Modeling Cross-Domain Causal Learning in Preschoolers as Bayesian Inference
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Abstract

This study investigates the interaction between
preschoolers’ initial theories and their ability to learn causal
relations from patterns of data. Children observed
ambiguous evidence in which sets of two candidate causes
co-occurred with an effect (e.g. A&B > E, A&C > E,
A&D > E, etc). In one condition, all candidate causes
were from the appropriate domain (a biological cause for a
biological effect); in another condition, the recurring
candidate cause, 4, crossed domains (a psychological cause
for a biological effect). When all causes were domain-
appropriate, children were able to use the data to identify 4
as a cause. When the recurring cause crossed domains,
children were less likely to endorse 4. However,
preschoolers were significantly more willing to accept
cross-domain causes after seeing the evidence than at
baseline. A Bayesian model is proposed to explain this
interaction.

Very young children have remarkably sophisticated
causal knowledge about the world. Children reason about
the causes of mental states (e.g., Meltzoff, 1995), physical
systems (e.g., Bullock, Gelman, & Baillargeon, 1982;
Shultz, 1982), and biological events (e.g., Gelman &
Wellman, 1991; Kalish, 1996). Preschoolers can even
make predictions about hidden variables and explain
events in terms of unobservable causes (Schulz &
Sommerville, in press).

Many researchers have suggested that children’s causal
knowledge can be characterized as intuitive theories:
abstract, coherent, defeasible representations of causal
structure (Carey, 1985; Gopnik & Meltzoff, 1997;
Wellman, 1990; Keil, 1989). However, relatively little is
known about the process of causal learning. While some
researchers have suggested that children’s naive theories
might be instantiated in domain-specific modules (Leslie,
1994; Scholl & Leslie, 1999) or innate concepts in core
domains (Carey & Spelke, 1994; Keil, 1995), other
researchers have emphasized the role of domain-general
learning mechanisms (Gopnik et al., 2004; Schulz &
Gopnik, 2004). Very little research (though see Sobel,
Tenenbaum, & Gopnik, 2004) has looked at how domain-
specific beliefs and domain-general learning mechanisms
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might interact. In this paper, we provide a formal account
of this interaction as rational Bayesian inference and then
present two experiments in support of this account
suggesting that preschoolers can integrate domain-
appropriate prior knowledge with domain-general patterns
of evidence.

Theories and Evidence

In the literature on causal learning in children, some
studies seem to suggest the relative strength of domain-
specific knowledge over domain general learning
mechanisms while other findings suggest the opposite.
Of the few studies that have directly compared domain-
specific and domain-general causal learning, some have
suggested that both adults and children privilege domain-
specific information over domain-general evidence (e.g.,
Ahn, Kalish, Medin, & Gelman, 1995; Bullock, Gelman
& Baillargeon, 1982; Shultz, 1982). Shultz (1982) for
instance, suggests that preschoolers base their causal
judgments on knowledge about domain-appropriate
mechanisms of transmission rather than evidence of
temporal covariation. By contrast, other research
suggests that children can use domain general learning
mechanisms (such as the conditional probability of
events) to override domain boundaries (Schulz & Gopnik,
2004). For example, children can use patterns of
evidence to determine that a psychological rather than a
physical cause produces a physical effect (Schulz &
Gopnik, 2004). Though see Andersson (1986) and Boo
and Watson (2001) for examples of over-generalizations
of domain general causal notions.

It has been difficult to evaluate the interaction between
domain-specific knowledge and domain-general learning
mechanisms, because previous work has focused on
extreme points. For example, in the Shultz (1982)
studies, children were asked to make a judgment after a
single instance of temporal co-occurrence, thus there was
little room for covariation evidence to affect children’s
naive theories. By contrast, in the Schulz and Gopnik
(2004) studies, the covariation data unambiguously
supported the domain-inappropriate cause so there was



little room for children’s naive theories to affect their
evaluation of the evidence. Thus, while some research
has explored the relative strength of theories and
evidence, few studies have demonstrated a graded
interaction between the two.

