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Abstract

We propose that the process of causal induction can be
regarded as a form of belief-revision, and formalize this
idea using a discrepancy-based learning algorithm sim-
ilar to that employed in the Rescorla-Wagner model of
associative learning (Rescorla and Wagner, 1972) and the
Belief-Adjustment Model (Hogarth and Einhorn, 1992).
We then demonstrate that this model can account for con-
flicting patterns in human induction judgments reported
by Wasserman et al. (1993) and Buehner and Cheng
(1997), two data-sets which it is difficult for other models
to satisfactorily explain.

Causal Induction

Most psychological work on causal induction has fo-
cused on situations in which people are presented with
a series of observations concerning two factors, a candi-
date cause and effect, and asked to judge the degree to
which they think the candidate cause is responsible for
causing the candidate effect. Predictions of the degree to
which a candidate cause and effect are related are usu-
ally based on the frequencies with which different con-
figurations of a candidate cause and effect are observed
to occur. With two factors, there are four possible con-
figurations that can occur (as depicted in Table 1). These
are usually taken to be the prime determinants of causal
strength by such models, although other factors, such as
the specific mechanism by which the causal relationship
in question might be effected, have also been argued to
be important (Ahn, Kalish, Medin and Gelman, 1995;
Ahn and Bailenson, 1996).

Two particularly influential computational accounts of
human causal induction behavior are the A P statistic and
the Power PC model. These models make conflicting sets
of predictions, and recent empirical investigations have
been directed at determining which theory offers the best
account of human behavior. We now describe the two
theories and the characteristics of two data-sets that have
proven to be pivotal in debates aimed at establishing one
measure over the other.

The AP Statistic

AP is defined as the difference between the conditional
probability of a candidate effect given the presence and
absence of a candidate cause; it is thus sensitive to the de-
gree to which the presence of a candidate cause changes
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Table 1: The contingency table for a candidate cause and
effect. Letters A-D represent the frequency with which
each contingency is observed over a series of learning
trials.

the base-rate of the candidate effect occurring. The AP
statistic is defined for a candidate cause, ¢, and a candi-
date effect, e, as below, and has been advocated by many
theorists as a predictor of human judgments (Jenkins
and Ward, 1965; Salmon, 1965; Rescorla, 1968; Allen,
1980; Cheng and Novick, 1990, 1991, 1992; Cheng and
Holyoak, 1995):

A C
~ A+B C+D

AP = P(elc) P(ele) 1)

The value of AP ranges between 1 and -1, depending
on whether the candidate cause makes the candidate ef-
fect more or less likely to be observed compared to its
base-rate of occurrence. The basic predictions of the
AP statistic have been confirmed on many occasions
(Jenkins and Ward, 1965; Wasserman, Chatlosh, Ne-
unaber, 1983; Cheng and Novick, 1990, 1991, 1992;
Wasserman, Elek, Chatlosh and Baker, 1993; Lober and
Shanks, 2000), and although various theories and studies
have sought to undermine its validity (e.g. Cheng, 1997;
Buehner and Cheng, 1997; Vallée-Tourangeau, Murphy
and Drew, 1997), these studies have in turn been sub-
jected to criticism (Lober and Shanks, 2000).

Power PC

The Power PC theory was proposed by Cheng (1997),
and is based on a normative analysis of causal induction.
The theory is predicated on the idea that not all candi-
date causes get the same opportunity to demonstrate their
causal efficacy. More specifically, if we are attempting
to assess the impact of a candidate generative cause on
a candidate effect, then the more other generative causes
interact with the candidate effect, the less chance the can-
didate cause has to demonstrate that it was responsible



for the occurrence of the candidate effect. An analogous
argument applies to assessing preventative causes.

