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Abstract

To investigate the interaction of new information with deeply
entrenched knowledge, we introduced participants to
hyperbolic geometry, a form of non-Euclidean geometry. We
trained participants through two different but mathematically
equivalent forms: lines or figures. Participants who were
trained on closed figures showed greater transfer than
participants who were trained on lines. We gave participants
different kinds of reminders at test to facilitate transfer.
Explicit requests to apply training information to test items
yielded no improvement, but presenting participants with
relevant principles (but without information on how to apply
those principles) greatly improved performance.

Keywords: Conceptual change; mathematics; non-Euclidean
geometry.

Introduction

People don’t learn a new domain of knowledge from
scratch. Instead they have to integrate new information with
their pre-existing beliefs, some of which may be false or
inconsistent with the new knowledge. What happens when
people confront information that conflicts with facts they
hold true, especially when those facts are deeply
entrenched?

This is the issue explored by research on conceptual
change: the restructuring and perhaps abandonment of
knowledge rather than the simple addition of new facts to a
knowledge base. Most empirical work on conceptual change
has focused on change in people’s beliefs about scientific
matters, such as children’s concepts of animacy, models of
the earth, and force (e.g., Carey, 1985; Vosniadou &
Brewer, 1992; loannides & Vosniadou, 2001). Only recently
have investigators pursued conceptual change in
mathematics, including the development of the concept of
fractions (Stafylidou & Vosniadou, 2004), rational numbers
(Merenluoto & Lehtinen, 2004), negative numbers (Vlassis,
2004), and the illusion of linearity in geometry (Van Dooren
et al., 2004).

Vosniadou and Verschaffel (1994) review several reasons
why researchers and philosophers may have been reluctant
to apply conceptual change theories to mathematics. One
reason is that mathematics proceeds by deductive rather
than empirical methods. Unlike explanatory models in
physics or biology, which are developed and refined with
the discovery of new data, coherent mathematical systems
often do not depend on physical experience. While some
mathematical concepts may be facilitated by sensory
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information, such as the relationship between Euclidean
geometry and the observable world, other concepts are
outside our experience (e.g., inaccessible cardinal numbers)

or are even inconsistent with previously acquired
knowledge (e.g., hyperbolic geometry). In addition,
successive theories in math are not necessarily

irreconcilable. In fact, as Corry (1993) points out, a new
development in mathematics often does not lead to the
rejection of the older theory but to a more generalized
approach.

These factors make radical change in mathematics less
salient than in science. Nevertheless, precisely because
students expect mathematical knowledge to be unchanging,
it can be especially difficult for them to encounter advanced
math topics that force them to reconceive existing
knowledge. This makes conceptual change in mathematics a
particularly interesting area for study and a potential source
of insight into how deeply entrenched knowledge interacts
with new information.

Geometry lends itself well to this investigation.
Hyperbolic geometry, a form of non-Euclidean geometry, is
an interesting target for the study of conceptual change
because of its conceptual similarities and dissimilarities to
Euclidean geometry. In fact, the axioms of the two are
identical, with one major exception: the replacement of the
parallel postulate with the hyperbolic postulate. While in
Euclidean geometry a line and an external point define a
unique pair of non-intersecting lines, in hyperbolic
geometry the two objects define an infinite set of non-
intersecting pairs of lines. That is, given a line / and a point
P not on that line, there are an infinite number of lines
through P that do not intersect line / (rather than just one, as
in the case of Euclidean geometry), as shown on the
pseudosphere model in Figure 1.

Figure 1. Hyperbolic parallel lines.



This property has important consequences for the
mathematical objects and theorems in hyperbolic geometry
and, indeed, for the very plane in which the geometry lies.
While many geometric theorems are true in both Euclidean
and hyperbolic geometries, others change dramatically. For
example, in hyperbolic geometry, the interior angles of a
triangle must add to less than 180°. Similarly, hyperbolic
rectangles (quadrilaterals with four right angles) do not
exist.

