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Abstract

Two experiments and computational simulations investig ated
the way people make classifications and inferences when the
information about category membership was available to
participants. On a classification question, participants were
asked to predict the category to which a stimulus belongs, and
on an inference question, participants were asked to predict
the feature value of a stimulus given the category membership
of the stimulus. Given classification questions, participants
performance was influenced greatly by the concrete
appearance of individual stimuli, but such an influenced was
not present in participants answering inference questions.

Classification and inference constitute two of the most
important aspects of concept acquisition (Smith, 1994). In
this article, I will examine whether or not a similarity-based
process, such as the one formalized in the Generalized
Context Model (Nosofsky & Zaki, 2002), can account for
judgment processes involved in classification and in
inference.

Despite the formidable successes of the similarity-based
account of concept formation (Medin & Schaffer, 1978),
recent findings suggest that forming categorical knowledge
involves multiple routes, which include a similarity-based
associative process as well as a rule-based abstract process
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Erickson & Kruschke, 1998). The validity of this hybrid
view has been, however, questioned recently for at least two
reasons. First, most of the findings that support the hybrid
account are also consistent with exemplar-based models
(Nosofsky & Johansen, 2000). Second, studies have shown
that depending on the way people interact with a category,
they extract different types of feature information
(Whittlesea, Brooks, & Westcott, 1994). For this reason, it
is difficult to probe te mechanism underlying category
formation by simply analyzing the effect of category
learning.

In this article, I will investigate how people arrive at
classification judgments and inference judgments when the
membership about categories is readily available to
participants at the time of judgment (see Yamauchi &
Markman, 2000 for a similar procedure). In so doing, I
intend to demonstrate that classification and inference —two
of the most important functions of categories — involves two
separable processes.

Overview of the Experiments In one experiment,
participants were given a sample sheet depicting 10
members of two categories, and were asked to answer 60
classification questions or 60 inference questions on the
basis of the 10 samples (Figure 1). Each category consisted
of schematic figures of imaginary bugs that possess 5
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features with binary values and a category label (e.g.,
"monek" or "plaple").

The two categories have a family-resemblance structure,
which was derived from prototypes (MO & PO) (Table 1).
On the classification questions, participants predicted the
category label of a stimulus given 5 dimensions of feature
values (1 1 1 10 ?). On the inference questions, participants
predicted the value of one of the 5 features, given 4
dimensions of feature values and its category label (? 1 1 1 0
1). Thus, the two types of questions were formally
equivalent if category labels and category features are the
same thing (Table 1).

Two key variables — feature-matching and feature-
manifestation — measured the extent to which participants
adopt a similarity-based associative process. I manipulated
the number of matching features of the test stimulus to the
prototype of the corresponding sample category, and
devised two levels of matching features (.e., high- and
medium-levels and see Table 1).

In the second key variable — feature-manifestation, I
controlled the appearance of individual stimuli. One set of
test stimuli was composed of the same instances as used for
the sample stimuli (i.e., Same-manifestation and Set A in
Figure 2). The other sets of test stimuli consisted of new
instances that were different from the sample stimuli
(Different-manifestation; and Sets B/C/D/E in Figure 2).
These new instances, however, had some abstract
characteristics in common with the features of the sample
stimuli (e.g., having eight legs). Thus, answering these
questions required awareness of commonalties that go
beyond specific appearance of individual items.

The dependent variable of the experiment was the number
of responses made in accordance with the prototype of the
corresponding  category  (i.e., category-accordance
responses, and see Table 2 for the definition). For example,
given the classification question of stimulus M1, responding
with the value 1 (i.e., selecting “Monek™) was considered a
category-accordance response, and given the inference
question of stimulus M1, responding with the value 1 (i.e.,
selecting the long horns) was considered a category-
accordance response.

