate the 
probability of a specific model, h, generating the data 
observed over m trials, P(dm|h).   These data consist of the 
values taken on by all variables on that trial – the 
presence or absence of the causes and effects.  We assume 
that the probability of each cause being present or absent 
is constant across all of the causal models, and the only 
difference is in the probability they assign to the 
occurrence of the effect on that trial. We assume that the 
conditional probability of the effect given the set of 
causes is 1 if any cause which influences the effect is 
present, and ε  otherwise (this corresponds to a noisy-OR 
parameterization where each cause has a strength of 1 and 
the background has a strength of ε). The probability of 
the full set of data, D, accumulated over the course of the 
storybook is given by  
 

 
P(D | h) = P(dm | h)

m
∏     (4) 

 
where the data observed on each trial in the story are 
assumed to be generated independently.   
 
Model Predictions 
The predictions of the model given this pattern of 
evidence are represented in Figure 3. We implemented 
our  intuition of  relatively low  cross-domain  probability  
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Figure 2: Within and cross-domain storybooks used in 
Experiment 1. 
 
by setting q = .1 and set a higher within-domain 
probability of p = .4.  As described above, we also 
assumed a small ε  = .001.  Importantly, the model 
demonstrates the shift between favoring the within-
domain candidate cause at baseline to favoring the cross-
domain candidate cause after evidence. We conducted an 
experiment to test the predictions of this model. 

Experiment 1 
The goal of experiment 1 was to look at whether or not 
children would also be able to integrate domain-general 
learning with their strong domain-specific priors. 
 
Methods and Design 
Participants Thirty-two four and five-year-olds (range = 
4;0 to 5;11, M = 5;0) participated.  Children were 
randomly assigned to either a Baseline Condition or an 
Evidence Condition.  
 
Materials Two picture storybooks were used as the 
stimuli (see Figure 2). Both books featured events 
occurring over a week, starting on Monday and ending on 
Sunday so children received 7 ‘days’ of evidence. The 
Within Domain storybook featured a deer who liked to 
run in different places.  The deer got itchy spots on his 
legs every morning. Evidence was presented as described 
above: A&B E; A&C E; A&D E, etc. The recurring 
candidate cause (A) was running through cattails, the 
other cause varied (e.g., running through a meadow, a 
garden, etc.) (To show that the effect was not always 
present, the deer ran through different places in the 
afternoons and never got itchy spots).  The Cross Domain 
book was identical except that it featured a bunny rabbit 
who  got  a   tummy  ache  in  the  mornings  (but  not  the 
afternoons). Feeling scared was the recurring cause; the 
other candidate cause varied among types  of  food Bunny 
ate (e.g., cheese, a sandwich, etc.) Two sets of each book 
were created to counterbalance the order of events. 
 
Procedure Each child was read both the within- and 
cross-domains   storybook   (order was counterbalanced)   
in a quiet location.  In the Evidence Condition, children 
were   asked   at   the   end   of   the   story,    “Why   does  

Figure 3: Model predictions and children’s responses in 
Experiment 1. 
 
 
[Bambi/Bunny] have [itchy spots/tummy ache]? Is it 
because of [running in the garden/eating a sandwich] or 
because of [running in the cattails/feeling scared]?” 
Children in the Baseline Condition saw the same 
storybooks, only the Monday-Saturday events were not 
included, and the story went straight to the final, Sunday 
page.   

Results 
Preliminary analysis revealed no order effects. In the 
Baseline Condition, children chose at chance between the 
candidate causes in the within-domain storybook and 
almost always chose the domain-appropriate variable 
(food) in the cross-domains storybook. Children were 
significantly more likely to identify A as the cause in the 
Evidence Condition than at Baseline in both the within-
domain and cross-domains storybooks (within-domain: χ2 
(1, N = 32) = 10.67, p < .01 ; cross-domains: χ 2 (1, N = 
32) = 5.23, p < .05).  However, children were less likely 
to choose A in the cross-domains storybook than in the 
within-domain storybook, (χ 2 (1, N = 32) = 10.67, p < 
.01). See Figure 1 for details.   

As shown in Figure 3, our model accurately predicted 
children’s responses. The model gives correct relative 
weights to the variables at baseline in both the within-
domain and cross-domains conditions.  The model also 
favored the posterior probability of ‘cattails’ over 
‘garden’.  It was slightly less successful at capturing the 
degree to which children would choose ‘feeling scared’ as 
the cause; the model  predicted  that  the posterior 
probability of   ‘feeling scared’  as  the   candidate  cause   
should  have  been significantly greater than ‘sandwich’. 
Children showed slightly greater resistance to parting 
with their initial inductive biases.  Importantly however, 
the model captured   the   overall    pattern   of   children’s   
learning; children were significantly more willing to 
select ‘feeling scared’ after seeing the evidence then at 
baseline. 
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Figure 4: Example page from cross-domains storybook 
used in Experiment 2. 
 