An understanding of both Euclidean and non-Euclidean
geometry produces a different perspective on geometry as a
whole. Hyperbolic geometry triggered a major change in
philosophy, mathematics, and science in the nineteenth
century. Following the realization that Euclidean geometry
was not the only logically consistent geometry, mathematics
evolved into an exploration of formal, logically consistent
systems rather than systems that directly served the needs of
science. It is therefore a real-world example of conceptual
change in mathematics, a change that succeeded despite the
counterintuitive nature of its conclusions. The question of
how people manage to understand such a system seems
especially pressing in view of evidence that basic geometric
concepts are universal. Recent work by Dehaene, Izard, Pica
& Spelke (2006) with an indigenous Amazonian group
suggests that geometric concepts, such as points, lines, and
parallelism, are core geometric intuitions available to all
humans, regardless of formal instruction, accessibility of
geometric terms in language, or experience with maps.

In the current studies, we were interested in how well
people who had been exposed to Euclidean geometry
through formal instruction in secondary school learned
information about hyperbolic geometry. Developmental
research has shown that children tolerate contradictory
information as they learn (e.g., to integrate information that
the Earth is round and their experience that is it flat,
children construct a model of the Earth as a hollow sphere
in which we live; Vosniadou & Brewer, 1992). But such
inconsistent representations would render a mathematical
system useless.

One might think that, since both Euclidean and hyperbolic
geometries share most of the same postulates, the transfer
between them would go fairly smoothly. However, small
changes in core principles can also lead to interference
between the systems, slowing down students’ progress.

The present studies compare ways of conveying non-
Euclidean information to see which methods facilitate or
impede conceptual change.

Experiment 1: Figure vs. Line Training

We designed the first study to investigate whether
emphasizing the holistic properties of the system or local
building blocks better facilitated an understanding of
hyperbolic geometry. While holistic information about the
system may allow an individual to understand the
relationships between different elements, it is also likely to
interfere with previously acquired knowledge. On the other
hand, although learning basic, more elemental information
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may provide a stronger foundation with less overall
interference, it also has fewer explicit connections to other
elements. Although the brief training participants receive is
probably not sufficient to produce full-blown conceptual
change, it can nevertheless provide an indication of the
nature of the obstacles to such change.

In Study 1, participants learned hyperbolic information
using either information about lines or closed figures. We
wanted to see which type of information would lead to
better generalization and transfer to hyperbolic objects not
seen in training. Given that closed figures are composed of
lines, it might be reasonable to expect that participants who
receive hyperbolic training on figures would be better able
to apply that information to lines than vice versa. If the
closed figures provide information about their constituent
elements, including lines, and make the relationships
between the elements more accessible, then figure-trained
participants solving line problems should outperform line-
trained participants on figure problems. This is much like
Larkin & Simon’s (1987) conclusion that a diagram groups
information in a way that facilitates processing and
problem-solving. Similarly, closed figures (as compared to
lines) may group conceptual information in a way that
enhances accessibility and abstraction.

In contrast, lines can be seen as building blocks for closed
figures. If the figure training condition requires participants
to break down the analysis into lines and then synthesize it
back into figures, we would expect the line condition to
promote generalization more easily.

The hyperbolic postulate—the postulate which differs
from the parallel postulate in Euclidean geometry—can be
instantiated in a variety of mathematically equivalent forms,
as seen in Table 1.

Table 1. Hyperbolic postulate equivalents.

Line instantiations

Given a line L and a point A not on that line, there are an
infinite number of lines through point A that do not
intersect line L.
If two non-intersecting lines are cut by a transversal, the
alternate interior angles formed are unequal.

Closed figure instantiations
The interior angles of a triangle must add to less than 180
degrees.
If a quadrilateral has at least three right angles, the
diagonals cannot bisect one another.

The top two postulates in the table refer to properties and
relationships among lines, while the bottom two speak to
properties of closed figures. We were able to use these
mathematical equivalencies to construct two sets of training
information: one about the properties of hyperbolic lines
and a second about properties of hyperbolic closed figures
(quadrilaterals and triangles).

Procedure In this computer-based task, participants first
reviewed geometry terminology (e.g., alternate interior



angles, congruent) that they would later see during training.
After a pretest consisting of true/false questions to establish
baseline Euclidean geometry knowledge, participants read
one of two sets of hyperbolic training information, based on
different but mathematically equivalent statements of the
hyperbolic postulate, as in Table 1. In the line training
condition, information was presented in terms of lines,
while in the figure training condition, participants learned
information about closed figures (e.g., triangles and
quadrilaterals). The training information contained
appropriate diagrams that had been constructed using a
Poincaré disk, a model that represents hyperbolic geometry
such that angle congruence has the usual Euclidean meaning
(Greenberg, 1993). To control for the complexity of the
diagrams, line-trained participants viewed diagrams in
which the relevant lines appeared within closed figures, but
these lines were highlighted on the screen.