It can be shown that if it is assumed that multiple
causes interact to produce a candidate effect according to
a noisy-OR gate (Pearl, 1988), that the Power PC theory
can be derived on the assumption that causal strength is
assessed using maximum likelihood estimates (Glymour,
1998; Tenenbaum and Griffiths, 2000). This derivation
yields the following two definitions of causal strength,
one for generative causes:

AP

P= 17 Plelo) @
And one for preventative causes:
AP

q= % 3

From these it can be seen that the Power PC model is
essentially a ‘corrected” form of A P and the models ac-
cordingly make distinct predictions.

An Empirical Controversy

Two data-sets have recently proven to be of pivotal sig-
nificance in the debate to establish which of these two
theories offers the best account of human induction judg-
ments: the data collected by Wasserman, Elek, Chatlosh
and Baker (1993), and Buehner and Cheng (1997).

Wasserman et al. (1993). The data collected by
Wasserman, Elek, Chatlosh and Baker (1993) consti-
tutes one of the most extensive investigations into human
causal induction. In a series of studies they systemati-
cally varied both P(e|c) and P(e|c) across five discrete
levels — 0.00, 0.25, 0.50, 0.75 and 1.00 - resulting in
25 experimental conditions in total. In these studies par-
ticipants had to decide the degree to which pressing a
telegraph key in a given time interval (1-s) affected the
likelihood of a light coming on. Participants were asked
to provide ratings between -100 (meaning that pressing
the key always prevented the light from coming on) to
+100 (meaning that pressing the key always caused the
light to come on) to describe their judgments.

The results of this study highlight an important feature
of human causal induction known as ‘fanning” (Wasser-
man et al., 1993; Wasserman et al., 1983). Fanning can
be observed when causal induction strengths with the
same AP contingency but varying values of P(e|c) are
examined. In such cases, even though AP is constant,
generative judgments get stronger as P(e|c) increases,
and preventative judgments get stronger as P(e|c) de-
creases. Wasserman et al. (1993) describe the fanning
phenomenon as follows:

“Particularly with extreme contingency values, posi-
tive contingencies were more positively rated and neg-
ative contingencies were more negatively rated when
P(O|R) + P(O|R) was a small sum then when
P(O|R) + P(O|R) was a large sum.” (p.177)
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This leads to the characteristic opposed fanning patterns
that can be observed in isocontingency lines. The find-
ing is a robust one that has been found in multiple ex-
periments (Wasserman et al., 1983; Wasserman et al.,
1993), and which is unexplained by current models of
causal induction. For example, despite the fact that the
AP statistic correlates highly with the Wasserman et al.
(1993) data, it systematically fails to predict any fanning,
and therefore provides an incomplete description of this
data.

Buehner and Cheng (1997). The studies conducted by
Buehner and Cheng (1997) differ from the Wasserman et
al. (1993) studies in two key ways. The format employed
in the Wasserman et al. (1993) study was a response-
outcome judgment task: participants were required to as-
sess the degree to which a voluntarily initiated operation
(pressing a telegraph key) had an impact on the occur-
rence of an observed variable (the flashing of a light).
Moreover, subjects in this task were asked to assess the
degree to which the occurrence of the candidate effect
depends on the occurrence of the candidate cause. In
the Buehner and Cheng studies, participants were not re-
quired to act so as to bring about the candidate cause, but
instead merely had to observe the relationship between
the two candidate variables; moreover, they were asked
to assess generative and preventative strength instead of
the degree to which the occurrence of the candidate ef-
fect depended on the candidate cause.

