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Abstract

Psychologically, rerepresentation appears to be an important
technique for achieving flexibility in analogical matching.
This paper presents a concise theory of rerepresentation in
analogical matching. It divides the problem into defecting
opportunities for rerepresentation, generating
rerepresentation suggestions based on libraries of general
methods, and strategies for controlling the rerepresentation
process. We show that the kinds of opportunities can be
exhaustively derived from the principles of structure-
mapping, and the methods for detecting them derived from
consideration of how the SME algorithm works. Four
families of rerepresentation methods are proposed, as well as
task-independent and task-dependent constraints on strategies.
Implemented simulation examples are used for illustration.

Introduction

Rerepresentation re-construes parts of compared situations
in order to improve a match. It is an important process in
analogical reasoning and learning. In development,
rerepresentation appears to play an important role in
learning. For example, Kotovsky & Gentner (1996) found
that children are better able to make cross-dimensional
analogies when they have been induced to rerepresent the
two situations to permit noticing the common magnitude
increase. Rerepresentation also plays an important role in
scientific discovery. For example, Gentner et al (1997)
argue that rerepresentation played a crucial role in Kepler’s
working through his analogy of vis-Motrix to light.

This paper presents a concise theory of rerepresentation in
analogical matching. = The next section outlines the
computational issues surrounding rerepresentation. Our
theory of rerepresentation is described next, and illustrated
with implemented examples from a computer simulation
using the Structure-Mapping Engine (SME) [Falkenhainer
et al 1986, 1989; Forbus et al 1994]". Finally we discuss
related and future work.

! The representational vocabulary is drawn from Cycorp’s Cyc
knowledge base, plus our own extensions. Opportunity detection
is carried out by Lisp code that uses SME datastructures, and
suggestions about applicable methods are generated using our
FIRE reasoning engine.
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Rerepresentation in analogical reasoning

We assume, as usual in analogical reasoning research, that
the representations used in matching are internal
descriptions, as opposed to, for instance, lexical items.

Every analogical matcher must, as part of its operation,
make decisions about whether or not two local items
(statements or entities) within the descriptions it is
comparing can be aligned. Structure-mapping postulates
that these decisions are made based on tiered identicality,
i.e., that relationships must by default be identical, and only
under special circumstances should looser criteria (such as
minimal ascension [Falkenhainer 1990]) be used to sanction
local matches. Other models have postulated that more
generous criteria are always used, such as ignoring the
semantics provided by the relations, yielding a purely
structural match (e.g., IAM [Keane 1990]) or using some
other representational resource to determine whether two
relationships are alignable (e.g., the use of WordNet in
[Holyoak & Thagard, 1989]). Computationally, the tradeoff
is between false negatives and false positives: Stricter
criteria will miss potential matches, but looser criteria will
generate more false positives.

To evaluate the plausibility of where human analogical
processing lies on this tradeoff, it is useful to consider how
analogical matching fits into the larger scheme of cognitive
processing. Functionally, there are processes that generate
the descriptions used as the base and target descriptions to
be matched. This includes the encoding processes used to
construct representations from perceptual information,
memory processes used to retrieve specific experiences and
general knowledge from long-term memory, and reasoning
that we might be doing upon such information, e.g., during
problem solving. While such processes are variable, they in
fact involve a large degree of regularity: Whatever internal
representation is generated for seeing, for example, a cat is
expressed in the same internal representational conventions
from one instant to the next, although the details of the
specific descriptions computed may change as the cat
stretches. Similarly, the descriptions retrieved by memory
use a uniform set of representational conventions. The
specific contents of descriptions for two distinct cats, for
example, might vary widely due to differences in what was
attended to as well as differences between the cats
themselves, but it seems likely that much of the basic



vocabulary of perceptual and physical relationships is
roughly constant over time. On the other hand, differences
in attention and task demands will affect what is encoded
and to some degree how, and learning can change
conceptual vocabularies and encoding strategies (cf. [Chi et
al 1981]). Information gleaned from language can be highly
variable (e.g., verb choices such as “ambled” versus
“strolled” versus “ran” presumably affect internal
representations beyond the difference in lexemes), and how
much canonicalization occurs when understanding language
is still an open question.