Experiment 1

Previous research has shown that classification requires
comparison of matching features derived from specific
exemplars. For this reason, classification judgments should
be prone to the manipulations introduced to the concrete
appearance of the test stimuli. Specifically, the number of
category-accordance responses should decline as the
similarity level shifts from the high-level to the medium
level of feature-match, and when the appearance of test
stimuli is different from that of sample stimuli (i.e., stimuli
with different feature manifestation). If participants given



inference questions employ an equivalent process as
predicted in classification questions, similar response
patterns should appear.  However, a previous study
employing an incremental inference-learning task revealed
that participants tend to attend to underlying abstract
commonalties rather than concrete stimulus appearance to
make a judgment (Yamauchi & Markman, 1998). For this
reason, the effect of the feature-matching and feature-
manifestation would be less conspicuous in participants
making inference judgments than in participants making
classification judgments. I tested this hypothesis in
Experiment 1.

Participants & Materials Participants were 223
undergraduate students at Texas A&M University, who
were randomly assigned to either the classification condition
(N=106) or the inference condition (N=117). The stimulus
materials were schematic illustrations of cartoon bugs,
which were produced from 5 sets (A, B, C, D, and E) of
prototypes (Figure 2). The stimuli obtained from Set A
depicted 10 samples and 20 test questions. The remaining
sets, B, C, D, and E, were employed to produce two
versions of test stimuli for counterbalancing. All the test
stimuli were divided into two levels of feature-match —
high- and medium-levels, and two types of feature
manifestation. Altogether, the 60 test stimuli consisted of
20 stimuli with the same manifestation (Set A) and 40
stimuli with different manifestations (Set B/D & C/E).

Procedure & Design The procedure of Experiment 1
involved answering 60 classification questions or 60
inference questions shown on a computer screen. For each
question, the computer showed the sample stimuli on the
left and the question stimulus on the right side of the screen.
Participants indicated their responses by clicking one of the
two buttons. The design of the experiment was a 2x2x2
factorial — (Question-type: classification vs. inference —
between-subjects factor) x (Feature-match: high vs. medium
— within-subjects factor) x (Feature-manifestation: same vs.
different — within-subjects factor).

Results The results from this experiment clearly suggest
that participants in the classification condition were more
sensitive to the concrete appearance of individual stimuli.
There was a significant interaction between feature-match
and question-type; F(1, 219)=64.7, MSE=0.013, p<0.001.
Planned comparisons indicated that the response scores
obtained from participants in the inference condition were
significantly higher than those from participants in the
classification condition at the medium-level of feature
match but not at the high-level of feature; t(221)=4.47,
p<0.001.

High Medium | Same  Different
classification 0.81 0.64 0.76 0.68
inference  0.78 0.74 0.78 0.75

Note: Average scores for classification and inference
questions as a function of feature-matching and
feature-manifestation
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The results from feature-manifestation also indicated that
participants answering classification questions were
influenced by the specific appearance of examples more
often than participants answering inference questions.
There was a statistically significant interaction between
feature-manifestation and question-type; F(1, 219)=23.2,
MSE=0.015, p<0.001. Planned comparisons indicated that
participants in the inference condition made significantly
more category-accordance responses than participants in the
classification condition given the stimuli composed of
different  feature-manifestation;  t(221)=2.96, p<0.01
(Bonferroni adjustment). Participants in the two conditions
were not statistically distinguishable given the stimuli
composed of the same feature manifestation; t(221)=0.64,
p>0.10. The main effect of feature-manifestation was also
significant; F(1, 219)= 47.6, MSE=0.015, p<0.001. All the
other effects, including the three-way interactions between
feature-match, feature-manifestation and question-type, as
well as a main effect of question-type, did not reach a
significant level; the three-way interaction, F(1, 219)=1.19,
MSE=0.01, p>0.10; the main effect of question-type, F(1,
219)=1.89, MSE=0.096, p>0.10. Clearly, classification
judgments make use of concrete exemplar information to a
larger extent than inference judgments require.

Experiment 2

Experiment 2 was designed to minimize external differences
between the two tasks. In this experiment, participants were
asked to make classification judgments or inference
judgments on the basis of a single sample stimulus
(prototypes of each category and see Figure 3a). In the
classification question, participants were asked to indicate
the probability that a question stimulus belongs to the same
type as the corresponding sample stimulus. In the inference
question, participants were asked to indicate the probability
that a question stimulus has the same feature as the
corresponding sample stimulus. Participants indicated their
estimated probability in a 0-100 scale. In this manner,
participants in the two conditions received the same stimuli
and were asked to compare each test stimulus directly to a
sample stimulus.