Conflicting Patterns of Judgment

Despite varying the contingencies of a candidate cause
and a candidate effect across the same set of values, the
results of the Wasserman et al. (1993) and Buehner and
Cheng (1997) studies are strikingly different. In addi-
tion, neither the AP statistic or the Power PC model
can provide adequate explanations of both data-sets. The
AP statistic does predict the main ordinal trends in the
Wasserman et al. (1993) data, although it fails to ac-
count for the ‘fanning’ effect; however, when it comes
to the Buehner and Cheng (1997) data, AP clearly mis-
predicts the main trends in people’s judgments. One of
the most problematic aspects of the Buehner and Cheng
(1997) data is that the human judgments clearly deviate
from 0 when the probability of observing the candidate
effect is the same in the absence as in the presence of
the candidate cause (i.e. when AP = 0). However, the
Power PC model fares somewhat worse overall. It only
predicts the correct trend in the Wasserman et al. (1993)
data for negative contingencies (cases when AP < 0),
predicting the opposite trend to that actually found in the
positive contingencies. Moreover, although on first in-
spection it appears to make correct predictions for the
Buehner and Cheng (1997) data — as Buehner and Cheng
originally argued — a closer inspection of the model-fit
reveals that in fact it fails to predict the patterns in the
data just as badly as the AP model (Lober and Shanks,
2000).

The direct conflict between the ratings of people in the



Wasserman et al. (1993) and Buehner and Cheng (1997)
studies is a cause for concern if we are not to abandon
the process of formally modeling these judgments — how
can the same contingencies result in systematically dif-
fering ratings in the 2 studies? We believe the key to the
solution lies in a closer analysis of the instructions given
to participants in the two tasks. In the Wasserman et al.
(1993) studies participants were asked to judge “whether
tapping a telegraph key has any effect on the occurrence
of a white light.” They were asked to register their judg-
ments on a scale ranging from +100, denoting ‘causes
the light to occur’, to -100, denoting ‘prevents the light
from occurring’ (p.176). In contrast, in the Buehner and
Cheng (1997) studies “subjects were asked to evaluate
the effectiveness of the studied vaccine at preventing the
disease related to the virus in question” in Experiment
1A, and in Experiment 1B subjects had to give “a rating
of how strongly they thought the particular rays cause
mutation” (pp.56-57; italics added).

We wondered whether the different instructions given
to participants in the two tasks could have made their
evaluative responses to the same types of observation dif-
fer, hence explaining the conflicting patterns of judgment
in the two data-sets. In order to test this we therefore pro-
pose a novel belief-revision framework for causal induc-
tion, and then investigate the way in which beliefs might
be updated by participants as a result of the instructions
they received in the different tasks.

Causal Belief-Revision Theory

Causal Belief-Revision theory defines the manner in
which the degree of belief attaching to specific causal
hypotheses is updated as a result of observations about
a candidate cause and effect. Levels of belief are con-
strained to be in the range 0 to 1, where 0 indicates that
the belief is not subscribed to at all, and 1 indicates that
the belief is held with the highest possible conviction.
The versatility of this framework is that the same mech-
anism can be used to explain the updating of distinct
causal beliefs; we employ this idea later in explaining
the conflicting patterns revealed in the Wasserman et al.
(1993) and the Buehner and Cheng (1997) data-sets. For
the minute, however, we simply describe the belief up-
dating mechanism.

The core idea of the learning algorithm we present is
that the particular observations drawn from the contin-
gency table for a candidate cause and effect (see Table
1) either serve to provide positive or negative evidence
for specific causal beliefs that are tracked because of the
instructions participants are given. The idea is that each
observation about a candidate cause and effect (e.g. ob-
serving the candidate cause to occur, and the candidate
effect fail to occur) induces us to update our causal be-
liefs by a specific amount, Abt. This quantity is used in
the following manner to yield a level of belief in a causal
hypothesis at any given time step:

bt = bt A (@)
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Now we need to define how Ab? is updated. If an obser-
vation is made which counts as positive evidence for a
belief, then the degree of belief is updated in the follow-
ing fashion:

Ab = gW,(1 bt 5)

And if an observation is made which counts as negative
evidence for a belief, the degree of belief is updated as
follows:

