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Abstract 

Psychologically, rerepresentation appears to be an important 

technique for achieving flexibility in analogical matching.  

This paper presents a concise theory of rerepresentation in 

analogical matching.  It divides the problem into detecting 

opportunities for rerepresentation, generating 

rerepresentation suggestions based on libraries of general 

methods, and strategies for controlling the rerepresentation 

process.  We show that the kinds of opportunities can be 

exhaustively derived from the principles of structure-

mapping, and the methods for detecting them derived from 

consideration of how the SME algorithm works.  Four 

families of rerepresentation methods are proposed, as well as 

task-independent and task-dependent constraints on strategies.  

Implemented simulation examples are used for illustration. 

Introduction 

Rerepresentation re-construes parts of compared situations 

in order to improve a match.  It is an important process in 

analogical reasoning and learning.  In development, 

rerepresentation appears to play an important role in 

learning.  For example, Kotovsky & Gentner (1996) found 

that children are better able to make cross-dimensional 

analogies when they have been induced to rerepresent the 

two situations to permit noticing the common magnitude 

increase.  Rerepresentation also plays an important role in 

scientific discovery.  For example, Gentner et al (1997) 

argue that rerepresentation played a crucial role in Kepler’s 

working through his analogy of vis-Motrix to light.   

This paper presents a concise theory of rerepresentation in 

analogical matching.  The next section outlines the 

computational issues surrounding rerepresentation.  Our 

theory of rerepresentation is described next, and illustrated 

with implemented examples from a computer simulation 

using the Structure-Mapping Engine (SME) [Falkenhainer 

et al 1986, 1989; Forbus et al 1994]1.  Finally we discuss 

related and future work.   

                                                          
1 The representational vocabulary is drawn from Cycorp’s Cyc 

knowledge base, plus our own extensions.  Opportunity detection 

is carried out by Lisp code that uses SME datastructures, and 

suggestions about applicable methods are generated using our 

FIRE reasoning engine. 

Rerepresentation in analogical reasoning 

We assume, as usual in analogical reasoning research, that 
the representations used in matching are internal 
descriptions, as opposed to, for instance, lexical items.   

Every analogical matcher must, as part of its operation, 

make decisions about whether or not two local items 

(statements or entities) within the descriptions it is 

comparing can be aligned.  Structure-mapping postulates 

that these decisions are made based on tiered identicality,

i.e., that relationships must by default be identical, and only 

under special circumstances should looser criteria (such as 

minimal ascension [Falkenhainer 1990]) be used to sanction 

local matches.  Other models have postulated that more 

generous criteria are always used, such as ignoring the 

semantics provided by the relations, yielding a purely 

structural match (e.g., IAM [Keane 1990]) or using some 

other representational resource to determine whether two 

relationships are alignable (e.g., the use of WordNet in 

[Holyoak & Thagard, 1989]).  Computationally, the tradeoff 

is between false negatives and false positives: Stricter 

criteria will miss potential matches, but looser criteria will 

generate more false positives.   

To evaluate the plausibility of where human analogical 

processing lies on this tradeoff, it is useful to consider how 

analogical matching fits into the larger scheme of cognitive 

processing.  Functionally, there are processes that generate 

the descriptions used as the base and target descriptions to 

be matched.  This includes the encoding processes used to 

construct representations from perceptual information, 

memory processes used to retrieve specific experiences and 

general knowledge from long-term memory, and reasoning 

that we might be doing upon such information, e.g., during 

problem solving.  While such processes are variable, they in 

fact involve a large degree of regularity: Whatever internal 

representation is generated for seeing, for example, a cat is 

expressed in the same internal representational conventions 

from one instant to the next, although the details of the 

specific descriptions computed may change as the cat 

stretches.  Similarly, the descriptions retrieved by memory 

use a uniform set of representational conventions.  The 

specific contents of descriptions for two distinct cats, for 

example, might vary widely due to differences in what was 

attended to as well as differences between the cats 

themselves, but it seems likely that much of the basic 
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vocabulary of perceptual and physical relationships is 

roughly constant over time.  On the other hand, differences 

in attention and task demands will affect what is encoded 

and to some degree how, and learning can change 

conceptual vocabularies and encoding strategies (cf. [Chi et 
al 1981]). Information gleaned from language can be highly 

variable (e.g., verb choices such as “ambled” versus 

“strolled” versus “ran” presumably affect internal 

representations beyond the difference in lexemes), and how 

much canonicalization occurs when understanding language 

is still an open question.   