In this paper we look at children’s causal judgments in
contexts in which we might observe the impact of both
naive theories and patterns of evidence. Specifically, we
look at whether children’s domain-specific theories affect
their interpretation of evidence and whether patterns of
evidence affect children’s domain-appropriate beliefs.
Intuitively, a within-domain cause will always be favored
over a cross-domain cause in the absence of evidence to
the contrary. However, as evidence accumulates in favor
of the unlikely cause, domain-general learning may
override domain-specific knowledge and a priori unlikely
causes may be favored. First, we will present a rational
account of this interaction, which is formalized in a
theory-based Bayesian model. Second, we will use this
model to predict children’s responses to complex patterns
of evidence.

Reasoning with Ambiguous Evidence Within
and Across Domains

In the current study, we show preschoolers storybooks
in which two candidate causes covary with an effect; one
cause recurs and the other causes are always novel (i.e.,
the evidence is in the form A&B2>E; A&C>E; A&D>E

. etc.) In the within-domain story, all the causes are
domain-appropriate. If children are able to learn from the
data, they should infer that ‘A’ is the cause. However, in
the Cross-Domain story, the recurring cause (A4) is
domain-inappropriate. Thus A is less plausible than the
alternative cause given the children’s naive theories but
more plausible given the pattern of evidence. By
comparing children’s judgments before and after seeing
the evidence, we can evaluate the degree to which
children can overcome the initial biases induced by their
causal theories.

Because we wanted to investigate processes that might
underlie genuine instances of theory change, we chose a
context in which children’s theories are both robust and
distinct from adult theories. As noted, considerable
research has shown that children’s causal reasoning
respects domain boundaries. In particular, many
researchers have suggested that children respect an
ontological distinction between mental phenomena and
bodily/physical phenomena (Carey, 1985; Estes,
Wellman, & Woolley, 1989; Hatano & Inagaki, 1994;
Notaro, Gelman, & Zimmerman, 2001; Wellman & Estes,
1986). Although adults accept that some events (e.g.,
psychosomatic phenomena) can cross the mental/physical
divide, preschoolers typically deny that psychosomatic
reactions are possible (e.g., they deny that feeling
frustrated can cause a headache or that feeling
embarrassed can make you blush; Notaro, Gelman &
Zimmerman, 2001). We were interested in how preschool
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children would interpret formal patterns of evidence
suggesting the presence of a psychosomatic cause in light
of a strong initial belief in domain boundaries.

Theory-based Bayesian Inference

Bayesian inference provides a natural framework in
which to consider how prior knowledge and data interact.
We propose to model children’s causal inferences in a
framework with two critical components. First, we
assume that children’s judgments are the result of a
Bayesian inference, comparing a set of hypotheses as to
the causal structure that underlies the observed data.
Second, we assume that these hypotheses are generated
by a causal theory. This Bayesian model captures the two
critical components of children’s reasoning: their ability
to update their beliefs given new evidence, and the soft
constraints imposed by their prior knowledge.

To capture children’s reasoning on the storybook task,
we model their inferences as weighing the probability of
one explanation over another. That is, children are
explicitly asked in the task, “Why does {character} have
{symptom}? Is it because of {Explanation 1} or is it
because of {Explanation 2}?” We model the probability
that the child chooses Explanation 1 as

P(Explanation 1| D) (1)
P(Explanation 1| D) + P(Explanation 2 | D)

which directly contrasts the two potential explanations
given the data, D, observed. The probability of each
possible explanation given the data is computed by
summing over all causal models that are consistent with
the explanation. This is formalized as:

P(Explanation 1| D) = ZP(Explanation 1| h)P(h | D) (2)
heH

where /4 is a hypothesis as to the underlying causal
structure, and H is the space of all hypotheses. We
represent hypothetical causal structures as causal
graphical models (Pearl, 2000; Spirtes, Glymour, &
Schienes, 1993), consisting of a graphical structure
indicating the causal relationships among a set of
variables, where nodes are variables and relationships are
indicated by arrows from cause to effect, and a set of
conditional probability distributions giving the probability
that each variable takes on a particular value given the
values of its causes. We assume that the probability of the
explanation given a particular causal structure /2 is 1/k,
where £ is the set of candidate causes that are present and
possess a causal relationship with the effect in 4.