Ab' = W, (")’ (6)
In these equations, 7 is the learning rate of the model, W,
is the degree to which observation o agrees or disagrees
with the causal belief, and i is a parameter which can be
greater than 0, and determines the rate at which the size
of discrepancies is translated into belief adjustments. At
the heart of these equations is a discrepancy-based learn-
ing algorithm that bears similarities to both the Rescorla-
Wagner model, and the anchoring-and-adjustment model
of belief revision (especially in estimation mode; see
Hogarth and Einhorn, 1992). Beliefs are updated primar-
ily as a function of the discrepancy between the ultimate
level of belief that the observed evidence should induce
(this is 1 for evidence that supports the belief, and 0 for
evidence that conflicts with the belief), and the current
level of belief. This update scheme results in the charac-
teristic negatively-accelerated learning curves that have
been observed in a number of experimental investiga-
tions of human learning and belief revision (see Hogarth
and Einhorn, 1992; Baker et al., 1989; Shanks, Lopez,
Darby and Dickinson, 1996).

The associative learning framework we have specified
is generally applicable to the problem of causal induction
as well as the revision of beliefs in general — provided
the relationship between specific observations and the
beliefs in question is clear, the model can generate pre-
dictions. For example, it can readily be used to compute
the AP statistic — just as the Rescorla-Wagner model can
(see Chapman and Robbins, 1990; also Cheng, 1997) —
under minimal assumptions. However, before the model
can be applied to the current data-sets, it is necessary to
determine how the causal beliefs that are assessed in the
two studies are updated in the light of the four possible
observations possible with two binary factors.

Study 1

The aim of this study was to find out how the causal
beliefs that participants were assessing in the Wasserman
et al. (1993) and Buehner and Cheng (1997) studies
would be updated as a result of observations in the
experiments, and consequently whether instructional
differences could be responsible for the conflicting
patterns of judgments.  Participants were therefore
provided with the salient aspects of the instructions to
one of the 2 original studies, and then asked to rate to
what degree they thought each possible observation (as
set out in Table 1) agreed or disagreed with the causal
belief the instructions asked them to assess.
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Figure 1: Results from the Wasserman et al. (1993) con-
dition.

Methods and Design. Participants were randomly assigned
to one of 2 conditions in which they were either asked about
the Wasserman et al. (1993) or the Buehner and Cheng (1997)
study. Depending on what condition they were assigned
to, participants were either asked to imagine that they were
assessing (i) the degree to which a factor B occurs in the
presence and absence of another factor A, or (ii) the degree
to which a factor A generates or prevents another factor B.
Once participants had been provided with this information, for
each of the two beliefs they had been asked to track, they were
presented with the 4 possible observations that could occur
(see Table 1) in a random order, and asked to rate how much
they thought the observation ‘agreed” or ‘disagreed’ with the
belief that they were tracking. Ratings were collected on a
9-point Likert scale, in which 1 meant that the observation
strongly disagreed with the causal belief; 5 meant that the
observation was irrelevant to assessing the belief; and 9 meant
that the observation strongly agreed with the belief.

Participants. 45 students at the University of Edinburgh,
Scotland, participated in the study. All participants were
volunteers, and no reward was offered for taking part in the
study.

Results. Because we were chiefly interested not in the strength
which certain observations were judged to agree or disagree
with the beliefs about the candidate factors, but instead the
valency of the evidence they provide, the ratings were first
grouped into three categories: Positive, Negative and Neutral.
Ratings were recorded as Positive if greater than or equal to 6;
Neutral if equal to 5; and Negative if less than or equal to 4.
The percentage breakdown of each of the three categories for
each observation is shown in Figures 1 and 2. In order to set
the parameters of our model we coded a particular observation
as being Neutral for the causal hypothesis in question if 40%
or more of participants had judged it as such. Otherwise each
observation was coded as being Positive or Negative depending
on which category received the greatest number of votes.

