
Dual Processes in the Acquisition of Categorical Concepts

Takashi Yamauchi (tya@psyc.tamu.edu)
Department of Psychology; Mail Stop 4235

Texas A&M University, College Station, TX 77840 USA

Abstract

Two experiments and computational simulations investig ated

the way people make classifications and inferences when the 

information about category membership was available to 

participants.  On a classification question, participants were 

asked to predict the category to which a stimulus belongs, and 

on an inference question, participants were asked to predict 

the feature value of a stimulus given the category membership 

of the stimulus.  Given classification questions, participants ‘ 

performance was influenced greatly by the concrete

appearance of individual stimuli, but such an influenced was 

not present in participants answering inference questions.

Classification and inference constitute two of the most

important aspects  of concept acquisition (Smith, 1994). In 

this article, I will examine whether or not a similarity-based
process, such as the one formalized in the Generalized 

Context Model (Nosofsky & Zaki, 2002), can account for 

judgment processes involved in classification and in
inference.

Despite the formidable successes of the similarity-based

account of concept formation (Medin & Schaffer, 1978),
recent findings suggest that forming categorical knowledge 

involves mu ltiple routes, which include a similarity-based

associative process as well as a rule-based abstract process 
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998;

Erickson & Kruschke, 1998). The validity of this hybrid 

view has been, however, questioned recently for at least two 
reasons.  First, most of the findings that support the hybrid

account are also consistent with exemplar-based models

(Nosofsky  & Johansen, 2000).  Second, studies have shown 
that depending on the way people interact with a category,

they extract different types of feature information

(Whittlesea, Brooks, & Westcott, 1994).  For this reason, it 
is difficult to probe the mechanism underlying category

formation by simply analyzing the effect of category

learning.
In this article, I will investigate how people arrive at 

classification judgments and inference judgments when the 

membership about categories is readily available to
participants at the time of judgment (see Yamauchi &

Markman, 2000 for a similar procedure).  In so doing, I 

intend to demonstrate that classification and inference – two 
of the most important functions of categories – involves two 

separable processes.

Overview of the Experiments  In one experiment,

participants were given a sample sheet depicting 10

members of two categories, and were asked to answer 60 
classification questions or 60 inference questions on the

basis of the 10 samples (Figure 1). Each category consisted

of schematic figures of imaginary bugs that possess 5

features with binary values and a category label (e.g., 
"monek" or "plaple").

The two categories have a family-resemblance structure, 

which was derived from prototypes (M0 & P0) (Table 1). 
On the classification questions, participants predicted the

category label of a stimulus given 5 dimensions of feature 

values (1 1 1 1 0 ?).  On the inference questions, participants 
predicted the value of one of the 5 features, given 4 

dimensions of feature values and its category label (? 1 1 1 0 

1).  Thus, the two types of questions were formally
equivalent if category labels and category features are the 

same thing (Table 1).

Two key variables – feature-matching and feature-
manifestation – measured the extent to which participants

adopt a similarity-based associative process.  I manipulated 

the number of matching features of the test stimulus to the 
prototype of the corresponding sample category, and

devised two levels of matching features (i.e., high- and 

medium-levels and see Table 1). 
In the second key variable – feature-manifestation, I

controlled the appearance of individual stimuli.  One set of 

test stimuli was composed of the same instances as used for 
the sample stimuli (i.e., Same-manifestation and Set A in 

Figure 2).  The other sets of test stimuli consisted of new 

instances that were different from the sample stimuli
(Different-manifestation; and Sets B/C/D/E in Figure 2).

These new instances, however, had some abstract

characteristics in common with the features of the sample 
stimuli (e.g., having eight legs).  Thus, answering these

questions required awareness of commonalties that go

beyond specific appearance of individual items.
The dependent variable of the experiment was the number

of responses made in accordance with the prototype of the 

corresponding category (i.e., category-accordance
responses, and see Table 2 for the definition).  For example, 

given the classification question of stimulus M1, responding

with the value 1 (i.e., selecting “Monek”) was considered a 
category-accordance response, and given the inference

question of stimulus M1, responding with the value 1 (i.e., 

selecting the long horns) was considered a category-
accordance response.