The probability of a particular causal structure given the
data is expanded via Bayes rule as

P(h | D)o P(D|h)P(h) 3)



where P(h) is the prior probability of a particular causal
structure, implementing the constraints imposed by the
prior knowledge of the learner, and P(D|h) is the
“likelihood”, indicating the probability of the data D
under the causal model 4. The precise values of these two
probabilities are determined by the causal theory
entertained by the observer.

Generating Causal Models from a Causal Theory

An important notion in developmental psychology is the
idea that children have rich causal theories of the world.
As proposed by Tenenbaum and Niyogi (2003) and
Tenenbaum, Griffiths, and Niyogi (in press), we model
the theory that guides the inferences made by children in
our task as a simple scheme for generating causal
graphical models. In this scheme, we allow for several
types of domains. These domains can include biological
causes, psychological causes, physical effects, biological
effects, etc., as illustrated schematically in Figure 1.
Causal relationships can only exist between nodes on the
top line (causes) and nodes on the bottom line (effects).
Causes are likely to have relationships with their domain-
related effects, as given by the thick, solid arrows.
However, we also allow a small probability that a cause
from one domain can lead to an effect in another domain.
This assumption is illustrated by the thin arrows
connecting elements across domains.

This framework theory provides a simple recipe for
generating the space of causal graphical models that could
describe a particular situation. The prior probability
associated with each model is simply its probability of
being generated by the theory. The process of generating
a model breaks down into four steps:

1. Represent all possible causes and all possible effects
as a set of nodes in a causal graphical model.

2. For each cause and effect in the same domain,
generate a causal relationship (an arrow) between the
corresponding nodes with probability p.

3. For each cause and effect in different domains,
generate a causal relationship (an arrow) between the
corresponding nodes with probability g.

4. Specify the conditional probability distribution for
the effects given their causes.

We will now describe these steps in detail.

Causal nodes In our model, the number of nodes are
given by the number of different variables observed. In
the current study, we only learn about the presence of a
single effect over seven days, following the A&BE,
A&CE, etc, pattern discussed above. This produces
eight candidate causes, so there are 2° possible causal
models (each candidate cause either does or does not
influence the effect).

Causal arrows Causal arrows between nodes are
generated according to the theory. As expressed above, if
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Figure 1: Schematic of framework theory that includes
causal connections within-domain and cross-domain.

a cause and effect are both within the same domain, then
the probability a relationship exists is relatively high and
given by p. In contrast, if the link between two nodes is
cross domain, then a relationship is very unlikely, and is
given a lower probability, g. Assuming that each
relationship is generated independently, we can evaluate
the prior probability of each of the 256 possible models
by multiplying the probabilities of the existence or non-
existence of the causal relationships involved.

Conditional probability distribution The conditional
probability distribution allows us to evaluate the
probability of a specific model, %, generating the data
observed over m trials, P(d,|h). These data consist of the
values taken on by all variables on that trial — the
presence or absence of the causes and effects. We assume
that the probability of each cause being present or absent
is constant across all of the causal models, and the only
difference is in the probability they assign to the
occurrence of the effect on that trial. We assume that the
conditional probability of the effect given the set of
causes is 1 if any cause which influences the effect is
present, and & otherwise (this corresponds to a noisy-OR
parameterization where each cause has a strength of 1 and
the background has a strength of &). The probability of
the full set of data, D, accumulated over the course of the
storybook is given by

P(D|hy=]]Pd, | 4)

where the data observed on each trial in the story are
assumed to be generated independently.

Model Predictions

The predictions of the model given this pattern of
evidence are represented in Figure 3. We implemented
our intuition of relatively low cross-domain probability



Why does Bambi have itchy spots? Is it because of running in the garden or because of
running in the cattails?

Why does Bunny have a tummy ache? Is it because of eating a sandwich or because of
feeling scared?