Discussion

The results from this study allowed us to set the W,
parameters in the Causal Belief-Revision model for the
Wasserman et al. (1993) and Buehner and Cheng (1997)
studies respectively. Interestingly, the valency judgments
were very similar when participants were asked to assess
the degree to which a candidate effect occurs in the pres-
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Figure 2: Results from the Buehner and Cheng (1997)
condition.

| | A B C D |
Wasserman et al. (1993)
Cause present 1 -1 -1 0
Cause absent -1 0 1 -1

Buehner and Cheng (1997)
Generative causes 1 -1 -1 0
Preventativecauses | -1 1 1 O

Table 2: The values of the W, parameters as determined
in Study 1.

ence of a candidate cause and the degree to which a can-
didate cause generates a candidate effect (top panels, re-
spectively, of Figures 1 and 2). However, the judgments
were divergent when participants were asked to assess
the degree to which a candidate effect occurred in the
absence of a candidate cause, and the degree to which a
candidate cause prevents a candidate effect(bottom pan-
els, respectively, of Figures 1 and 2), indicating the eval-
uative differences induced by instructional characteris-
tics could be a potential explanation of the divergent pat-
terns of induction judgments in the two original studies.

Simulation 1; Wasserman et al. Data

We used the parameters acquired in Study 1 to fit the
Causal Belief-Revision model to the Wasserman et al.
(1993) data-set. We also measured the performance of
various versions of the Rescorla-Wagner model on this
data-set because it has successfully been used to explain
a diverse range of empirical data on induction, and there-
fore provides a reasonable point of comparison.
Because people were asked to assess the degree to
which the candidate effect depended on the candidate
cause in the Wasserman et al. (1993) study, this focused
people on the frequency with which the candidate cause
occurred in the presence and in the absence of the candi-
date cause. Accordingly, the degree of predicted depen-



R? T
Causal Belief-Revision Model | 0.9832 | 0.9910
Unrestricted Rescorla-Wagner | 0.9808 | 0.9905
Restricted Rescorla-Wagner 0.9639 | 0.9831

Table 3: Empirical performance of the models on the
Wasserman et al. (1993) data-set.

dence was defined to be:
bd - bp ba (7)

where b, is the belief that the candidate effect occurs
when the candidate effect is present, b, is the belief that
the candidate effect occurs when the candidate effect
is absent, and the levels of both beliefs are adjusted
according to the Causal Belief-Revision model.

Method. Because the Causal Belief-Revision model relied on
randomly generated sequences of observations, its predictions
varied slightly from run to run. In order to minimize the pos-
sibility of this biasing the results, the mean performance of the
model was taken over 250 trials. In addition, the mean of the
10 best parameterizations was used to define the overall perfor-
mance of each model, to avoid the possibility that noise in the
simulation data resulted in spurious model performance. The ¢
parameter was fit to the data by varying it in the range 1-3 in
steps of 0.1. The W, parameters were set as shown in Table 2,
according to the results of Study 1.

The predictions of each model were linearly scaled so that
they were expressed across the same range as the empirical
data. In order to assess the overall quantitative fit of each model
we used the coefficient of determination (R?) to measure the
amount of variance in the empirical data explained by each
model. However, to ensure that the overall qualitative match
was not sacrificed in order to produce a better quantitative
match, the Spearman’s Rank correlation was also calculated
for the each model with the same parameter values that

produced the greatest value of R2.

Results. The results of this Simulation are reported in Table
3. Notably the Causal Belief-Revision model outperformed
the Rescorla-Wagner family of models on both qualitative and
quantitative measures of fit, and overall explained an extremely
high amount of the variance in the judgments (98.3%). It did
this with parameters of n = 0.375 and ¢ = 1.54. Moreover,
this success was not accomplished simply through the addition
of free parameters: the Unrestricted Rescora-Wagner model
and the Causal Belief-Revision model both had 2 free param-
eters. These results demonstrate the success of the Causal
Belief-Revision model in predicting patterns in human causal
induction, in particular its ability to reproduce the ‘fanning’
phenomenon. The predictions of the model can be seen plotted
against the Wasserman et al. (1993) data in Figure 3.