This analysis suggests that false negatives are less of a
concern than false positives, especially for more concrete
descriptions. Furthermore, false positives put more burdens
on matchers: More correspondences must be produced, and
more possibilities considered when merging local
hypotheses. Given that merge operations are
approximations (otherwise they would involve implausible
amounts of backtracking search) and there are likely to be
resource limitations on the amount of correspondences that
can be generated, avoiding false positives seems like a
better strategy for the organism.

Rerepresentation thus seems inevitable, given that
encoding processes can be variable, inputs vary, and
representations evolve over time. The real question is,
where should it occur? The structure-mapping model is to
place it outside the matcher itself. Consider the process(es)
that evaluate the matcher’s output. The mapping(s)
produced must be examined to see if they yield results that
are useful for the current task. If they do not, changes
ranging from tweaking the content of the base and target
(i.e., rerepresentation) to choosing a new base or even
abandoning the current line of effort are options available to
such processes. This seems to us to be a natural place to
recover from false negatives. The mapping(s) can be
examined for opportunities for rerepresentation. A library
of rerepresentation methods, based on the type of
opportunity, provide suggestions for specific
rerepresentations. Task-specific rerepresentation strategies
determine which suggestions, if any, should be acted upon.
Once rerepresentation(s) have been made, changing the base
and target, the match can be updated and the results
evaluated again.

A structure-mapping theory of
rerepresentation

We divide our account of rerepresentation into three parts:
(1) Detecting opportunities for rerepresentation, (2) methods
for rerepresentation, and (3) strategies that control which
opportunities are exploited and what methods are used. We
discuss each in turn.

Opportunities

We characterize opportunities for rerepresentation based on
which constraints of structure-mapping are violated. Recall
that, in addition to tiered identicality, the constraints of
structural consistency define what legal matches are:
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e [:1 constraint: Each item in the base maps to at most
one item in the target, and vice-versa.

e Parallel connectivity constraint: If a correspondence
between two statements is included in a mapping, then
so must correspondences between its arguments.

Violations of identicality and 1:1 are more fundamental;

as shown below, whether or not parallel connectivity is
violated depends on where the failure to satisfy these other
constraints occurs.  Table 1 concisely describes the
possibilities. We discuss each in turn, describing how to
detect them based on the representations used in SME.

Table 1: Rerepresentation opportunities

Constraint Violates parallel | Opportunity
connectivity?
Tiered Yes Holes
Identicality No Gulches
1:1 Yes Rivals
No Leftovers

Holes: Recall that the initial step of the SME algorithm
involves finding, in parallel, local match hypotheses that
represent potential correspondences between items in the
base and target descriptions. What statements are initially
aligned is governed by the tiered identicality constraint; by
default only identical relations are matched. Hence initially
match hypotheses are constructed between all pairs of
statements from base and target that have identical relations.
The parallel  connectivity constraint requires that
corresponding arguments be aligned for the correspondence
between two statements to be structurally consistent.
Consequently, match hypotheses are also installed between
arguments of aligned statements, if doing so would not
violate tiered identicality. (Non-identical functions can be
aligned, as can any pair of entities.) When this process is
complete, the match hypothesis forest so produced serves as
the starting point for grouping maximal structurally
consistent clusters of match hypotheses into kernel
mappings, which are combined via a greedy merge
algorithm to produce mappings.

Holes arise due to failures of the process of aligning
arguments. Consider the following pair of statements:

B1: (cause (walk John Cave)
(inside John Cave))

T1: (cause (run Jill Chamber)
(inside Jill Chamber))

SME would construct a match hypothesis between B1 and
T1, based on the identical relationships. This in turn would
cause it to attempt to construct match hypotheses between
corresponding arguments. It would succeed for the
consequents, since the relations are identical. It would fail
for the antecedent, since walk and run are different
relationships, assuming strict identicality.  Thus the
hypothesis that Bl and T1 can match is marked as
structurally inconsistent. This failure is an example of a
hole. Holes can thus be detected by finding structurally
inconsistent match hypotheses whose failure is due to an
argument misalignment. SME records such information




when marking a match hypothesis as
inconsistent, making detection easy.

