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Abstract

We examinetheinfluence of inferring interlocutors' refer-
ential intentions from their body movements at the early
stage of lexical acquisition. By testing human subjects
and comparing their performances in different learning
conditions, we find that those embodied intentions fa-
cilitate both word discovery and word-meaning associa
tion. In light of empirical findings, the main part of this
paper presents a computational model that can identify
the sound patterns of individual words from continuous
speech using non-linguistic contextual information and
employ body movements as deictic references to discover
word-meaning associations. To our knowledge, thiswork
isthe first model of word learning which not only learns
lexical items from raw multisensory signalsto closely re-
semble natural environments of infant development, but
aso explores the computational role of social cognitive
skillsinlexical acquisition.

Introduction

To acquire a vocabulary item, a young language |learner
must discover the sound pattern of aword from continu-
ous speech since spoken language lacks the acoustic ana
log of blank spaces of written text. Furthermore, learn-
ing aword involves mapping a form, such as the sound
“cat”, to ameaning, such asthe concept of cat. The child
senses amultitude of co-occurrences between words and
things in the world, and he or she must determine which
co-occurrences are relevant.

In the last ten years, there has been tremendous
progress in understanding infants ability to segment
continuous speech, discover words and learn their mean-
ings. Most research focuses on the role of linguistic in-
formation asthe central constraint. A number of relevant
cues have been found that are correlated with the pres-
ence of word boundaries and can potentially signal word
boundariesin continuous speech. Theseinclude prosodic
patterns (e.g., Cutler & Butterfield, 1992), phonotactic
regularities (e.g., Mattys & Jusczyk, 2001), allophonic
variations (e.g., Jusczyk, Hohne, & Bauman, 1999)
and distributional probability (e.g., Aslin, Woodward,
laMendola, & Bever, 1996; Brent & Cartwright, 1996).
Recent computational approaches on child-directed cor-
pora have also reveaded that relatively simple statistical
learning mechanisms could make an important contribu-
tion to certain aspects of language acquisition (for review
see Brent, 1999).

Recently, a popular explanation of the word learning
problem termed associationism assumes that language
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acquisition is solely based on statistical learning of co-
occurring data from the linguistic modality and non-
linguistic context. Richards and Goldfarb (1986) pro-
posed that children come to know the meaning of aword
through repeatedly associating the verbal label with their
experience at the time that the label is used. Roy and
Pentland (2002) have developed a computational model
of infant language learning, in which they used the tem-
poral correlation of speech and vision to associate spo-
ken utterances with a corresponding object’s visual ap-
pearance. It seems quite reasonable to assume that the
human cognitive system exploits this statistical informa:
tion. However, despite the merit of thisidea, association-
ismis unlikely to be the whole story because it is based
on the assumption that words are always uttered when
their referents are perceived, which has not been verified
by experimental studies of infants (Bloom, 2000).

In addition to tempora co-occurrences of multisen-
sory data, recent psycholinguistic studies (e.g., Baldwin
et al., 1996; Bloom, 2000; Tomasello, 2001) have shown
that other major sources of constraintsin language acqui-
sition are social cognitiveskills, such as children’ sability
to infer the intentions of adults as adults act and speak to
them. These kinds of social cognitions are called mind
reading by Baron-Cohen (1995). Bloom (2000) argued
that children’s word learning actually draws extensively
on their understanding of the thoughts of speakers. His
claim has been supported by the experiments in which
young children were able to figure out what adults were
intending to refer to by speech. Baldwin et al. (1996) ref-
erential intent when determining the reference of a novel
label. showed that infants established a stable link be-
tween the nove label and the target toy only when that
label was uttered by a speaker who concurrently showed
his attention toward the target, and such a stable map-
ping was not established when the label was uttered by a
speaker who was out of view and hence showed no signs
of attention to the target toy.

In acomplementary study of embodied cognition, Bal-
lard, Hayhoe, Pook, and Rao (1997) proposed acognitive
system of implicit reference termed deictic, in which the
body’s pointing movements are used to bind objects in
the world to variables in cognitive programs of human
brain. Also, in the studies of speech production, Cooper
(1974) found speakers have a strong tendency to look to-
ward objects referred to by speech.