If inference and classification diverge in their
fundamental decision processes, then the discrepancy
observed in Experiment 1 should be replicated in this
simplified setting as well.

Participants & Materials Participants were 86
undergraduate students at Texas A&M University, who
were randomly assigned to the classification condition
(N=44) or to the inference condition (N=42). The materials
employed in Experiment 2 were analogous to those used in
Experiment 1. In this experiment, | adopted the stimulus
sets A and B only (Figure 2).

The sample stimuli were prototypes from the two
categories — monek and plaple. All test stimuli were
composed of new feature instances that were different from
those depicted the sample stimuli (New manifestation).
Altogether, there were 40 test stimuli. Among them, 30
stimuli were divided into three levels of feature-match (10



stimuli each for high, medium, and low level of feature-
match) in a similar manner described in Experiment 1.

Along with these three levels of feature-match, I also
devised 10 “contradictory” test stimuli (i.e., inconsistent
questions). Table 2 shows the configuration of these
inconsistent questions. In these questions, participants were
asked to predict the probability that the test stimulus has the
inconsistent value (e.g., (11 11?/01)or(11111?/0)and
see Figure 3b).

These inconsistent questions help probe the extent to
which participants perceive the equivalence of stimuli. If a
sample stimulus and a test stimulus are treated as
perceptually equivalent, then participants will be likely to
give the same label (or the same feature value) to these
stimuli. In other words, the more participants acknowledge
abstract commonalties of underlying features, the less likely
that they endorse inconsistent values. In this manner, these
inconsistent questions would measure the extent to which
participants perceive commonalties across different feature
instances.

Procedure & Design The procedure of this experiment
was identical to that described in Experiment 1 except that
participants were asked to indicate their responses with a 0-
100 scale on the basis of a single sample stimulus (Figure
3a). The figures that were shown in the two conditions were
identical. The design of the experiment was a 2 x 4 factorial
— 2 (Question-type: classification vs. inference — between-
subjects factor) x 4 (Feature-match: high, medium, low, and
inconsistent questions — within-subjects factor).  The
dependent variable of this experiment was the probability
scores that participants indicated to each question.

Results The results from Experiment 2 were in accord with
the view that participants answering classification questions
and participants answering inference questions interpret
individual features in a different manner. As in Experiment
1, there was a significant interaction between question-type
and feature-match; F(1, 82)=6.52, MSE=169.5, p<0.05.
Participants in the two conditions differed both at the
medium-level of feature-match and at the low-level feature
match, but not at the high-level of feature-match; the high-
level of feature-match, t(84)=0.12, p>0.10; the medium-
level of feature-match, t(84)=2.76, p<0.05 (Bonferroni); the
low-level of feature-match, t(84)=5.18, p<0.001. Clearly,
participants in the classification condition were influenced
by the level of matching features, but such an influence was
less noticeable in participants in the inference condition.

Given inconsistent questions, participants in the inference
condition were much less likely to endorse inconsistent
features (M=28.8), as compared to participants in the
classification condition (M=41.5); t(84)=3.42, p<0.01. This
result indicates that participants in the inference condition
were aware of abstract commonalties across different
instances to a larger extent than participants in the
classification condition were.

Taken together, the results from Experiment 2 clearly
suggest that classification and inference make use of
concrete exemplar information in different degrees.
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High Medium Low Inconsistent
Classification 47.7 375 28.2 42.3
Inference 47.3 47.0 44.9 28.8

Note: Average estimation scores for the classification
and inference questions as a function of feature-
matching

Computational Simulations Experiments 1 and 2
indicated that classification judgments were more likely to
rely on specific exemplar appearance, while inference
judgments tend to focus on abstract commonalities of
features. To corroborate this suggestion, I investigated
whether or not the latest version of Nosofsky’s Generalized
Context Model (GCM, Nosofsky & Zaki, 2002) can account
for the data obtained in the classification condition and in
the inference condition.

The formula (1) is an extension of the GCM introduced in
the Nosofsky & Zaki study (2002). In this formula, the
probability that a probe item i is classified into Category A
is expressed as a function of the number of matching
features between all items in Categories A and B, and item i.