Consider for example part of a description of two physical
situations involving flow, water flow and heat flow (adapted
from [Buckley, 1979]):

B2: (cause (higherPressure Beaker Vial)
(flow Beaker Vial Water Pipe))

TZ:(cause (hotterThan Coffee IceCube)
(flow Coffee IceCube Heat Bar))

The higherPressure and hotterThan arguments are not
alignable because they are not identical. Such domain-
specific relationships appear to be wused early in
development [Kotovsky & Gentner, 1996]. Similarly, from
[Clement & Gentner, 1991],

B3:(implies (slurps Tam Minerals)
(attachesTo Tam Rock))

T3:(implies (records Satellite Sounds)
(orbits Satellite Planet))

Here both the antecedent and consequent fail to align,
because they are very domain-specific. Below we will see
how such mismatches can be overcome.

Gulches: The only way that identicality can cause a
failure to match two items without causing a hole is if the
items are not themselves the arguments of any other pair of
matching items, i.e., one or both are top-level expressions
(aka roots) of their respective descriptions. Such statements
in the base show up as candidate inferences of the match.
Gulches can be detected by looking for roots in the base and
the target whose arguments have structurally consistent
match hypotheses but do not themselves match.

Consider for example a fragment from a variation of the
classic solar system/Rutherford atom analogy:

B4: (cause
(and (greaterThan (Mass Sun)
(Mass Planet))
(attracts Sun Planet))
(revolveAround Planet Sun))
T4: (implies
(and (greaterThan (Mass Nucleus)
(Mass Electron))
(attracts Nucleus Electron))
(revolveAround Nucleus Electron))

Because the root statements themselves do not match, we
have a gulch.

Rivals: Rivals are violations of the 1:1 constraint that
lead to structural inconsistency of at least one match
hypothesis. This occurs when different correspondences for
the same entity are implied by the match hypotheses for a
statement’s arguments. (SME records such information
during its structural consistency calculations.)

For example, consider matching a general schema for a
feedback controller against a specific feedback system, a
thermostat [Ma, 1999]. Here is a small fragment of the
representations involved:

BS:(senses SensorX SensedParameter)
(compares ComparatorX SensedParameter
SetpointX)

TS: (senses ThermostatY (Temperature AirY))
(compares ThermostatY (Temperature AirY)
ThresholdY)

structurally
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In fact, the thermostat plays the role of both the
comparator and sensor in the abstract schema. However,
this match cannot be allowed, since it violates the 1:1
constraint.

Leftovers: Mappings are constructed by combining
kernels, using a greedy merge process [Forbus er a/ 1994].
This process starts with the largest kernel, and adds as many
kernels to it as possible, subject to maintaining the 1:1
constraint. (Notice that, since kernels are already
structurally consistent and maximal, merging two kernels
cannot violate any other structure-mapping constraint.)
Leftovers are kernels that are left out of a mapping because
they have one or more entity correspondences that are
inconsistent with the mapping.

Typically leftovers are unfixable, since they represent
fundamentally different construals of the same comparison.
However, sometimes they indicate that a change in
reification can improve a match. Consider for example
matching a description of a car and a motorcycle, where the
tires of each are explicitly described as distinct individuals.
Only two tires of the car can be involved in such a match,
since each can only match to one tire of the motorcycle, e.g.