By putting together al those ideas on shared atten-
tion and intention, we propose that speakers’ body move-
ments, such as eye, head and hand movements, can re-
ved their referential intents in verbal utterances, which
could possibly play a significant role in early language
development. A plausible starting point of learning the
meanings of words is the deployment of speakers’ in-
tentional body movementsto infer their referential inten-
tionswhich weterm embodied intention. Thiswork takes
some first steps in that direction by examining the prob-
lem through both empirical research and computational
modeling with the hope to obtain a more complete pic-
ture. The next section presents the experiments that use
adult language learners exposed to a second language to
study the role of embodied intention in infant language
acquisition. In light of the human subject study, we then
propose a computational model of word learning to sim-
ulate the early stage of infant vocabulary learning. The
implemented model is able to build meaningful semantic
representations grounded in multisensory inputs. The es-
sentia structure models the computational role of thein-
ference of speakers’ referential intentions by making use
of body movements as deictic references (Ballard et d.,
1997), and employs non-linguistic information as con-
straints on statistical learning of linguistic data.

Human Simulations

Previous language-learning studies have shown similar
findings for adults exposed to an artificial language and
children or even infants exposed to the same type of lan-
guage (Saffran, Newport, & Adlin, 1996). This suggests
that certain mechanisms involved in language learning
are available to humans regardless of age. Lakoff and
Johnson (1999) argued that children have already built
up pre-linguistic concepts (internal representations of the
world) intheir brains prior to the devel opment of 1exicon.
Thus, if we assume that those concepts are already estab-
lished, the lexical learning problem would mainly deal
with how to find a sound pattern from continuous speech
and associate this linguistic label with a concept previ-
ously built up. Aspointed out by Gillette et a. (Gillette,
Gleitman, Gleitman, & Lederer, 1999), although the rep-
resentations of concepts of adults may differ from those
of young children, there should be little difference be-
tween adults and children with regard to acquiring sim-
ple words as long as they are provided with the same
information. In light of this, our first experiment was
conducted with monolingual adults exposed to a second
language to shed light on the role of embodied intention
in the early stage of infant language learning. The ex-
periment consists of two phases. In the training phase,
subjects were asked to watch avideo and try to discover
lexical items. In the testing phase, they were given the
tests of both speech segmentation and lexical learning.

Methods

Participants. 18 monolingual English speaking stu-
dents at the University of Rochester participated in this
study, and were paid for their participation. Subjects
were randomly assigned to two experimental conditions,
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with 9 subjectsin each condition.

Stimuli.  Subjects were exposed to the language by
video. In the video, a person was reading the picture
book of “I went walking” (Williams & Vivas, 1989) in
Mandarin. The book isfor 1-3 year old children, and the
story is about a young child that goes for awalk and en-
counters several familiar friendly animals. The speaker
told the story in away similar to a caregiver describing it
to achild. For each page of the book, subjects saw a pic-
ture and heard verbal descriptions. The study included
two video clips that were recorded simultaneously when
the speaker was reading the book, and provided differ-
ent learning conditions for subjects: audio-visua condi-
tion and intention-cued condition. In audio-visua condi-
tion, the video was recorded from a fixed camera behind
the speaker to capture a static view. In the intention-
cued condition, we recorded video from a head-mounted
camera to get a dynamic view. Furthermore, an eye
tracker was utilized to track the course of the speaker’s
eye movements and gaze positions were overlapped on
the video to indicate what the speaker was attending to.
Auditory information is same in both videos. Figure 1
shows the snapshots from two video clips.

Figure 1: The snapshots when the speaker uttered “the cow is
looking at the little boy” in Mandarin. Left: a snapshot from
thefixed camera. Right: asnapshot from ahead-mounted cam-
erawith the current gaze position (the white cross).

Procedure. Subjectswere shown video clipson acom-
puter monitor and asked to try to identify both sound
patterns of individual words and their meanings. They
watched the same video five times before being tested,
and were given the opportunity to take a break in the
middle of each session, but few did.