Discussion

The Causal Belief-Revision model successfully explains
an exhaustive and representative data-set concerning
human induction, and in doing so it outperforms an-
other competitive pair of models based on the Rescorla-
Wagner learning rule. Moreover, although both sets of
models managed to capture large proportions of variance
in the empirical data, only the Causal Belief-Revision
model was able to predict the qualitative fanning trends
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Figure 3: Predictions of Causal Belief-Revision model
predicted against human performance in the Wasserman
et al. (1993) studies (human judgments plotted in con-
tinuous line; model predictions plotted in dotted line).

actually observed. In order to further test the explana-
tory power of the Causal Belief-Revision framework we
now examine whether it can also successfully explain the
conflicting patterns identified in the Buehner and Cheng
(1997) data-set.

Simulation 2: Buehner & Cheng Data

The Causal Belief-Revision model was fit to the Buehner
and Cheng (1997) data, again along with versions of
the Rescorla-Wagner model.  This time the Causal
Belief-Revision model was used to assess generative and
preventative hypotheses across the contingencies ex-
plored by Buehner and Cheng (1997), using the valency
judgments acquired in Study 1. This application of the
model differed from its application to the Wasserman et
al. (1993) in that it was only used to assess the degree of
belief in one causal hypothesis at a time, instead of two.

Method. The Causal Belief-Revision model was used to make
predictions across runs consisting of 16 observations, just as
in the original Buehner and Cheng (1997) experiments. In
order to correct for variance in the model predictions resulting
from the randomly generated sequences of observations, the
predictions of the model over these runs were averaged over
250 trials. Other aspects of the method were as reported for
Simulation 1. The W, parameters were set as shown in Table
2, according to the results of Study 1.

Results. The results of fitting the various models to the data are
reported in Table 4. The predictions of the best-performing pa-
rameterization of the Causal Belief-Revision Model are shown
plotted against the human data in Figure 4.

Discussion

The Causal Belief-Revision model produced by far the
best quantitative fit to the Buehner and Cheng (1997)
data. That it did so without sacrificing its representation
of the qualitative trends in the data is apparent from both
the high Spearman’s Rank correlations (rs = 0.97 for



R? T
Causal Belief-Revision Model | 0.9689 | 0.9679
Causal Belief-Revision Model | 0.9783 | 0.9750
Restricted Rescorla-Wagner 0.6397 | 0.7691
Restricted Rescorla-Wagner 0.7904 | 0.8834
Unrestricted Rescorla-Wagner | 0.8091 | 0.5746
Unrestricted Rescorla-Wagner | 0.8500 | 0.7601

Table 4: Summary empirical performance of the models
on the Buehner and Cheng (1997) data-set. Performance
for preventative (Experiment 1A), then generative (Ex-
periment 1B), judgments are given for each model.

Figure 4: Performance of the Causal Belief-Revision
model plotted against human performance in the
Buehner and Cheng (1997) studies (left panel for gener-
ative judgments; right panel for preventative judgments).
Human data plotted in continuous lines, model predic-
tions in dotted lines.

the preventative data, and r, = 0.98 for the generative
data) and the plot of the empirical against the predicted
results (Figure 4). Crucially, we have demonstrated that
the Causal Belief-Revision model can provide explana-
tions of the conflicting patterns in both the Wasserman et
al. (1993) and the Buehner and Cheng (1997) data.

General Discussion

We have presented a novel model of human causal induc-
tion judgments, the Causal Belief-Revision theory, and
shown that it is capable of reconciling the conflicting pat-
terns in two key empirical data-sets. To our knowledge
no other current model of causal induction is able to pro-
vide an explanation of both these data-sets in a satisfac-
tory way, and indeed it is difficult to see how a model
could do so without having recourse to the idea of in-
structional differences affecting evaluative responses that
we have introduced. We believe that the Causal Belief-
Revision model provides a new way of conceptualizing
causal induction behavior, and intend to pursue this ap-
proach further in the future.
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