Participants proceeded through the training information at
their own pace, pressing the space bar to advance. After
reading the training material, the participants received a test
on the material, consisting of ten true/false questions.
Although they received no feedback on the individual items,
participants who missed one or more of the questions had to
re-read the training materials. Training was repeated until
they obtained a perfect score.

At posttest, all participants responded to the same forced-
choice test items that they had seen in the pretest,
concerning properties and relations of both lines and closed
figures.

Materials The pre- and post-test items were identical in the
two conditions and consisted of 45 true/false statements.
Twenty of the statements referred to lines, twenty referred
to closed figures. The remainder were filler items that
referred to angles. The line and figure statements were
constructed similarly and phrased such that half the
statements of each type were true. For both types of
statements, one half were absolute items—statements that
had same truth value in hyperbolic and in Euclidean
geometry (e.g., Through any one point there exists an
infinite number of lines that pass through the point). The
test items were presented on the screen as text statements.
No diagrams were included with the test items. Absolute
items were basic geometric principles that participants
would have learned in secondary school geometry class. We
could not expect that the undergraduate participants would
come to the task free from all geometric knowledge, and
both the question of interest and the practical considerations
of the experiment required that the new information
“piggyback” on the previously acquired geometric
knowledge.

One half the test questions were relative items. That is,
the truth values were different in the two geometries (e.g., If
lines A and B are a pair of non-intersecting lines, then any
line which intersects A must also intersect B). Both the
relative items and the absolute items were phrased in such a
way that the answers would be true for half the items in
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either geometry. In addition, some of the items were
paraphrases of the training material or very closely related
to it, while other items (hereafter, transfer items) required a
number of inferences from the training information. While it
was possible to construct proofs justifying the figure
information from the line information (and vice versa),
these proofs were not provided to participants, and they may
sometimes be nontrivial (see the Appendix for an example).

Participants  Sixty-seven = Northwestern  University
undergraduates participated in the experiment, 34 in the
line-training condition and 33 in the figure-training
condition. The participants received partial course credit for
an introductory psychology class.

Results and Discussion

To measure learning of the new hyperbolic information, we
looked at performance on the transfer items. Not
surprisingly, when participants were tested on their new
hyperbolic knowledge, they did not perform as well as they
did on the Euclidean pretest. Overall, posttest scores fell by
28 percentage points from pretest to posttest. In addition,
participants performed best on the object type on which they
had been trained. Participants in the figure condition were
correct on 75% of figure items, but only 55% of line items.
Participants in the line condition were correct on 68% of
line items, but on 60% of figure items. Because the accuracy
data are binary (either correct or incorrect), we performed a
logistic regression to assess the effects of the independent
variables, and we report the Wald test (Q,,) for these effects
(Hosmer & Lemeshow, 1989). The interaction between
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Figure 2. Posttest accuracy on hyperbolic transfer items,
Experiment 1.



training condition and type of test item was significant in
this analysis: O,(1) = 18.41, p <.001.

The key issue in this experiment is whether figure training
or line training was more successful in conveying
knowledge of hyperbolic geometry. Figure 2 shows the
relevant data for the posttest items and indicates that
participants in the figure-training condition performed better
overall at posttest than did those in the line-training
condition. The difference between training conditions is
significant (Q,(1) = 4.29, p=.03), as is the interaction
between condition and test item (Q,(1) = 29.07, p <.001).
Accuracy for both groups was greater for the items on
which they were trained. However, performance by the line-
trained participants dropped to a below-chance score on the
figure items, #(135)=4.57, p <.001. This likely reflects a
tendency to respond on the basis of prior Euclidean
knowledge rather than the new hyperbolic information.

One interpretation of these results is that participants in
the line-training condition were simply not learning the
training information as well as those in the figure-training
condition. Perhaps the line training was more difficult or
confusing. However, participants in the two conditions
achieved the same criterion-level performance during
training and were about equally accurate during the posttest
on the types of items for which they had been trained (line
trainees on line items and figure trainees on figure items;
see Figure 2). This makes it unlikely that participants in the
line condition learned their training lesson less well than
those in the figure condition. Another possibility is that the
line information was more quickly forgotten, but since the
test items immediately followed the final criterion test, this
also appears unlikely.