Test. Subjects were given two written multiple-choice
tests: aspeech segmentation test and aword learning test.
There were 18 questions in each test. For every ques-
tion in the first test, subjects heard two sounds and were
asked to select one that they thought was a word but not
aphrase or a syllable. They were given as much time as
they wanted to answer each question. A second test was
used to evaluate their knowledge of lexical items|earned
from the video. The images of 12 objects in the picture
book were displayed on a computer monitor. Subjects
heard one isolated spoken word for each question and
were asked to select an answer from 13 choices (12 ob-
jects and also an option for none of the above).

Results

Figure 2 shows the average correct answers of two tests.
In the speech segmentation test, subjects made signifi-
cantly more errors in the audio-visua condition (M =
12.1,SD = 1.2) than in the intention-cued condition



(M = 14.6,SD = 1.5). The further anaysis re-
vealed asignificant main effect of conditions F'(1,16) =
23.19,p < 0.001. For word learning, a direct compari-
son of the intention-cued condition (M = 12.2,SD =
2.3) with the audio-visual condition (M = 4,SD
2.2) also revealed a significant difference (F'(1, 16)
54.67,p < 0.001). This human subject study provides
substantial evidence for the hypothesis that embodied in-
tention plays an important role in language acquisition.
This proposal suggests that aformal model that explores
the computational role of embodied intention in lexical
development, should show similar advantages to inten-
tional cues.
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Figure 2: The mean percentages of correct answers in tests.

Computational Simulations
We supplement our empirical studies with a computa-
tional account. By implementing the descriptions of the
theories or claims explicitly in computer simulations, we
can not only test the plausibility of the theories but also
gain the insights of both the nature of the problems and
the possible solutions.

To simulate how infants ground semantics, our model
needs to be embodied in the physical environment and
sense the environment as a young child. To do so, we
attached multiple sensors to an adult subject who was
asked to act as a caregiver and perform some everyday
activities, one of which was reading a picture book for
a young child. Those sensors include a head-mounted
CCD camera to capture visua information of the physi-
cal environment, a microphone to sense acoustic signals,
an eye tracker to track the course of eye movements, and
position sensors attached to the head and hands of the
caregiver. In this way, our computational model (as a
young language learner) can acquire multisensory data
so that it shares the visua environment with the care-
giver, hears infant-directed speech uttered by the care-
giver and observes his or her body movements, such as
gaze and head movements, which are deployed to infer
the caregiver'sreferential intentions.

TheModél

To learn words from a caregiver's spoken descriptions
(shown in Figure 3), three fundamental problems needed
to be addressed are: (1) object recognition to identify
grounded meanings of words from visual perception,
(2) speech segmentation and word spotting to extract
the sound patterns of the individua words which might
have grounded meanings, (3) association between spo-
ken words and their meanings.
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-- now the little boy is walking.

-- all the animals follow him.

-- the cat is in the rear.

-- then the horse and the cow.

-- the duck and the pig are
lined up and walking.

-- the dog is next to the boy.

phoneme strings

--nowthehahlihtlboyiy
ehswawlkihng.

--aw | hhthehehnihmowz
-‘ﬂ}ﬂh —> [ferlowhhihm hh.

-—-thehkaetcltihsihntheh
rae erih.
--thehnihthehhaorzehn
del d thih k aw.
--th eh dcl d uh kel k eh d th
ihpclpiygelgiherlaynuh
ehihhhdwaw I kel k ih ng.
--thehdcldaogehznehix
tuw th eh b oy iy.

- h haorz 3
ndcldthih Kaw

-- th e+ [del'd uh'kel K

ih |pel p iy gel g«itrer | a)
ehih hh d w aw | kcLkibiig.
--th eh deld a0 g°elr7 n eh ix
tuw th eh Boy.

Figure 3: The problemsin word learning. The raw speech
is firstly converted into phoneme sequences. The goa of our
method is to discover phoneme substrings that correspond to
the sound patterns of words and then infer the meanings of
those words from non-linguistic modalities.