Experiment 1

Previous research has shown that classification requires 

comparison of matching features derived from specific
exemplars.  For this reason, classification judgments should 

be prone to the manipulations introduced to the concrete 

appearance of the test stimuli.  Specifically, the number of 
category-accordance responses should decline as the

similarity level shifts from the high-level to the medium-

level of feature-match, and when the appearance of test 
stimuli is different from that of sample stimuli (i.e., stimuli 

with different feature manifestation).  If participants given 
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inference questions employ an equivalent process as 
predicted in classification questions, similar response 
patterns should appear.  However, a previous study 
employing an incremental inference-learning task revealed 
that participants tend to attend to underlying abstract 
commonalties rather than concrete stimulus appearance to 
make a judgment   (Yamauchi & Markman, 1998).  For this 
reason, the effect of the feature-matching and feature-
manifestation would be less conspicuous in participants 
making inference judgments than in participants making 
classification judgments.  I tested this hypothesis in 
Experiment 1.      

Participants & Materials   Participants were 223 
undergraduate students at Texas A&M University, who 
were randomly assigned to either the classification condition 
(N=106) or the inference condition (N=117).  The stimulus 
materials were schematic illustrations of cartoon bugs, 
which were produced from 5 sets (A, B, C, D, and E) of 
prototypes (Figure 2). The stimuli obtained from Set A 
depicted 10 samples and 20 test questions.  The remaining 
sets, B, C, D, and E, were employed to produce two 
versions of test stimuli for counterbalancing.  All the test 
stimuli were divided into two levels of feature-match – 
high- and medium-levels, and two types of feature 
manifestation.  Altogether, the 60 test stimuli consisted of 
20 stimuli with the same manifestation (Set A) and 40 
stimuli with different manifestations (Set B/D & C/E). 

Procedure & Design The procedure of Experiment 1 
involved answering 60 classification questions or 60 
inference questions shown on a computer screen.   For each 
question, the computer showed the sample stimuli on the 
left and the question stimulus on the right side of the screen.   
Participants indicated their responses by clicking one of the 
two buttons.  The design of the experiment was a 2x2x2 
factorial –  (Question-type: classification vs. inference – 
between-subjects factor) x (Feature-match: high vs. medium 
– within-subjects factor) x (Feature-manifestation: same vs. 
different – within-subjects factor).  

Results   The results from this experiment clearly suggest 
that participants in the classification condition were more 
sensitive to the concrete appearance of individual stimuli. 
There was a significant interaction between feature-match 
and question-type; F(1, 219)=64.7, MSE=0.013, p<0.001.  
Planned comparisons indicated that the response scores 
obtained from participants in the inference condition were 
significantly higher than those from participants in the 
classification condition at the medium-level of feature 
match but not at the high-level of feature; t(221)=4.47, 
p<0.001.    

  High Medium Same Different

classification 0.81 0.64 0.76 0.68 

inference 0.78 0.74 0.78 0.75 

Note: Average scores for classification and inference 
questions as a function of feature-matching and 
feature-manifestation 

The results from feature-manifestation also indicated that 
participants answering classification questions were 
influenced by the specific appearance of examples more 
often than participants answering inference questions.   
There was a statistically significant interaction between 
feature-manifestation and question-type; F(1, 219)=23.2, 
MSE=0.015, p<0.001.  Planned comparisons indicated that 
participants in the inference condition made significantly 
more category-accordance responses than participants in the 
classification condition given the stimuli composed of 
different feature-manifestation; t(221)=2.96, p<0.01 
(Bonferroni adjustment).  Participants in the two conditions 
were not statistically distinguishable given the stimuli 
composed of the same feature manifestation; t(221)=0.64, 
p>0.10.  The main effect of feature-manifestation was also 
significant; F(1, 219)= 47.6, MSE=0.015, p<0.001.  All the 
other effects, including the three-way interactions between 
feature-match, feature-manifestation and question-type, as 
well as a main effect of question-type, did not reach a 
significant level; the three-way interaction, F(1, 219)=1.19, 
MSE=0.01, p>0.10; the main effect of question-type, F(1, 
219)=1.89, MSE=0.096, p>0.10.  Clearly, classification 
judgments make use of concrete exemplar information to a 
larger extent than inference judgments require.