Another  straightforward  explanation for  poor
performance is that participants in the line training condition
simply didn’t realize that the line information was relevant
to the posttest figure items. In fact, we were struck by the
number of participants who responded to our open-ended
questions at the end of the experiment by saying that they
hadn’t been taught anything about figures or didn’t realize
that the line information was applicable. They may have
learned the material well, but suffered from a kind of
fixedness in the way they thought about the different types
of objects (e.g., Duncker, 1945). That is, it is possible that—
unless we are engaged in intentionally constructing
geometric closed figures from lines—Ilines and figures
appear to be completely different animals. Because figures
may highlight relationships among their constituent entities,
figure-trained participants may be less susceptible to this
“objectification” of the items. If all that participants need is
the insight that the line information should be applied to the
closed-figure items, then an explicit reminder to apply
hyperbolic line information to the figure items should
produce improved transfer.

An alternative explanation is that, although participants in
the line condition may have perceived the relevance of lines
to figures, they weren’t in a position to identify which line
facts were appropriate when solving the figure problems.
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The figures themselves may have suggested irrelevant
Euclidean information from prior knowledge of geometry.
As we noted earlier, these participants’ below-chance scores
on figure items suggests this type of interference. For
example, participants may understand the description
quadrilateral formed by two pairs of non-intersecting lines
simply as parallelogram, without thinking more deeply
about the lines in the figure. Under these circumstances, we
might expect that participants would have difficulty
integrating the hyperbolic information into their knowledge
of figures and would respond incorrectly with Euclidean
answers. In contrast to line training, figure training may
guide transfer of the abstract geometric information from
figures to lines, allowing participants to apply the relevant
relations to the test items. Just as it is easier to take apart a
complex device into its components than to reconstruct it
from those components, it may be easier to decompose
knowledge of figures into knowledge of its component lines
than to apply the reverse transformation. Decomposition
may be a simple consequence of inherent part-whole
relations; construction may require additional, explicit
guidance.

If it is inherently more difficult to identify the relevant
geometry information after hyperbolic line training, then
simply reminding participants to use this information may
not be enough. Instead, it may be necessary to provide
explicitly the training information relevant to each figure
item in order to make the connections between line and
figure. This should facilitate use of the appropriate abstract
geometric information and improve performance on the
figure items at posttest.

By providing participants with different strengths of hints,
Experiment 2 attempts to diagnose the difficulties with
transfer from facts about hyperbolic lines.

Experiment 2: Hints during Test

Previous work in knowledge transfer has demonstrated that
explicit reminders to use prior information may improve
transfer, although with varying levels of success (e.g., Gick
& Holyoak, 1980; Ross, 1984). To investigate the extent of
the reminding necessary to improve generalization of line
training to figure items, we decided to train participants on
facts about hyperbolic lines and vary the instructions at
posttest. In Experiment 1, we told participants to use the
information they had just learned to answer the posttest
items. In the current experiment, we tested what information
would facilitate transfer.

If participants in the line-training condition simply didn’t
realize that the line information they had just learned could
also be applied to the figure items—as many of them
claimed—then a hint to relate the figures to the lines should
improve performance at posttest. If, on the other hand, the
difficulty lay in identifying or selecting the appropriate
hyperbolic line-training information from what they had
learned, then a mere hint to use the line information should
not lead to transfer. However, explicitly reminding



participants that a specific piece of line-training information
is relevant may improve transfer to figure items.

Procedure and Materials The procedure and materials in
Experiment 2 were similar to Experiment 1 with the
following exceptions: 1) all participants saw hyperbolic line
training materials and 2) participants saw one of three kinds
of instructions immediately before the posttest items. The
control group received the same instructions as participants
in Experiment 1: They were told to respond to the items
based on the geometry information they had just studied and
the logical inferences from that information. The hint group
received instructions emphasizing that, although they had
not learned about figures, they should think about how
figures were constructed from lines and, therefore, how the
properties of hyperbolic lines would affect hyperbolic
closed figures. The specific reminder group was presented
with the same instructions as the hint group before posttest,
but also saw 2—4 relevant statements from line training
along with the relative test items. They were told that the
information was relevant to the problem, but were not given
any additional direction about how they should apply the
line information. These “reminders” from the training
information were statements that they had previously
learned in order to pass criterion during training.