Figure 2: Within and cross-domain storybooks used in
Experiment 1.

by setting ¢ = .1 and set a higher within-domain
probability of p = 4. As described above, we also
assumed a small & = .001. Importantly, the model
demonstrates the shift between favoring the within-
domain candidate cause at baseline to favoring the cross-
domain candidate cause after evidence. We conducted an
experiment to test the predictions of this model.

Experiment 1

The goal of experiment 1 was to look at whether or not
children would also be able to integrate domain-general
learning with their strong domain-specific priors.

Methods and Design

Participants Thirty-two four and five-year-olds (range =
4;,0 to 5;11, M = 5;0) participated. Children were
randomly assigned to either a Baseline Condition or an
Evidence Condition.

Materials Two picture storybooks were used as the
stimuli (see Figure 2). Both books featured events
occurring over a week, starting on Monday and ending on
Sunday so children received 7 ‘days’ of evidence. The
Within Domain storybook featured a deer who liked to
run in different places. The deer got itchy spots on his
legs every morning. Evidence was presented as described
above: A&BE; A&C>E; A&D-E, etc. The recurring
candidate cause (A) was running through cattails, the
other cause varied (e.g., running through a meadow, a
garden, etc.) (To show that the effect was not always
present, the deer ran through different places in the
afternoons and never got itchy spots). The Cross Domain
book was identical except that it featured a bunny rabbit
who got a tummy ache in the mornings (but not the
afternoons). Feeling scared was the recurring cause; the
other candidate cause varied among types of food Bunny
ate (e.g., cheese, a sandwich, etc.) Two sets of each book
were created to counterbalance the order of events.

Procedure Each child was read both the within- and
cross-domains  storybook (order was counterbalanced)
in a quiet location. In the Evidence Condition, children
were asked at the end of the story, “Why does
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Figure 3: Model predictions and children’s responses in
Experiment 1.
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[Bambi/Bunny] have [itchy spots/tummy ache]? Is it
because of [running in the garden/eating a sandwich] or
because of [running in the cattails/feeling scared]?”
Children in the Baseline Condition saw the same
storybooks, only the Monday-Saturday events were not
included, and the story went straight to the final, Sunday

page.

Results

Preliminary analysis revealed no order effects. In the
Baseline Condition, children chose at chance between the
candidate causes in the within-domain storybook and
almost always chose the domain-appropriate variable
(food) in the cross-domains storybook. Children were
significantly more likely to identify A as the cause in the
Evidence Condition than at Baseline in both the within-
domain and cross-domains storybooks (within-domain: x*
(1, N=32)=10.67, p < .01 ; cross-domains: y*> (1, N =
32) = 5.23, p < .05). However, children were less likely
to choose A in the cross-domains storybook than in the
within-domain storybook, (y > (1, N = 32) = 10.67, p <
.01). See Figure 1 for details.

As shown in Figure 3, our model accurately predicted
children’s responses. The model gives correct relative
weights to the variables at baseline in both the within-
domain and cross-domains conditions. The model also
favored the posterior probability of ‘cattails’ over
‘garden’. It was slightly less successful at capturing the
degree to which children would choose ‘feeling scared’ as
the cause; the model predicted that the posterior
probability of ‘feeling scared’ as the candidate cause
should have been significantly greater than ‘sandwich’.
Children showed slightly greater resistance to parting
with their initial inductive biases. Importantly however,
the model captured the overall pattern of children’s
learning; children were significantly more willing to
select ‘feeling scared’ after seeing the evidence then at
baseline.



| | On Sunday Morning, ‘
/ | Bunny eats a sandwich; 1l

|
Bunny drinks some 1 | \
apple juice. Bunny
f thinks about show-and-
tell; Bunny feels scared.

Bunny has a ‘

| .y ! | tummy ache. “‘ \\

Why does Bunny have a tummy ache. Is it because of
drinking apple juice, eating a sandwich, or feeling scared?

Figure 4: Example page from cross-domains storybook
used in Experiment 2.