[ sim(j,i)]
P(ALD) = jeCa B
D= SsimGoy w1 S simGy

jeCa jeCh

M
sim; =exp(—cxd;"), d; =Y w, | hxx,, —x,,|
m=1

X;, and X, denote the values of exemplars i and j on

dimension m, respectively, and w,, is the attention weight
given to dimension m (0 <w_ <1 and z w, =1). his

the parameter that adjusts the appearance of individual
exemplars. For the items that are constructed with the same
feature instances, / is set to 1. For the items that are
composed of different feature instances, / is set to vary
(1< h). This parameter is introduced to accommodate the
different feature manifestation adopted in the current
experiments. ¢ is an overall sensitivity parameter

(0L c< ). Y is a response scaling parameter
(0<y <mo). With ¥ =1, participants are supposed to

respond probabilistically, and with » >1, participants

respond more deterministically. r is a parameter associated
with similarity metric. In this simulation, 7 is set to 1.

For the inference questions, I tested whether or not
participants would employ the same feature-matching
process, as shown in (1). In this case, the probability that
participants choose a category-accordance response A given
a probe item 7 is characterized in the same manner specified
in (1). In (1), the similarity distance between item i and j is
obtained by examining the disparity between individual
feature values. Given an inference question asking the
value of horns, for example, the similarity distance between



two items was measured along 5 dimensions — head, body,
legs, tail and labels, but excluding horns.

To simulate the setting in Experiment 2, I modified (1)
slightly (see (2)). In Experiment 2, participants received a
single sample, and were asked to estimate the probability
that the probe item has a particular category label or a
feature. Because the probe item can belong to any category,
(1) is expanded to accommodate this situation by
introducing a new parameter mc.

[2_sim(j.DY
ke [ sim(i, i)Y +[ > sim(j,)] +me  ~(2)

JjeCa jeCh

where mc = i [ ZSiM(j,i)]y

k=1 jeCk,jeCa,Ch

Because a single prototype stimulus was shown as a
sample representing a category, the similarity distance
between a probe item and a single prototype is computed for
each category. Experiment 2 also has “inconsistent”
questions.  For example, an inconsistent classification
question asks the probability that an item has the label
“plaple” while the sample shows the label “monek” (e.g.,
P(BJi)) These inconsistent questions were handled by
calculating the complement of the consistent features (e.g.,
1-P(Ali)). In this setting, it is assumed that participants first
estimate the probability that a test stimulus has a value
consistent with the sample stimulus (P(A]i)) and then
estimate the probability that the test item does not have the
consistent value (1-P(Ali)). For all simulations, the best
parameter values were sought by an iterative search routine
that minimized the sum of squared errors (SSE).

Results from computational simulations suggest that the
modified GCM was able to account for participants’
classification performance very well. More than 88% of the
variation was accounted for by the exemplar model given
classification questions in Experiments 1 and 2. However,
no more than 27% of the variation was accounted for by the
same model given the inference data obtained in
Experiments 1 and 2 (Table 3).

In order to validate the disparity in the GCM’s ability to
handle classification questions and inference questions, I
fitted the model to the data obtained from each individual
participant in Experiment 2. In this analysis, the average
SSE score in the inference condition was nearly twice larger
than the average SSE score in the classification condition;
SSE in the inference condition (M=1.52), SSE in the
classification condition (M=3.09), t(84)>100, p<0.001. A
similar result was obtained for the accountability score
(percentage of explained variation); Inference (M=0.12),
Classification (M=0.39), t(84) = 4.3, p<0.001. Clearly, the
results from the computational simulations suggest that
inference involves more than simple feature-matching
processes.
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Conclusion

The two experiments and the computational simulations
indicate that people employ different decision strategies to
answer classification questions and inference questions.
Specifically, participants exhibit a strong tendency to assess
concrete exemplars to obtain classification judgments, while
such a tendency is in general absent in participants
answering inference questions.  Unlike classification,
inference seems to guide people to extract abstract
commonalties among different instances. I suggest that this
disparity arises from the fact that classification and
inference are reliant on two different cognitive processes in
different degrees. Given the fact that inference and
classification constitute two fundamental functions of
categories, I suggest that the formation of a concept is
intertwined with these two separable processes.
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Figure 1: The Sample Stimuli and a Classification Question and an Inference Question

Sample stimuli Question stimuli
monek monek plaple plaple monek
8 ¢ F o« il Classification
- %Lg o2 T, ﬁ PRPIC Question:
[ < plaple
R —— o Which group do you
K N think this bug is more
& gs, likely to belong to?
monek IT.J
(] monek Inference
@S Question:
5 & Which horns do you
3% = B 4 think this bug is more
= 2 likely to have?