B6: (isa LeftFrontWheel Wheel)
(isa RightFrontWheel Wheel)
(isa LeftRearWheel Wheel)
(isa RightRearWheel Wheel)
(hasAttributes LeftFrontWheel RoundShape)
(hasAttributes RightFrontWheel RoundShape)
(hasAttributes LeftRearWheel RoundShape)
(hasAttributes RightRearWheel RoundShape)

T6: (isa FrontWheel Wheel)
(isa RearWheel Wheel)
(hasAttributes FrontWheel RoundShape)
(hasAttributes RearWheel RoundShape)

Given relational structure that ties wheels to their function
(i.e., rear wheels to providing power, front wheels for
steering, depending on the car) the motorcycle’s front and
rear wheels will be matched to one or the other of the car’s
front and rear wheels, randomly. The unmatched wheels are
leftovers.
Completeness: Are there other opportunities for
rerepresentation beyond those listed here? Our analysis
suggests not. The only constraint of structure-mapping
theory we have not exploited is systematicity. But
systematicity is a preference, providing guidance as to better
or worse choices rather than ruling some out, as the others
do. Since the opportunities described in Table 1 exhaust the
constraints of structure-mapping, we conclude that this set is
complete.

Now that we have characterized the opportunities for
rerepresentation, we can examine methods for using them.

Methods

The appropriate rerepresentation method for each type of
opportunity depends on the principle constraint being
violated in it (i.e., identicality versus 1:1). While the set of
opportunities is fixed, deriving from the nature of the
constraints of structure-mapping, the set of rerepresentation
methods is relatively open. Nevertheless, we can



characterize families of methods for each type, as shown in
Table 2. We describe each in turn.

Table 2: Rerepresentation strategies

Constraint Methods
Tiered Transformation
Identicality Decomposition
1:1 Entity splitting
Entity Collecting
Transformation:

Transformations are rewrite rules that transform one or both
of a pair of statements comprising a hole or gulch into
equivalent statements that have the same meaning, at least
with respect to the current description. For example,

B7:(greaterThan (Gravity Sun) (Gravity Earth)

T7: (lessThan (Gravity Earth) (Gravity Sun))

can be brought into alignment by transforming T7 to the
predicate greaterThan and reversing the arguments. Some
transformations are more extensive, i.c.,

Bs:(hiqherPressure Beaker Vial)

T8: (hotterThan Coffee IceCube)
from the earlier example B2/T2 requires rewriting both
expressions in terms of a more general, dimensional-
independent comparative (e.g., greaterThan) and encoding
the dimension by functions, e.g.,

Bs’:(greaterThan (Pressure Beaker)

(Pressure Vial))
TS’:(greaterThan (Temperature Coffee)
(Temperature IceCube))

which will match because non-identical function matches
are allowed by structure-mapping, precisely to support these
kinds of cross-dimensional comparisons. This strategy was
proposed by Kotovsky and Gentner (1996) as part of the
explanation for why children improve in their ability to
notice cross-dimensional matches after experiencing a series
of close comparisons.

Decomposition:
Transformations are truth-preserving, but sometimes the
relational structure supported by a statement only requires
some aspect of its meaning. In the walk/run case above, it is
the underlying commonality that movement is occurring that
is important; the mover is now inside the place they were
moving to. Decomposition strategies use the axioms that
provide the meaning of relations to identify common aspects
of their meaning, which can then be used in place of the
original relationship. Thus in the B1/T1 example above we
might have

Bl’:(cause (moveTo John Cave)
(inside John Cave))
T1’: (cause (moveTo Jill Chamber)
(inside Jill Chamber))
Similarly, in the Tams/Satellite example above, if we view
slurps and records as having a common relational
component of collects, and attachesTo and orbits as
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having a common relational component of connectsTo, we
would have via decomposition:

B3’:(implies (collects Tam Minerals)
(connectsTo Tam Rock)

T3’: (implies (collects Satellite Sounds)
(connectsTo Satellite Planet))

Entity splitting:

Often the same entity plays multiple roles in the same
representation. Consider again the thermostat example.
The conflict arises because the thermostat is playing two
distinct roles (semsor and comparator) in the functional
description. If we refine the description of the thermostat,
observing that it is the curvature of its bimetallic strip that
measures the temperature, and the angular distance between
the bimetallic strip and the dial’s angle that provides the
comparison, then each of these aspects of the thermostat can
match to distinct functional descriptions. This is an
example of an entity splitting strategy. In general, entity
splitting strategies require identifying ways to divide up an
entity into distinct parts or aspects, and rewrite its roles in
the description to use one or the other of these parts or
aspects.

