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The Problem of Testing Learning Rates 
For over a hundred years, psychologists have tried to 
describe and understand human learning.  While many 
models disagree on the nature of the process, most agrees 
that the performance is well described by a power function 
(Newell and Rosenbloom, 1981). This equation has a 
curvature parameter as well as two scaling parameters. 

Recent models are making quantitative predictions on the 
learning rate, which is represented by the curvature 
parameter of the function.  For example, Logan’s race 
model (Logan, 1988) predicts that standard deviations and 
means of response times will decrease at the same rate.  The 
most intuitive way to test this hypothesis is to estimate the 
best-fitting parameters and to apply a statistical test on those 
estimations.  The problem with this approach is that those 
estimations are highly biased (Cousineau, Hélie and 
Lefebvre, in press). 

In the late fifties, Rao (1959) proposed a test of linear 
hypothesis.  By assuming that the learning rates are equal, 
the power functions (or any other learning model 
postulated) become a linear combination of each other, 
irrespective of the scaling parameters.  However, since 
learning data tends to be noisy, the power of Rao’s test was 
limited.  In order to reduce the effects of noise, Cousineau, 
Hélie and Lefebvre (in press) proposed to apply Rao’s test 
on block-average data.   

An Example of Application 
In recent works (Hélie, Cousineau, Lefebvre and 
Charbonneau, 2002), we postulated the existence of two 
types of stimuli (integral and separable) and two kinds of 
tasks (conjunctives and disjunctives).  When there is a 
match between task demands and stimulus type, the learning 
rate would be faster then when there is a mismatch.  In order 
to test this hypothesis, four experimental conditions where 
created: two match conditions (integral / conjunctive and 
separable / disjunctive) and two mismatch conditions 
(integral / disjunctive and separable / conjunctive).  The 
learning curves obtained on 4 sessions of 512 trials are 
shown on Figure 1.  Our predictions are: 1) the curvature 
parameter will be higher for match conditions then for 
mismatch (faster learning), 2) the curvature (learning rate) 
of the two match conditions will not differ and, 3) the same 
pattern of results will be present in the mismatch conditions. 
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Figure 1: Results of the experiment presented by Hélie, 
Cousineau, Lefebvre and Charbonneau (2002) 

 
The test of linear hypothesis, as augmented by Cousineau 

et al. (in press) confirmed these predictions. 
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