Discussion 
As predicted by our Bayesian model, the results of 
Experiment 1 suggest that domain-specific theories and 
domain-general learning mechanisms interact.  Children 
were more likely to use the evidence to identify A as a 
cause when A was consistent with their theories than 
when A violated their theories. Critically however, 
children also seemed to learn from the evidence.  After 
seeing the data, preschoolers were able to entertain a 
causal possibility (that being scared might cause tummy 
aches) that they did not endorse at baseline.  

Although children reading the cross-domains storybook 
identified A as a cause more often after seeing the 
evidence than at baseline, only 50% of the children chose 
A as a cause in the Evidence condition.  Because children 
were given a forced choice between two causes, it is 
unclear whether these children were actually learning 
from the evidence or if they were merely confused by the 
cross-domain storybook and guessing at chance.   

Experiment 2: Cross Domain Learning with 
Multiple Variables 

To address the concerns raised in the previous 
experiment, we replicated the cross-domains Evidence 
Condition of Experiment 1 but provided children with 
three potential candidate causes (two within-domain 
candidate causes and one cross-domain candidate cause). 
If children are learning from the evidence, they should be 
significantly more likely to pick ‘feeling scared’ than 
either of the other variables; if children are confused by 
the evidence, they should pick ‘feeling scared’ at chance 
(33% of the time).   

Methods and Design 
Participants Sixteen 5-year-olds (range = 4;2 to 6;0, M = 
4;10) participated. 

Figure 5: Model predictions and children’s responses in 
Experiment 2. Dashed line represents chance.  
 
Materials A cross-domains book similar to the Cross-
Domain book in Experiment 1 was created.  However, 
instead of only eating one food per day, Bunny ate one 
food and drank one liquid and felt scared, (See Figure 4). 
Evidence about the cause of tummyaches followed the 
pattern: ABC  E, ADF  E, AGH  E, etc.  
 
Procedure The procedure was identical to the procedure 
in Experiment 1; however, children were only tested in 
the Evidence Condition on the Cross-Domain book.  

Results and Discussion 
After seeing the evidence, children were significantly 
more likely to identify C as the cause then at chance, 
(binomial test, test proportion: 0.33, p < .05) indicating 
that the children were not confused by the data, but rather 
that they inferred that being scared was a possible cause 
for Bunny’s tummy ache, (see Figure 5).   Children did 
not choose either of the other two variables above chance 
(binomial test, test proportion: 0.33, p = ns). Using the 
same parameter values for p and q as in Experiment 1, our 
model was also able to predict the children’s response, 
(see Figure 5). Importantly, the model predicted a strong 
posterior probability of the cross-domain cause, but 
relatively weak posteriors on other two within-domain 
candidate causes, sandwiches and apple juice. The results 
from Experiment 2 corroborate the findings in 
Experiment 1 and suggest that children learn from the 
evidence and are able to overcome their initial theories. 

Discussion 
This research demonstrates the important contributions 

that domain-specific theories make to children’s 
interpretation of evidence, as well as the role that 
evidence can play in affecting domain-specific beliefs.  
We have also offered a formal account of children’s 
theory-based learning in terms of Bayesian inference.  By 
providing a formal account, we hope to make clear the 
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interaction between domain-specific prior knowledge and 
domain-general learning mechanisms.  

In our framework domain-specific knowledge is 
captured by the priors specified by the framework theory, 
and domain-general learning is represented in terms of 
Bayesian inference. The framework theories represent the 
set of constraints on possible causal relations and 
Bayesian modeling provides a framework for learning 
these constraints at multiple levels.  From the studies 
presented here, it is unclear whether children in our 
experiments underwent theory change (at the framework 
level), or if children instead simply learned something 
specific about Bunny’s unfortunate condition, without 
updating their beliefs about psychosomatic illness in 
general.  While the broader question of learning 
framework theories is beyond the scope of this paper, in 
principle, theory-based Bayesian inference could capture 
this more general learning.  As children accumulate 
evidence about instances of psychosomatic illness, the 
prior for cross-domain causal events in general (i..e., 
psychological causes generating biological effects) 
increases. However, future work might look at the extent 
to which patterns of evidence can effect genuine theory 
change. 

Although the content of children’s framework theories 
and the priors over those theories may differ from adult 
theories, Bayesian inference suggests a universal system 
for integrating theories and evidence.  Most importantly, 
this computational account captures a hallmark of 
children’s causal theories: that children’s inferences are 
conservative with respect to their prior knowledge and yet 
flexible in the face of new evidence.   
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