In the example of functional matching of a thermostat
raised earlier, examining the parts of the thermostat yields
two distinct components responsible for different aspects of
the functionality, e.g.,

TS’:(physicalParts ThermostatY BimetallicStrip)
(senses (CurvatureFn BimetallicStrip)
(Temperature AirY))
(compares (AngleFn BimetallicStrip)
(Temperature AirY)
ThresholdY)

Each of these components now matches to a different part of
the functional specification.
Entity collecting:

Often there are multiple entities that play equivalent roles in
some representation, such as the tires on a car, the strands in
a DNA molecule, and the players on a team. Consider such
corresponding collections in the base and in the target. If
they are equivalent with respect to the current description,
there will be match hypotheses connecting each pair,
although any mapping will select only a subset of these
matches. If the cardinality of the two collections is
different, then some will be left out in any mapping. A
mapping could thus be improved by reifying these
collections as explicit sets, and stating properties formerly
associated with distinct individuals as properties of the sets.
This brings more relational structure to bear on
corresponding entities, and hence will raise the structural
evaluation of the match. We call such strategies entity
collecting strategies. In general, once a cluster of rival
entity match hypotheses has been identified, knowledge
about the kinds of entities involved must be used ascertain
whether or not they can be reified into a collection (e.g., the
strands of a DNA molecule or the players on a team), and
to identify how statements about the individuals can (or
cannot) be applied to the collection. Entity collection does
not always make sense: If most of the relational structure in
the description concerns differentiating the roles that each



team member plays, for example, replacing the player
descriptions with a set of players would be unwise.

Consider again the car/motorcycle example described
earlier. The (higher-order) function partsTypeFn takes a
collection as its argument and denotes a function that in turn
denotes the set of parts which are instances of the collection.
Hence for example ((PartsTypeFn 2y) 2x) denotes all
parts of 2x which are instances of the collection 2y. The
relationships membersIsa and
distribute collection membership and attributes over set
membership. Given these, the wheels example can be
rewritten as

B6’: (membersiIsa ((PartsTypeFn Wheel) MyCar)
Wheel)
(membersHaveAttribute
((PartsTypeFn Wheel) MyCar)
RoundShape)

T6’: (membersIsa ((PartsTypeFn Wheel)
MyMotorcycle)
Wheel)
(membersHaveAttribute
((PartsTypeFn Wheel) MyMotorcycle)
RoundShape)

membersHaveAttribute

Strategies

Conceptually, we view the process of rerepresentation as

occurring in the following steps:

1. Opportunities for rerepresentation are detected using
the criteria described above, and selected for further
processing.

2. For each opportunity, methods are retrieved and tried to
see if they can provide an improvement. Each such
improvement is a rerepresentation suggestion.

3. One or more suggestions is adopted, causing changes in
the base and/or target.

4. The match is re-performed with the updated base and
target descriptions.

5. The process continues until the match is suitable.

Strategies for controlling the rerepresentation process
depend heavily on context and task demands. These factors
determine three things about the process: (1) when the result
of a mapping is satisfactory for current purposes, and
rerepresentation (or further rerepresentation) can be ignored,
(2) when the process should be aborted, in favor of trying a
new base or target, or something else entirely, and (3) which
of the possible structures that could be added to a match via
rerepresentation would be preferable (e.g., might provide a
desired candidate inference).

However, we also assume that the following task-
independent factors hold for human rerepresentation
strategies: (1) Systematicity: all else being equal,
rerepresentation suggestions that lead to larger structural
evaluation scores will be preferred. This is simply the
extension of the systematicity preference of structure-
mapping to rerepresentation. (2) High selectivity: The
selection process is tightly controlled, so that very few of
the possible opportunities are selected for consideration.
As with the preference criteria for selecting which
suggestions are adopted, we believe that this choice is
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governed by a combination of structural evaluation and
task-specific criteria.