Experiment 2 

Experiment 2 was designed to minimize external differences 
between the two tasks.  In this experiment, participants were 
asked to make classification judgments or inference 
judgments on the basis of a single sample stimulus 
(prototypes of each category and see Figure 3a).  In the 
classification question, participants were asked to indicate 
the probability that a question stimulus belongs to the same 
type as the corresponding sample stimulus.  In the inference 
question, participants were asked to indicate the probability 
that a question stimulus has the same feature as the 
corresponding sample stimulus.  Participants indicated their 
estimated probability in a 0-100 scale.  In this manner, 
participants in the two conditions received the same stimuli 
and were asked to compare each test stimulus directly to a 
sample stimulus.   

If inference and classification diverge in their 
fundamental decision processes, then the discrepancy 
observed in Experiment 1 should be replicated in this 
simplified setting as well.   

Participants & Materials  Participants were 86 
undergraduate students at Texas A&M University, who 
were randomly assigned to the classification condition 
(N=44) or to the inference condition (N=42).  The materials 
employed in Experiment 2 were analogous to those used in 
Experiment 1.  In this experiment, I adopted the stimulus 
sets A and B only (Figure 2).    

The sample stimuli were prototypes from the two 
categories – monek and plaple.  All test stimuli were 
composed of new feature instances that were different from 
those depicted the sample stimuli (New manifestation).   
Altogether, there were 40 test stimuli.  Among them, 30 
stimuli were divided into three levels of feature-match (10 
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stimuli each for high, medium, and low level of feature-
match) in a similar manner described in Experiment 1.   

Along with these three levels of feature-match, I also 
devised 10 “contradictory” test stimuli (i.e., inconsistent 
questions).  Table 2 shows the configuration of these 
inconsistent questions.  In these questions, participants were 
asked to predict the probability that the test stimulus has the 
inconsistent value (e.g., (1 1 1 1 ?/0 1) or (1 1 1 1 1 ?/0) and 
see Figure 3b).    

These inconsistent questions help probe the extent to 
which participants perceive the equivalence of stimuli.  If a 
sample stimulus and a test stimulus are treated as 
perceptually equivalent, then participants will be likely to 
give the same label (or the same feature value) to these 
stimuli.  In other words, the more participants acknowledge 
abstract commonalties of underlying features, the less likely 
that they endorse inconsistent values.  In this manner, these 
inconsistent questions would measure the extent to which 
participants perceive commonalties across different feature 
instances.

Procedure & Design The procedure of this experiment 
was identical to that described in Experiment 1 except that 
participants were asked to indicate their responses with a 0-
100 scale on the basis of a single sample stimulus (Figure 
3a).  The figures that were shown in the two conditions were 
identical.  The design of the experiment was a 2 x 4 factorial 
– 2 (Question-type: classification vs. inference – between-
subjects factor) x 4 (Feature-match: high, medium, low, and 
inconsistent questions – within-subjects factor).  The 
dependent variable of this experiment was the probability 
scores that participants indicated to each question. 

Results  The results from Experiment 2 were in accord with 
the view that participants answering classification questions 
and participants answering inference questions interpret 
individual features in a different manner.  As in Experiment 
1, there was a significant interaction between question-type 
and feature-match; F(1, 82)=6.52, MSE=169.5, p<0.05.  
Participants in the two conditions differed both at the 
medium-level of feature-match and at the low-level feature 
match, but not at the high-level of feature-match; the high-
level of feature-match, t(84)=0.12, p>0.10; the medium-
level of feature-match, t(84)=2.76, p<0.05 (Bonferroni); the 
low-level of feature-match, t(84)=5.18, p<0.001.  Clearly, 
participants in the classification condition were influenced 
by the level of matching features, but such an influence was 
less noticeable in participants in the inference condition.   

Given inconsistent questions, participants in the inference 
condition were much less likely to endorse inconsistent 
features (M=28.8), as compared to participants in the 
classification condition (M=41.5); t(84)=3.42, p<0.01.  This 
result indicates that participants in the inference condition 
were aware of abstract commonalties across different 
instances to a larger extent than participants in the 
classification condition were. 