This analysis suggests that false negatives are less of a 

concern than false positives, especially for more concrete 

descriptions.  Furthermore, false positives put more burdens 

on matchers: More correspondences must be produced, and 

more possibilities considered when merging local 

hypotheses.  Given that merge operations are 

approximations (otherwise they would involve implausible 

amounts of backtracking search) and there are likely to be 

resource limitations on the amount of correspondences that 

can be generated, avoiding false positives seems like a 

better strategy for the organism. 

Rerepresentation thus seems inevitable, given that 

encoding processes can be variable, inputs vary, and 

representations evolve over time.  The real question is, 

where should it occur?  The structure-mapping model is to 

place it outside the matcher itself.  Consider the process(es) 

that evaluate the matcher’s output.  The mapping(s) 

produced must be examined to see if they yield results that 

are useful for the current task.  If they do not, changes 

ranging from tweaking the content of the base and target 

(i.e., rerepresentation) to choosing a new base or even 

abandoning the current line of effort are options available to 

such processes.  This seems to us to be a natural place to 

recover from false negatives.  The mapping(s) can be 

examined for opportunities for rerepresentation.  A library 

of rerepresentation methods, based on the type of 

opportunity, provide suggestions for specific 

rerepresentations.  Task-specific rerepresentation strategies
determine which suggestions, if any, should be acted upon.  

Once rerepresentation(s) have been made, changing the base 

and target, the match can be updated and the results 

evaluated again.   

A structure-mapping theory of 

rerepresentation 

We divide our account of rerepresentation into three parts: 
(1) Detecting opportunities for rerepresentation, (2) methods
for rerepresentation, and (3) strategies that control which 
opportunities are exploited and what methods are used.  We 
discuss each in turn. 

Opportunities

We characterize opportunities for rerepresentation based on 
which constraints of structure-mapping are violated.  Recall 
that, in addition to tiered identicality, the constraints of 
structural consistency define what legal matches are: 

1:1 constraint: Each item in the base maps to at most 
one item in the target, and vice-versa. 
Parallel connectivity constraint: If a correspondence 
between two statements is included in a mapping, then 
so must correspondences between its arguments. 

Violations of identicality and 1:1 are more fundamental; 

as shown below, whether or not parallel connectivity is 

violated depends on where the failure to satisfy these other 

constraints occurs.  Table 1 concisely describes the 

possibilities.  We discuss each in turn, describing how to 

detect them based on the representations used in SME. 

Table 1: Rerepresentation opportunities 

Constraint Violates parallel 
connectivity? 

Opportunity 

Yes Holes Tiered
Identicality No Gulches  

Yes Rivals 1:1 

No Leftovers 

Holes: Recall that the initial step of the SME algorithm 
involves finding, in parallel, local match hypotheses that 
represent potential correspondences between items in the 
base and target descriptions.  What statements are initially 
aligned is governed by the tiered identicality constraint; by 
default only identical relations are matched.  Hence initially 
match hypotheses are constructed between all pairs of 
statements from base and target that have identical relations.  
The parallel connectivity constraint requires that 
corresponding arguments be aligned for the correspondence 
between two statements to be structurally consistent.  
Consequently, match hypotheses are also installed between 
arguments of aligned statements, if doing so would not 
violate tiered identicality.  (Non-identical functions can be 
aligned, as can any pair of entities.)  When this process is 
complete, the match hypothesis forest so produced serves as 
the starting point for grouping maximal structurally 
consistent clusters of match hypotheses into kernel 
mappings, which are combined via a greedy merge 
algorithm to produce mappings.   

Holes arise due to failures of the process of aligning 

arguments.  Consider the following pair of statements: 

B1: (cause (walk John Cave) 
           (inside John Cave))

T1: (cause (run Jill Chamber) 
           (inside Jill Chamber))

SME would construct a match hypothesis between B1 and 

T1, based on the identical relationships.  This in turn would 

cause it to attempt to construct match hypotheses between 

corresponding arguments.  It would succeed for the 

consequents, since the relations are identical.  It would fail 

for the antecedent, since walk and run are different 

relationships, assuming strict identicality.  Thus the 

hypothesis that B1 and T1 can match is marked as 

structurally inconsistent.  This failure is an example of a 

hole.  Holes can thus be detected by finding structurally 

inconsistent match hypotheses whose failure is due to an 

argument misalignment.  SME records such information 
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when marking a match hypothesis as structurally 

inconsistent, making detection easy. 