The high degree of dependence on context and task makes
meaningful simulation of the overall strategic process in
isolation difficult. Consequently, we have focused our
simulation efforts on opportunity detection and
rerepresentation methods, as demonstrated above, and
postpone simulation of strategies to future work.

Related Work

The theory of rerepresentation presented here relies mainly
on the concepts of structure-mapping theory; therefore to
the extent that other accounts and models use the constraints
of structure-mapping theory, it could be adapted to them,
although the specific methods for detecting opportunities
would have to be changed, since those rely on the
processing model of SME as well.

Most models of analogical matching (cf. IAM [Keane
1990], LISA [Hummel & Holyoak, 1997]) have never been
used as components in larger simulations, relying entirely
on hand-generated representations. By contrast, SME has
been used as a module in a variety of larger simulations and
performance systems, and has demonstrated the ability to
work with descriptions created automatically from large-
scale knowledge bases created by others (cf. [Mostek et al
2000][Forbus, 2001][Forbus, et al 2002]). LISA and
DRAMA’s [Eliasmith & Thagard 2001] inability to match
more than a handful of relationships seems problematic,
given the ability of people to match everyday visual and
linguistic material that is significantly more complex.

Hofstader’s FARG group, in systems such as CopyCat
[Hofstader & Mitchell, 1994] and TableTop [French, 1995]
combined matching with inference systems to construct
representations. The matchers in both CopyCat and
TableTop were domain-specific; in contrast SME is
domain-independent. AMBR [Kokinov, Petrov 2000]
adapts the base and target representations during mapping
by instantiating additional knowledge from its semantic and
episodic memories, which is more general than the dynamic
case expansion technique described in [Mostek et al 2000].
However, none of these systems provides the kind of simple
theory of rerepresentation described here.

Finally, representation transformations similar to those
described here are sometimes used in case-based reasoning
systems that rely on structured representations (cf.
[Kolodner, 1994] [Leake, 1996]). In CBR systems these
transformations are used to adapt case knowledge to the
current situation directly, in contrast with our use of them to
improve the match itself.

Discussion

Previous work has shown that rerepresentation is an
important aspect of analogical reasoning and learning. This
paper presents a general theory of rerepresentation. It
divides the problem into detecting opportunities, methods
which suggest rerepresentations based on opportunities, and
strategies that organize the application of the suggestions.



Because we were able to derive the kinds of opportunities
directly from the theoretical constraints of structure-
mapping, we claim the set we propose here completely
characterizes them. On the other hand, the methods for
rerepresentation, which depend on what constraint is
violated, are somewhat more open, since they depend on the
specific content of the representation. However, even here
we were able to identify four families of methods that we
believe covers a broad range of rerepresentation
phenomena. Some of these have been identified in the
literature before, but our linking them into a tight theoretical
framework is novel. Finally, we discussed strategies for
rerepresentation in the context of larger cognitive processes.
Since, according to our theory, strategies are strongly
dependent on context and task, there are few constraints on
them that can be derived directly from a general theory of
rerepresentation (unlike opportunities and methods), but
were still able to propose two constraints on them
(systematicity and high selectivity). Evidence for the utility
of this theory was provided via examples drawn from the
literature  involving opportunity detection and the
construction and application of rerepresentation suggestions.

Our next step is to expand our implementation. Currently
opportunity detection is fully implemented, but the library
of rerepresentation methods contains only representative
samples from each of the categories. We plan to expand
this library to handle the full range of rerepresentation
problems we have encountered in our simulation work.
Without the contextual and task constraints of a larger
simulation to constrain strategy, the choice of what
rerepresentation suggestions are followed is entirely by
hand. Thus we see another important step to be embedding
our current rerepresentation implementation into a larger-
scale simulation, to see how well we can model phenomena
from developmental and conceptual change research. This
effort will help us to develop a more detailed account of the
strategies of rerepresentation.
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