Taken together, the results from Experiment 2 clearly 
suggest that classification and inference make use of 
concrete exemplar information in different degrees. 

  High Medium Low Inconsistent

Classification 47.7 37.5 28.2 42.3 

Inference 47.3 47.0 44.9 28.8 

Note: Average estimation scores for the classification 
and inference questions as a function of feature-
matching  

Computational Simulations Experiments 1 and 2 
indicated that classification judgments were more likely to 
rely on specific exemplar appearance, while inference 
judgments tend to focus on abstract commonalities of 
features.  To corroborate this suggestion, I investigated 
whether or not the latest version of Nosofsky’s Generalized 
Context Model (GCM, Nosofsky & Zaki, 2002) can account 
for the data obtained in the classification condition and in 
the  inference condition.   

The formula (1) is an extension of the GCM introduced in 
the Nosofsky & Zaki study (2002).  In this formula, the 
probability that a probe item i is classified into Category A 
is expressed as a function of the number of matching 
features between all items in Categories A and B, and item i.
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imx  and jmx  denote the values of exemplars i and j on 

dimension m, respectively, and mw  is the attention weight 

given to dimension m ( 10 mw  and 1mw ).  h is 

the parameter that adjusts the appearance of individual 

exemplars.  For the items that are constructed with the same 

feature instances, h is set to 1.  For the items that are 

composed of different feature instances, h is set to vary 

( h1 ).  This parameter is introduced to accommodate the 

different feature manifestation adopted in the current 

experiments. c is an overall sensitivity parameter 

( c0 ).   is a response scaling parameter 

( 0 ).  With 1 , participants are supposed to 

respond probabilistically, and with 1, participants 

respond more deterministically.   r is a parameter associated 

with similarity metric.  In this simulation, r is set to 1. 
For the inference questions, I tested whether or not 

participants would employ the same feature-matching 
process, as shown in (1).  In this case, the probability that 
participants choose a category-accordance response A given 
a probe item i is characterized in the same manner specified 
in (1).  In (1), the similarity distance between item i and j is 
obtained by examining the disparity between individual 
feature values.  Given an inference question asking the 
value of horns, for example, the similarity distance between 
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two items was measured along 5 dimensions –  head, body, 
legs, tail and labels, but excluding horns.

To simulate the setting in Experiment 2, I modified (1) 
slightly (see (2)).  In Experiment 2, participants received a 
single sample, and were asked to estimate the probability 
that the probe item has a particular category label or a 
feature.  Because the probe item can belong to any category, 
(1) is expanded to accommodate this situation by 
introducing a new parameter mc.   
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Because a single prototype stimulus was shown as a 
sample representing a category, the similarity distance 
between a probe item and a single prototype is computed for 
each category.  Experiment 2 also has “inconsistent” 
questions.  For example, an inconsistent classification 
question asks the probability that an item has the label 
“plaple” while the sample shows the label “monek” (e.g., 
P(B|i))  These inconsistent questions were handled by 
calculating the complement of the consistent features (e.g., 
1-P(A|i)).  In this setting, it is assumed that participants first 
estimate the probability that a test stimulus has a value 
consistent with the sample stimulus (P(A|i)) and then 
estimate the probability that the test item does not have the 
consistent value (1-P(A|i)).  For all simulations, the best 
parameter values were sought by an iterative search routine 
that minimized the sum of squared errors (SSE). 

Results from computational simulations suggest that the 
modified GCM was able to account for participants’ 
classification performance very well.  More than 88% of the 
variation was accounted for by the exemplar model given 
classification questions in Experiments 1 and 2.   However, 
no more than 27% of the variation was accounted for by the 
same model given the inference data obtained in 
Experiments 1 and 2 (Table 3).   

In order to validate the disparity in the GCM’s ability to 
handle classification questions and inference questions, I 
fitted the model to the data obtained from each individual 
participant in Experiment 2.  In this analysis, the average 
SSE score in the inference condition was nearly twice larger 
than the average SSE score in the classification condition; 
SSE in the inference condition (M=1.52), SSE in the 
classification condition (M=3.09), t(84)>100, p<0.001.  A 
similar result was obtained for the accountability score 
(percentage of explained variation); Inference (M=0.12), 
Classification (M=0.39), t(84) = 4.3, p<0.001.  Clearly, the 
results from the computational simulations suggest that 
inference involves more than simple feature-matching 
processes. 