Clustering Visually Grounded Meanings The non-
linguistic inputs of the system consist of visual datafrom
ahead-mounted camera, head positions and gaze-in-head
data. Those data provide the contexts in which spoken
utterances are produced. Thus, the possible referents of
spoken words that subjects utter are encoded in those
contexts, and we need to extract those word meanings
from raw sensory inputs. As a result, we will obtain
a tempora sequence of possible referents depicted by
the box labeled “intentional context” in Figure 4. Our
method firstly utilizes eye and head movements as cues
to estimate the subject’s focus of attention. Attention,
as represented by eye fixation, is then used for spotting
the target object of subject’sinterest. Specifically, at ev-
ery attentional point in time, we make use of eye gaze as
a seed to find the attentional object from all the objects
in a scene. The referential intentions are then directly
inferred from attentional objects. We represent the ob-
jects by feature vectors consisting of color, shape and
texture features. For further information see Yu, Ballard,
and Zhu (2002). Next, since the feature vectors extracted
from visual appearances of attentional objects do not oc-
cupy adiscrete space, we vector quantize them into clus-
ters by applying a hierarchical agglomerative clustering
algorithm. Finally, for each cluster we select a prototype
to represent perceptual features of this cluster.

Comparing Phoneme Sequences We describe our
methods of phoneme string comparison in this subsec-
tion. Detailed descriptions of agorithms can be obtained
from Ballard and Yu (2003). First, the speaker indepen-
dent phoneme recognition system is employed to con-
vert spoken utterances into phoneme sequences. To fully
simulate lexical learning, the phoneme recognizer does
not encode any language model or word model. There-
fore, the outputs are noisy phoneme strings that are dif-
ferent from phoneti ¢ transcriptions of text. Thus, thegoal
of phonetic string matching is to identify sequences that
might be different actual strings, but have similar pro-
nunciations. In our method, a phoneme is represented
by a 15-dimensiona binary vector in which every entry
stands for a single articulatory feature caled a distinc-




tive feature. Those distinctive features are indispensable
attributes of a phoneme that are required to differentiate
one phoneme from another in English. We compute the
distance between two individual phonemes as the Ham-
ming distance. Based on this metric, a modified dy-
namic programming agorithm is developed to compare
two phoneme strings by measuring their similarity.

ul u2 u3 ud

transcripts |the cat looks itself the little boy gives the horse and the cat | [the little boy finds a
the horse a hug follow along tree
spoken

utterances —Q‘—“’-’—«»—I—I—n— -f&-h—«la-u«}k—h
T e Tih (17D oy Ty gl (hehh SR — -
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w2 [keTkaeiht w2 [Ahacawrz w2 [[RTThoyly ]

ypothesized lexjcal items
Hhhaorz\ |hl|b0y

EM algorithm

kel k ae t hhaorz Tih t1b oy
Figure 4: Overview of the method. Spoken utterances are
categorized into several bins that correspond to temporally co-
occurring attentional objects. Then we compare any pair of
spoken utterances in each bin to find the similar subsequences
that are treated as word-like units. Next, those word-like units
in each bin are clustered based on the similarities of their
phoneme strings. The EM-algorithm is applied to find lexica
items from hypothesized word-meaning pairs.

Word Learning Figure 4 illustrates our approach to

spotting words and establishing word-meaning associa-

tions, which consists of the following steps (See Ballard

& Yu, 2003 for detailed descriptions):

e Phoneme utterances are categorized into several bins
based on their possibly associated meanings. For
each meaning (an attentional object), we find the cor-
responding phoneme sequences uttered in temporal
proximity, and then categorize them into the same bin
labeled by that meaning.

e The similar substrings between any two phoneme se-
guencesin each bin are found and treated as word-like
units.

e The extracted phoneme substrings of word-like units

word-like unit clustering

[keTkaet ] [
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are clustered by a hierarchical agglomerative cluster-
ing algorithm. The centroids of clusters are associ-
ated with their possible grounded meanings to build
hypothesized word-meaning pairs.

e To find correct lexical items from hypothesized lexi-
cal items, the probability of each word is represented
as a mixture model that consists of the conditional
probabilities of each word given its possible meanings.
In this way, the Expectation-Maximization (EM) al-
gorithm is employed to find the reliable associations
of spoken words and their grounded meanings which
maximize the probabilities.