Consider for example part of a description of two physical 

situations involving flow, water flow and heat flow (adapted 

from [Buckley, 1979]): 

B2: (cause (higherPressure Beaker Vial) 
          (flow Beaker Vial Water Pipe))

T2: (cause (hotterThan Coffee IceCube) 
          (flow Coffee IceCube Heat Bar)) 

The higherPressure and hotterThan arguments are not 

alignable because they are not identical.  Such domain-

specific relationships appear to be used early in 

development [Kotovsky & Gentner, 1996].  Similarly, from 

[Clement & Gentner, 1991],  

B3: (implies (slurps Tam Minerals) 
            (attachesTo Tam Rock)) 

T3: (implies (records Satellite Sounds) 
            (orbits Satellite Planet)) 

Here both the antecedent and consequent fail to align, 

because they are very domain-specific.  Below we will see 

how such mismatches can be overcome. 

Gulches:   The only way that identicality can cause a 

failure to match two items without causing a hole is if the 

items are not themselves the arguments of any other pair of 

matching items, i.e., one or both are top-level expressions 

(aka roots) of their respective descriptions.  Such statements 

in the base show up as candidate inferences of the match.  

Gulches can be detected by looking for roots in the base and 

the target whose arguments have structurally consistent 

match hypotheses but do not themselves match. 

Consider for example a fragment from a variation of the 

classic solar system/Rutherford atom analogy: 

B4: (cause
         (and (greaterThan (Mass Sun) 
                                          (Mass Planet)) 
          (attracts Sun Planet)) 

    (revolveAround Planet Sun)) 

T4: (implies
    (and (greaterThan (Mass Nucleus) 

                      (Mass Electron)) 

         (attracts Nucleus Electron)) 

    (revolveAround Nucleus Electron)) 

Because the root statements themselves do not match, we 

have a gulch.   

Rivals:  Rivals are violations of the 1:1 constraint that 

lead to structural inconsistency of at least one match 

hypothesis.  This occurs when different correspondences for 

the same entity are implied by the match hypotheses for a 

statement’s arguments.  (SME records such information 

during its structural consistency calculations.) 

For example, consider matching a general schema for a 

feedback controller against a specific feedback system, a 

thermostat [Ma, 1999].  Here is a small fragment of the 

representations involved: 

B5: (senses SensorX SensedParameter) 
    (compares ComparatorX SensedParameter 

                        SetpointX)

T5: (senses ThermostatY (Temperature AirY)) 
      (compares ThermostatY (Temperature AirY)  
             ThresholdY) 

In fact, the thermostat plays the role of both the 

comparator and sensor in the abstract schema.  However, 

this match cannot be allowed, since it violates the 1:1 

constraint.   

Leftovers:   Mappings are constructed by combining 

kernels, using a greedy merge process [Forbus et al 1994].   

This process starts with the largest kernel, and adds as many 

kernels to it as possible, subject to maintaining the 1:1 

constraint.  (Notice that, since kernels are already 

structurally consistent and maximal, merging two kernels 

cannot violate any other structure-mapping constraint.)  

Leftovers are kernels that are left out of a mapping because 

they have one or more entity correspondences that are 

inconsistent with the mapping.   

Typically leftovers are unfixable, since they represent 

fundamentally different construals of the same comparison.  

However, sometimes they indicate that a change in 

reification can improve a match.  Consider for example 

matching a description of a car and a motorcycle, where the 

tires of each are explicitly described as distinct individuals.  

Only two tires of the car can be involved in such a match, 

since each can only match to one tire of the motorcycle, e.g. 