Conclusion

The two experiments and the computational simulations 

indicate that people employ different decision strategies to 

answer classification questions and inference questions.  

Specifically, participants exhibit a strong tendency to assess 

concrete exemplars to obtain classification judgments, while 

such a tendency is in general absent in participants 

answering inference questions.  Unlike classification, 

inference seems to guide people to extract abstract 

commonalties among different instances.  I suggest that this 

disparity arises from the fact that classification and 

inference are reliant on two different cognitive processes in 

different degrees.  Given the fact that inference and 

classification constitute two fundamental functions of 

categories, I suggest that the formation of a concept is 

intertwined with these two separable processes. 
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Figure 1:  The Sample Stimuli and a Classification Question and an Inference Question 

Table 1: the Structure of the Sample Stimuli and of the Question Stimuli in Experiment 1 

Sample Stimuli 

  Horns Head Body Legs Tail Labels    Horns Head Body Legs Tail Labels

M1 1 1 1 1 0 1 P1 0 0 0 0 1 0 

M2 1 1 1 0 1 1 P2 0 0 0 1 0 0 

M3 1 1 0 1 1 1 P3 0 0 1 0 0 0 

M4 1 0 1 1 1 1 P4 0 1 0 0 0 0 

M5 0 1 1 1 1 1  P5 1 0 0 0 0 0 

M0 1 1 1 1 1 1 P0 0 0 0 0 0 0 

                                                  Question Stimuli 

Horns Head Body Legs Tail Labels    Horns Head Body Legs Tail Labels 

1 1 1 1 0 1 High 0 0 0 0 1 0

1 1 1 0 1 1  0 0 0 1 0 0

1 1 0 1 1 1  0 0 1 0 0 0

1 0 1 1 1 1  0 1 0 0 0 0

0 1 1 1 1 1    1 0 0 0 0 0

1 1 1 0 0 1 Medium 0 0 0 1 1 0

1 1 0 0 1 1  0 0 1 1 0 0

1 0 0 1 1 1  0 1 1 0 0 0

0 0 1 1 1 1  1 1 0 0 0 0

Notes: The values enclosed with the rectangular boxes are those used for the classification questions and the values with bold 

typeface are those used for the inference questions.  The responses consistent with these values are defined as “category-

accordance responses.” 

Figure 2: Five Sets of Prototypes 
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Figure 3a: Samples of a Classification Question –  (a) and an Inference Question – (b) Used in Experiment 2 

Figure 3b: Samples of Inconsistent Questions; Classification– (a) and Inference– (b) 

Table 2: The Structure of Inconsistent Questions Used in Experiment 2 

 Horns Head Body Legs Tail Label  Horns Head Body Legs Tail Label 

Prototypes 1 1 1 1 1 1  0 0 0 0 0 0 

Questions 1 1 1 1 0/? 1  0 0 0 0 1/? 0

 1 1 1 0/? 1 1  0 0 0 1/? 0 0 

 1 1 0/? 1 1 1  0 0 1/? 0 0 0 

 1 0/? 1 1 1 1  0 1/? 0 0 0 0 

0/? 1 1 1 1 1  1/? 0 0 0 0 0 

 1 1 1 1 1 0/?  0 0 0 0 0 1/?

Table 3:  A Summary of the Simulation Results 

Experiment 1 w1 w2 w3 w4 w5 w6 c h r SSE % explained  

Classification 0.058 0.1061 0.106 0.655 0.075 NA 9.005 1.074 0.615 0.176 88.8  

Inference 0.1248 0.021 0.129 0.082 0.082 0.56 2.29 1.04 0.96 0.108 23.9  

Experiment 2 w1 w2 w3 w4 w5 w6 c h r mc SSE % explained

Classification 0 0.141 0.115 0.601 0.143 NA 1.615 1.015 1.01 0.51 0.037 95.0 

Inference 0.151 0 0.259 0.14 0.45 0 0.94 1 0.99 0.056 0.799 26.0 
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