Experimental Setup

A Polhemus 3D tracker was utilized to acquire 6-DOF
head positionsat 40H z. A subject wore a head-mounted
eye tracker from Applied Science Laboratories(ASL).
The headband of the ASL held a miniature “scene-
camerd’ to the left of the subject’s head, which provided
the video of the scene. The video signals were sampled
at the resolution of 320 columns by 240 rows of pixels
at the frequency of 15Hz. The gaze positions on the im-
age plane were reported at the frequency of 60Hz. The
acoustic signals were recorded using a headset micro-
phone at arate of 16 kHz with 16-bit resolution. Six sub-
jects participated in the experiment. They were asked to
read the picture book (used in the previous experiment)
in English. They were alsoinstructed to pretend that they
told this story for achild so that they should keep verbal
descriptions of pictures as smple and clear as possible.
We collected multisensory data when they performed the
task, which were used as training data for our computa-
tional model.

Results and Discussion
To evaluate experimental results, we define the following

three measures: (1) Semantic accuracy is to measure
the accuracy of clustering visual objects (e.g., animals)
in the picture book. (2) Word discovery accuracy isto
measure whether the beginning and the end of phoneme
strings of word-like units are correct word boundaries.
(3) Word learning accuracy is to measure the percent-
age of successfully segmented words that are correctly
associated with their meanings.

Table 1: Results of word acquisition

Subjects  Semantics Word Word
discovery learning
1 80.3% 72.6% 91.3%
2 83.6% 73.3% 92.6%
3 79.2% 71.9% 86.9%
4 81.6% 69.8% 89.2%
5 82.9% 69.6% 86.2%
6 76.6% 66.2% 83.1%
Average 80.6% 70.6% 88.2%

Table 1 shows the results of three measures. The
recognition rate of the phoneme recognizer we used is
75% because it does not encode any language model or



word model. Based on thisresult, the overall accuracy of
speech segmentation is 70.6%. Naturally, an improved
phoneme recognizer based on a language model would
improvethe overall results, but theintent here isto study
the learning procedure without pre-trained models. The
error in word learning is mainly caused by a few words
(e.g., “happy” and “look™) that frequently occur in some
contexts but do not have visualy grounded meanings.
Considering that the system processes raw sensory data,
and our learning method works in unsupervised mode
without manually encoding any linguistic information,
the accuracies for both speech segmentation and word
learning are impressive.

word discovery word-meaning association
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Figure 5: A comparison of performance of the intention-cued
method and the audio-visual approach.

To demonstrate the role of embodied intention in lan-
guage learning, we process data by another method in
which eye gaze and head movements are ignored, and
only audio-visual data are used for learning. In this
approach, we have to classify spoken utterances into
the bins of al the objects in the scene instead of just
the bins of attentional objects. Except for this point,
the method shares other implemented components with
the intention-cued approach. Figure 5 shows the com-
parison of two methods. The intention-cued approach
outperforms the other one in both speech segmentation
and word-meaning association. The significant differ-
ence lies in the fact that there exists a multitude of co-
occurring word-object pairsin natural environments that
infants are situated in, and the inference of referential
intents through body movements plays a key role in dis-
covering which co-occurrences are relevant.

General Discussion

The Role of Embodied I ntention

We propose that the ability of a young language learner
to infer interlocutors' referentia intentions through the
observations of their body movements may significantly
facilitatelexical learning. Thisproposal has been verified
by the empirical studies in which adult language learn-
ers exposed to a second language in the intention-cued
condition outperformed the ones under audio-visual con-
dition in both word discovery and word-meaning learn-
ing tests. Furthermore, in the computational model de-
scribed in the previous section, a speaker’sreferentia in-
tents are estimated and utilized to facilitate lexical learn-
ing in two ways. Firstly, possible referential objects
in time provide cues for word spotting from a continu-
ous speech stream. Speech segmentation without prior
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language knowledge is a challenging problem and has
been addressed by solely using linguistic information. In
contrast, our method appreciates the importance of non-
linguistic context in which spoken words are uttered. We
propose that the sound patterns frequently appearing in
the same context are likely to have grounded meanings
related to this context. Thus, by finding frequently ut-
tered sound patterns in a specific context (e.g., an object
that subjects intentionally attend to), the model discov-
ers word-like sound units as candidates for building lex-
icons. Secondly, a difficult task of word learning is to
figure out which entities specific words refer to from a
multitude of co-occurrences between words and things
in the world. Thisis accomplished in our model by uti-
lizing speakers' intentional body movements as deictic
references to establish associations between words and
their visually grounded meanings.