B6: (isa LeftFrontWheel Wheel) 
   (isa RightFrontWheel Wheel) 

   (isa LeftRearWheel Wheel) 

   (isa RightRearWheel Wheel) 

   (hasAttributes LeftFrontWheel RoundShape) 

   (hasAttributes RightFrontWheel RoundShape) 

   (hasAttributes LeftRearWheel RoundShape) 

   (hasAttributes RightRearWheel RoundShape) 

T6: (isa FrontWheel Wheel) 
   (isa RearWheel Wheel) 

   (hasAttributes FrontWheel RoundShape) 

   (hasAttributes RearWheel RoundShape) 

Given relational structure that ties wheels to their function 
(i.e., rear wheels to providing power, front wheels for 
steering, depending on the car) the motorcycle’s front and 
rear wheels will be matched to one or the other of the car’s 
front and rear wheels, randomly.  The unmatched wheels are 
leftovers. 
Completeness:  Are there other opportunities for 
rerepresentation beyond those listed here?  Our analysis 
suggests not.  The only constraint of structure-mapping 
theory we have not exploited is systematicity.  But 
systematicity is a preference, providing guidance as to better 
or worse choices rather than ruling some out, as the others 
do.  Since the opportunities described in Table 1 exhaust the 
constraints of structure-mapping, we conclude that this set is 
complete. 

Now that we have characterized the opportunities for 

rerepresentation, we can examine methods for using them. 

Methods

The appropriate rerepresentation method for each type of 
opportunity depends on the principle constraint being 
violated in it (i.e., identicality versus 1:1).   While the set of 
opportunities is fixed, deriving from the nature of the 
constraints of structure-mapping, the set of rerepresentation 
methods is relatively open.  Nevertheless, we can 
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characterize families of methods for each type, as shown in 
Table 2.  We describe each in turn. 

Table 2: Rerepresentation strategies 

Constraint Methods 

Tiered

Identicality 

Transformation 

Decomposition 

…

1:1 Entity splitting 

Entity Collecting 

…

Transformation: 
Transformations are rewrite rules that transform one or both 
of a pair of statements comprising a hole or gulch into 
equivalent statements that have the same meaning, at least 
with respect to the current description.  For example,  

B7: (greaterThan (Gravity Sun) (Gravity Earth)) 
T7: (lessThan (Gravity Earth) (Gravity Sun)) 

can be brought into alignment by transforming T7 to the 

predicate greaterThan and reversing the arguments.  Some 

transformations are more extensive, i.e., 

B8: (higherPressure Beaker Vial)

T8: (hotterThan Coffee IceCube) 
from the earlier example B2/T2 requires rewriting both 
expressions in terms of a more general, dimensional-
independent comparative (e.g., greaterThan) and encoding 
the dimension by functions, e.g.,  

B8’: (greaterThan (Pressure Beaker)  
                   (Pressure Vial))

T8’: (greaterThan (Temperature Coffee) 
                   (Temperature IceCube))

which will match because non-identical function matches 
are allowed by structure-mapping, precisely to support these 
kinds of cross-dimensional comparisons.  This strategy was 
proposed by Kotovsky and Gentner (1996) as part of the 
explanation for why children improve in their ability to 
notice cross-dimensional matches after experiencing a series 
of close comparisons.   

Decomposition:
Transformations are truth-preserving, but sometimes the 
relational structure supported by a statement only requires 
some aspect of its meaning.  In the walk/run case above, it is 
the underlying commonality that movement is occurring that 
is important; the mover is now inside the place they were 
moving to.  Decomposition strategies use the axioms that 
provide the meaning of relations to identify common aspects 
of their meaning, which can then be used in place of the 
original relationship.  Thus in the B1/T1 example above we 
might have  

B1’: (cause (moveTo John Cave)  
           (inside John Cave))

T1’: (cause (moveTo Jill Chamber)  
            (inside Jill Chamber))

Similarly, in the Tams/Satellite example above, if we view 
slurps and records as having a common relational 
component of collects, and attachesTo and orbits as 

having a common relational component of connectsTo, we 
would have via decomposition: 

B3’: (implies (collects Tam Minerals) 
             (connectsTo Tam Rock) 

T3’: (implies (collects Satellite Sounds) 
   (connectsTo Satellite Planet)) 

Entity splitting:  

Often the same entity plays multiple roles in the same 

representation.  Consider again the thermostat example.  