Table 1: the Structure of the Sample Stimuli and of the Question Stimuli in Experiment 1
Sample Stimuli

Horns Head Body Legs Tail Labels Horns Head Body Legs Tail Labels
M1 1 1 1 1 0 1 P1 0 0 0 0 1 0
M2 1 1 1 0 1 1 P2 0 0 0 1 0 0
M3 1 1 0 1 1 1 P3 0 0 1 0 0 0
M4 1 0 1 1 1 1 P4 0 1 0 0 0 0
M5 0 1 1 1 1 1 P5 1 0 0 0 0 0
MO 1 1 1 1 1 1 PO 0 0 0 0 0 0
Question Stimuli

Horns Head Body Legs Tail Labels Horns Head Body Legs Tail Labels

1 1 1 1 0 1 High 0 0 0 0 1 0

1 1 1 0 1 1 0 0 0 1 0 0

1 1 0 1 1 1 0 0 1 0 0 0

1 0 1 1 1 1 0 1 0 0 0 0

0 1 1 1 1 1 1 0 0 0 0 0

1 1 1 0 0 1 Medium 0 0 0 1 1 0

1 1 0 0 1 1 0 0 1 1 0 0

1 0 0 1 1 1 0 1 1 0 0 0

0 0 1 1 1 1 1 1 0 0 0 0

Notes: The values enclosed with the rectangular boxes are those used for the classification questions and the values with bold
typeface are those used for the inference questions. The responses consistent with these values are defined as “category-
accordance responses.”

Figure 2: Five Sets of Prototypes
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Figure 3a: Samples of a Classification Question — (a) and an Inference Question — (b) Used in Experiment 2

(a) What is the probability that the bug shown (b) If the bug shown below belong to the same type, “monek,”
below can belongto the same type, “monek,” as the bug shown on the left side, what is the probability
E as the bug shown on the left side? that this bug (shown below) can have the horns like these?
%{j monek monek monek
@
Ky (&
D,

Figure 3b: Samples of Inconsistent Questions; Classification— (a) and Inference— (b)

(a) What is the probability that the bug shown below (b) If the bug shown below belong to the same type,
can belong to the type, “plaple,” if the bug shown “monek,” as the bug shown on the left side, what
monek on the left side belongs to "monek"? is the probability that this bug (shown below) can
plaple monek  have the horns like these?
ﬁ ﬁ monck
s
S 9
O, @:;

Table 2: The Structure of Inconsistent Questions Used in Experiment 2

Horns Head Body Legs Tail Label Horns Head Body Legs Tail Label

Prototypes 1 1 1 1 1 1 0 0 0 0 0 0
Questions 1 1 1 1 0/? 1 0 0 0 0 1/? 0

1 1 1 0/? 1 1 0 0 0 1/? 0 0

1 1 0/? 1 1 1 0 0 1/? 0 0 0

1 0/? 1 1 1 1 0 1/? 0 0 0 0

0/? 1 1 1 1 1 1/? 0 0 0 0 0

1 1 1 1 1 0/? 0 0 0 0 0 1/?
Table 3: A Summary of the Simulation Results
Experiment 1 w1 w2 w3 w4 w5 w6 C h r  SSE % explained

Classification 0.058 0.1061 0.106 0.655 0.075 NA 9.0051.074 0.615 0.176 88.8
Inference  0.1248 0.021 0.129 0.082 0.082 0.56 2.29 1.04 0.96 0.108 23.9
Experiment2 w1 w2 w3 w4 w5 w6 c h r mc SSE % explained
Classification 0 0.141 0.115 0.601 0.143 NA 1.6151.015 1.01 0.51 0.037 95.0
Inference  0.151 0 0259 0.14 045 0 094 1 0.99 0.056 0.799 26.0
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