Sensory Level Modeling

The successful implementation of the model suggests
that with advances in machine learning, speech process-
ing and computer vision, modeling lexica learning at
the sensory level is not impossible and it has some ad-
vantages over symbolic simulations by closely resem-
bling natural environmentsinwhich infantsdevel op. Our
model emphasizes the importance of embodied learning
for two main reasons. First, the motivation behind this
work is that language is grounded in sensorimotor ex-
periences with the physical world. Thus, a fundamental
aspect of language acquisition is to associate the body
and the environment with words in language (L akoff &
Johnson, 1980). Second, infants learn words by sensing
the environments from their perceptua systems and cop-
ing with several practical problems, such as the variabil-
ity of spoken wordsin different contextsand by different
talkers. To closely simulate infant vocabulary develop-
ment, the computational model should also have the abil -
ity to remove noise from raw signals and extract durable
and generalizable representations instead of simplifying
the problem by using consistent symbolic representations
(e.g., text or phoneme transcripts).

Assumptionsin the M odel

The range of problems we need to address in model-
ing lexical acquisition in a purely unsupervised manner
and from raw multimodal data is substantial, so to make
concrete progress, some hatural assumptions were made
to simplify the modeling task and alow us to focus on
the key problems in lexical acquisition. First, the model
mainly dealswith how to associate visual representations
of objects with their spoken object names. Thisis based
on the finding that a predominant proportion of infant
early vocabulary are nouns, which has been confirmed in
variouslanguages and under varying child-rearing condi-
tions (Casdlli, Casadio, & Bates, 2000). Also, the model
is able to learn only object hames that are grounded in
visual perception but not other nouns that represent other
meanings or abstract notions. We believe that those ini-
tial and imageable words directly grounded in the phys-
ical environment serve as a foundation for the acquisi-



tion of abstract words that become indirectly grounded
through their relations to those grounded words. Second,
the model does not intend to simulate the devel opment of
initial capabilities to recognize phonemes from acoustic
input. We assume that a language learner has knowl-
edge of the phonetic structure of the language prior to
lexical development. Third, in natural conditions, alan-
guage learner observes the body movements of an inter-
locutor and infers referential objects by means of mon-
itoring his’her gaze direction. Due to the difficulties to
track the speaker’s gaze directions and head movements,
and then search for atarget object in that direction from
the learner’s perspective, in both empirical studies and
the computational simulation, an eye tracker and posi-
tion sensors are utilized so that the language learner (i.e.
ahuman subject or the computational model) can directly
obtain the interlocutor’s gaze and head movements, and
also share the visual scene.

Conclusion
This work demonstrates a significant role of embod-
ied intention in infant word learning through both hu-
man subject study and computational modeling. In both
cases, no matter a language learner is a human subject
or acomputer program, the intention-cued approach out-
performed the audio-visual approach. We conclude that
the solely statistical learning of co-occurrences in data
is less likely to explain the whole story of language ac-
quisition. The inference of embodied intention, as one
of infants' social cognitive skills, provides constraints to
avoid the large amount of irrelevant computations and
can be directly applied as deictic reference to associate
words with visually grounded referents in the environ-
ment. Here we do not claim that young children employ
the exact method presented in this paper. However, as
a computational model, this work provides an existence
proof for a machine learning technique that solves the
lexical acquisition task. It leaves the open question of
what techniques young children actually use to solve the
problem by further empirical study. We hope that this
work not only provides a computational account to sup-
plement the existing related theories of language acqui-
sition but & so gives some useful hints to future research.
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