The conflict arises because the thermostat is playing two 

distinct roles (sensor and comparator) in the functional 

description.  If we refine the description of the thermostat, 

observing that it is the curvature of its bimetallic strip that 

measures the temperature, and the angular distance between 

the bimetallic strip and the dial’s angle that provides the 

comparison, then each of these aspects of the thermostat can 

match to distinct functional descriptions.  This is an 

example of an entity splitting strategy.  In general, entity 

splitting strategies require identifying ways to divide up an 

entity into distinct parts or aspects, and rewrite its roles in 

the description to use one or the other of these parts or 

aspects.

In the example of functional matching of a thermostat 

raised earlier, examining the parts of the thermostat yields 

two distinct components responsible for different aspects of 

the functionality, e.g., 

T5’: (physicalParts ThermostatY BimetallicStrip) 
    (senses (CurvatureFn BimetallicStrip) 

           (Temperature AirY)) 

  (compares (AngleFn BimetallicStrip) 

             (Temperature AirY) 

             ThresholdY) 

Each of these components now matches to a different part of 
the functional specification. 

Entity collecting:  

Often there are multiple entities that play equivalent roles in 

some representation, such as the tires on a car, the strands in 

a DNA molecule, and the players on a team.  Consider such 

corresponding collections in the base and in the target.  If 

they are equivalent with respect to the current description, 

there will be match hypotheses connecting each pair, 

although any mapping will select only a subset of these 

matches.  If the cardinality of the two collections is 

different, then some will be left out in any mapping.  A 

mapping could thus be improved by reifying these 

collections as explicit sets, and stating properties formerly 

associated with distinct individuals as properties of the sets.  

This brings more relational structure to bear on 

corresponding entities, and hence will raise the structural 

evaluation of the match.  We call such strategies entity 

collecting strategies.   In general, once a cluster of rival 

entity match hypotheses has been identified, knowledge 

about the kinds of entities involved must be used ascertain 

whether or not they can be reified into a collection (e.g., the 

strands of a DNA molecule or the players on a team), and  

to identify how statements about the individuals can (or 

cannot) be applied to the collection.   Entity collection does 

not always make sense: If most of the relational structure in 

the description concerns differentiating the roles that each 

1268



team member plays, for example, replacing the player 

descriptions with a set of players would be unwise. 

Consider again the car/motorcycle example described 

earlier.  The (higher-order) function PartsTypeFn takes a 

collection as its argument and denotes a function that in turn 

denotes the set of parts which are instances of the collection.  

Hence for example ((PartsTypeFn ?y) ?x) denotes all 

parts of ?x which are instances of the collection ?y.  The 

relationships membersIsa and membersHaveAttribute

distribute collection membership and attributes over set 

membership.  Given these, the wheels example can be 

rewritten as 

B6’: (membersIsa ((PartsTypeFn Wheel) MyCar) 
                  Wheel) 

   (membersHaveAttribute 

                ((PartsTypeFn Wheel) MyCar)

               RoundShape) 

T6’: (membersIsa ((PartsTypeFn Wheel)  
                         MyMotorcycle)

                 Wheel) 

   (membersHaveAttribute 

         ((PartsTypeFn Wheel) MyMotorcycle) 

         RoundShape)

Strategies

Conceptually, we view the process of rerepresentation as 
occurring in the following steps: 
1. Opportunities for rerepresentation are detected using 

the criteria described above, and selected for further 
processing. 

2. For each opportunity, methods are retrieved and tried to 
see if they can provide an improvement.  Each such 
improvement is a rerepresentation suggestion.   

3. One or more suggestions is adopted, causing changes in 
the base and/or target. 

4. The match is re-performed with the updated base and 
target descriptions. 

5. The process continues until the match is suitable. 

Strategies for controlling the rerepresentation process 

depend heavily on context and task demands.  These factors 

determine three things about the process: (1) when the result 

of a mapping is satisfactory for current purposes, and 

rerepresentation (or further rerepresentation) can be ignored, 

(2) when the process should be aborted, in favor of trying a 

new base or target, or something else entirely, and (3) which 

of the possible structures that could be added to a match via 

rerepresentation would be preferable (e.g., might provide a 

desired candidate inference).    

However, we also assume that the following task-

independent factors hold for human rerepresentation 

strategies: (1) Systematicity: all else being equal, 

rerepresentation suggestions that lead to larger structural 

evaluation scores will be preferred.  This is simply the 

extension of the systematicity preference of structure-

mapping to rerepresentation.  (2) High selectivity: The 

selection process is tightly controlled, so that very few of 

the possible opportunities are selected for consideration.   