Participants  Thirty-one = Northwestern  University
undergraduates participated in the experiment in order to
receive partial course credit in introductory psychology.
There were 10 participants in the control condition, 10 in
the hint condition, and 11 in the specific-reminder
condition. None had participated in Experiment 1.

Results and Discussion

As in Experiment 1, participants’ accuracy decreased from
pretest to posttest, in this case by an average of 24
percentage points, Q,(1) = 40.76, p < .001. Because all
participants were trained on lines in this experiment, the
decrease in performance was more pronounced for figure
items than for line items, Q,(1) =25.03, p <.001.

The main point of interest is the effect of the reminders,
and Figure 3 shows the relevant accuracy rates for the three
groups of participants during the posttest. Participants who
received specific reminders were about equally accurate on
figure items as on lines, and they were the only group to
achieve above-chance accuracy on figure items. This
performance contrasts with that from the hint and the
control groups, who were more accurate on lines than on
figures. These groups apparently failed to transfer line
knowledge to figure items. This difference between
conditions produced a reliable interaction between hint type
and item type, 0,(2) = 9.81, p = .007. The control group’s
scores in the posttest were comparable to performance of the
line-training group in Experiment 1 (compare the line-
training condition in Figure 2). The hint group showed a
trend toward improved performance on figure items, but this
was not significant in our analysis, O,(1) = 1.49, p = .22.

The results from Experiment 2 suggest, then, that
participants trained on hyperbolic line items need more than
just a hint in order to apply the line information to the figure
items. When participants are reminded of relevant line
information in the context of the figure items, they appear
better able to access and apply the relevant relationships
between lines and figures. As we noted earlier, the
inferences that participants needed to use this information
were not necessarily easy. It is therefore of interest that
simply naming the appropriate premises improved
performance on figure items by about 40 percentage points,
as Figure 3 shows.
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Figure 3. Posttest scores on transfer items, Experiment 2.

General Discussion

Everything we learn must be integrated into our existing
knowledge. How this integration proceeds is a central
question in the fields of concepts and problem solving.

In the current experiments, we looked at knowledge
change in learning non-Euclidean geometry. We found that
participants who received geometry training in terms of
lines showed less transfer of knowledge than did
participants who learned the information in terms of closed
figures. We suggest that the figure training may have
provided holistic information about line relationships,
leading to advantages in applying geometric relations from
figures to lines. In turn, this resulted in asymmetric transfer
for the two training conditions in Experiment 1.

Even though some participants in the line-training
condition reported they simply “hadn’t realized” that they



should apply the line information to figures, explicit
instructions to do so in a follow-up experiment did not
reliably improve transfer. Presenting participants with
relevant training information at posttest, however, did
significantly improve transfer from lines to figures. This
further supports the idea that differences in the ease with
which people can identify relevant information may be
underlying the performance differences that we found in the
first experiment.

The current studies reveal intriguing patterns in the way
people incorporate new, possibly counterintuitive,
mathematical information into their existing knowledge.
Despite the additional complexity and processing
requirements of hyperbolic geometric figures, participants
seem to benefit more from encoding the new information in
the form of figures than in the form of simple lines. For
these purposes, more structured, holistic input seemed to be
superior to training that focused on more specific building
blocks. Although the highlighting of relational information
seems a promising avenue for explaining these effects,
future research should explore these issues more deeply. For
example, both the extent of processing at the point of
problem solving, as well as differences in Euclidean
interferences would be candidate phenomena for study.
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Appendix. Example of informal proof

If we know information only about hyperbolic lines but
need to determine how many right angles may be present in
a hyperbolic quadrilateral, we may start with the fact that
there can be at most one common perpendicular between
any two nonintersecting lines. We can then form a closed
figure by using the two nonintersecting lines as the base and
summit of the quadrilateral, the common perpendicular as
one side, and then drawing a second line segment between
the two nonintersecting lines. However, the last segment
may be constructed at a right angle to only one of the
original non-intersecting lines, or the two non-intersecting
lines will have more than one perpendicular in. common. As
a result, the hyperbolic quadrilateral may have at most three
right angles.
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