Discussion

As predicted by our Bayesian model, the results of
Experiment 1 suggest that domain-specific theories and
domain-general learning mechanisms interact. Children
were more likely to use the evidence to identify A as a
cause when A was consistent with their theories than
when A violated their theories. Critically however,
children also seemed to learn from the evidence. After
seeing the data, preschoolers were able to entertain a
causal possibility (that being scared might cause tummy
aches) that they did not endorse at baseline.

Although children reading the cross-domains storybook
identified A as a cause more often after seeing the
evidence than at baseline, only 50% of the children chose
A as a cause in the Evidence condition. Because children
were given a forced choice between two causes, it is
unclear whether these children were actually learning
from the evidence or if they were merely confused by the
cross-domain storybook and guessing at chance.

Experiment 2: Cross Domain Learning with
Multiple Variables

To address the concerns raised in the previous
experiment, we replicated the cross-domains Evidence
Condition of Experiment 1 but provided children with
three potential candidate causes (two within-domain
candidate causes and one cross-domain candidate cause).
If children are learning from the evidence, they should be
significantly more likely to pick ‘feeling scared’ than
either of the other variables; if children are confused by
the evidence, they should pick ‘feeling scared’ at chance
(33% of the time).

Methods and Design

Participants Sixteen 5-year-olds (range = 4;2 to 6;0, M =
4;10) participated.
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Figure 5: Model predictions and children’s responses in

Experiment 2. Dashed line represents chance.

Materials A cross-domains book similar to the Cross-
Domain book in Experiment 1 was created. However,
instead of only eating one food per day, Bunny ate one
food and drank one liquid and felt scared, (See Figure 4).
Evidence about the cause of tummyaches followed the
pattern: ABC > E, ADF> E, AGH - E, etc.

Procedure The procedure was identical to the procedure
in Experiment 1; however, children were only tested in
the Evidence Condition on the Cross-Domain book.

Results and Discussion

After seeing the evidence, children were significantly
more likely to identify C as the cause then at chance,
(binomial test, test proportion: 0.33, p < .05) indicating
that the children were not confused by the data, but rather
that they inferred that being scared was a possible cause
for Bunny’s tummy ache, (see Figure 5). Children did
not choose either of the other two variables above chance
(binomial test, test proportion: 0.33, p = ns). Using the
same parameter values for p and ¢ as in Experiment 1, our
model was also able to predict the children’s response,
(see Figure 5). Importantly, the model predicted a strong
posterior probability of the cross-domain cause, but
relatively weak posteriors on other two within-domain
candidate causes, sandwiches and apple juice. The results
from Experiment 2 corroborate the findings in
Experiment 1 and suggest that children learn from the
evidence and are able to overcome their initial theories.

Discussion

This research demonstrates the important contributions
that domain-specific theories make to children’s
interpretation of evidence, as well as the role that
evidence can play in affecting domain-specific beliefs.
We have also offered a formal account of children’s
theory-based learning in terms of Bayesian inference. By
providing a formal account, we hope to make clear the



interaction between domain-specific prior knowledge and
domain-general learning mechanisms.

In our framework domain-specific knowledge is
captured by the priors specified by the framework theory,
and domain-general learning is represented in terms of
Bayesian inference. The framework theories represent the
set of constraints on possible causal relations and
Bayesian modeling provides a framework for learning
these constraints at multiple levels. From the studies
presented here, it is unclear whether children in our
experiments underwent theory change (at the framework
level), or if children instead simply learned something
specific about Bunny’s unfortunate condition, without
updating their beliefs about psychosomatic illness in
general.  While the broader question of learning
framework theories is beyond the scope of this paper, in
principle, theory-based Bayesian inference could capture
this more general learning. As children accumulate
evidence about instances of psychosomatic illness, the
prior for cross-domain causal events in general (i..e.,
psychological causes generating biological effects)
increases. However, future work might look at the extent
to which patterns of evidence can effect genuine theory
change.

Although the content of children’s framework theories
and the priors over those theories may differ from adult
theories, Bayesian inference suggests a universal system
for integrating theories and evidence. Most importantly,
this computational account captures a hallmark of
children’s causal theories: that children’s inferences are
conservative with respect to their prior knowledge and yet
flexible in the face of new evidence.
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