As with the preference criteria for selecting which 

suggestions are adopted, we believe that this choice is 

governed by a combination of structural evaluation and 

task-specific criteria. 

The high degree of dependence on context and task makes 

meaningful simulation of the overall strategic process in 

isolation difficult.  Consequently, we have focused our 

simulation efforts on opportunity detection and 

rerepresentation methods, as demonstrated above, and 

postpone simulation of strategies to future work.    

Related Work 

The theory of rerepresentation presented here relies mainly 
on the concepts of structure-mapping theory; therefore to 
the extent that other accounts and models use the constraints 
of structure-mapping theory, it could be adapted to them, 
although the specific methods for detecting opportunities 
would have to be changed, since those rely on the 
processing model of SME as well.   

Most models of analogical matching (cf. IAM [Keane 

1990], LISA [Hummel & Holyoak, 1997]) have never been 

used as components in larger simulations, relying entirely 

on hand-generated representations.  By contrast, SME has 

been used as a module in a variety of larger simulations and 

performance systems, and has demonstrated the ability to 

work with descriptions created automatically from large-

scale knowledge bases created by others (cf. [Mostek et al
2000][Forbus, 2001][Forbus, et al 2002]).  LISA and 

DRAMA’s [Eliasmith & Thagard 2001] inability to match 

more than a handful of relationships seems problematic, 

given the ability of people to match everyday visual and 

linguistic material that is significantly more complex. 

 Hofstader’s FARG group, in systems such as CopyCat  

[Hofstader & Mitchell, 1994] and TableTop [French, 1995] 

combined matching with inference systems to construct 

representations.   The matchers in both CopyCat and 

TableTop were domain-specific; in contrast SME is 

domain-independent.    AMBR [Kokinov, Petrov 2000] 

adapts the base and target representations during mapping 

by instantiating additional knowledge from its semantic and 

episodic memories, which is more general than the dynamic 

case expansion technique described in [Mostek et al 2000].  

However, none of these systems provides the kind of simple 

theory of rerepresentation described here. 

Finally, representation transformations similar to those 

described here are sometimes used in case-based reasoning 

systems that rely on structured representations (cf. 

[Kolodner, 1994] [Leake, 1996]).  In CBR systems these 

transformations are used to adapt case knowledge to the 

current situation directly, in contrast with our use of them to 

improve the match itself. 

Discussion

Previous work has shown that rerepresentation is an 
important aspect of analogical reasoning and learning.  This 
paper presents a general theory of rerepresentation.  It 
divides the problem into detecting opportunities, methods 
which suggest rerepresentations based on opportunities, and 
strategies that organize the application of the suggestions.   
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Because we were able to derive the kinds of opportunities 
directly from the theoretical constraints of structure-
mapping, we claim the set we propose here completely 
characterizes them.  On the other hand, the methods for 
rerepresentation, which depend on what constraint is 
violated, are somewhat more open, since they depend on the 
specific content of the representation.  However, even here 
we were able to identify four families of methods that we 
believe covers a broad range of rerepresentation 
phenomena.  Some of these have been identified in the 
literature before, but our linking them into a tight theoretical 
framework is novel.  Finally, we discussed strategies for 
rerepresentation in the context of larger cognitive processes.  
Since, according to our theory, strategies are strongly 
dependent on context and task, there are few constraints on 
them that can be derived directly from a general theory of 
rerepresentation (unlike opportunities and methods), but 
were still able to propose two constraints on them 
(systematicity and high selectivity).   Evidence for the utility 
of this theory was provided via examples drawn from the 
literature involving opportunity detection and the 
construction and application of rerepresentation suggestions.   

Our next step is to expand our implementation.  Currently 

opportunity detection is fully implemented, but the library 

of rerepresentation methods contains only representative 

samples from each of the categories.  We plan to expand 

this library to handle the full range of rerepresentation 

problems we have encountered in our simulation work.  

Without the contextual and task constraints of a larger 

simulation to constrain strategy, the choice of what 

rerepresentation suggestions are followed is entirely by 

hand.   Thus we see another important step to be embedding 

our current rerepresentation implementation into a larger-

scale simulation, to see how well we can model phenomena 

from developmental and conceptual change research.  This 

effort will help us to develop a more detailed account of the 

strategies of rerepresentation.   
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