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Abstract

This work explores the interpretation and the
computational modeling of discovery tasks—tasks
where sudden insights result from cumulative in-
formation. Such tasks are useful in further under-
standing human everyday reasoning, beyond rule-
based reasoning prevalent in cognitive science. We
interpret the situation as involving mainly implicit
memory with successive accumulation of informa-
tion. We then implement this analysis in a cognitive
architecture CLARION, which has succeeded in cap-
turing a variety of human learning data in prior sim-
ulations. The simulation within this architecture
accurately captures the human data. This work
demonstrates the significant role played by implicit
memory in human everyday reasoning. Further-
more, it demonstrates how such a reasoning pro-
cess falls out of the existing cognitive architecture
CLARION.

Introduction

What is human everyday reasoning like? Is it dif-
ferent from formal models developed by logicians
and psychologists? What is the role of intuition
in such reasoning? In this paper, we attempt to
describe one particular aspect of human everyday
reasoning—intuition and insight—in computational
terms. We instantiate our analysis in the form of
a computational model implemented in a cognitive
architecture.

Specifically, this work explores the interpreta-
tion and the computational modeling of discovery
tasks—tasks where sudden insights result from cu-
mulative information (Bowers et al 1990, Schooler et
al 1993, Metcalfe 1986). Such tasks are important
for understanding finer details of human everyday
reasoning (e.g., implicit processes), beyond explicit
rule-based reasoning prevalent in cognitive science.
As shown in Bowers et al (1990), subjects could re-
spond discriminatingly to coherence that they could
not explicitly identify, and that this implicit recogni-
tion of coherence guided subjects gradually towards
an explicit representation of a hunch. While such
hunches might surface quite suddenly into conscious-
ness, the underlying (implicit) cognitive processes
were rather continuous. Schooler et al (1993) pre-
sented related findings. We interpret the situation
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as involving mainly implicit memory with successive
accumulation of information. We then implement
this analysis in an existing cognitive architecture—
CLARION (Sun 2002).

A little background is in order here. Sun (1991)
first proposed a theory of human everyday reasoning
based on a combination of rule-based reasoning and
similarity-based reasoning, implemented with a mix-
ture of localist and distributed connectionist models.
This theory was further developed and elaborated in
Sun (1995). The theory was backed up by psycho-
logical evidence in the form of verbal protocols such
as those in Collins and Michalski (1989).  Later
on, a new cognitive architecture, CLARION, was de-
veloped (Sun 1999, Sun et al 2001), and this model
of reasoning was incorporated into the architecture.
The new cognitive architecture has succeeded in cap-
turing a variety of human learning data in prior sim-
ulations (Sun et al 2001, Sun 1999, 2002).

As will be detailed later, the simulation of dis-
covery tasks within this architecture accurately cap-
tures the human data as well. This simulation in-
dicates the significant role played by implicit mem-
ory in human everyday reasoning. Furthermore, it
demonstrates how such a reasoning process naturally
falls out of the cognitive architecture CLARION.

In the remainder of this paper, we first describe
the experiments of Bowers et al (1990). We then
present our interpretation of the experimental re-
sults. We turn then to describe the generic cognitive
architecture, CLARION, used in capturing the human
data. Next, the particular setup of the architecture
for capturing this set of human experiments is de-
scribed. We then describe the results of simulating
the experiments of Bowers et al (1990) using CLAR-
10N. Finally, some general discussions complete the

paper.

The Discovery Task

Let us examine some human data that illustrates
intuition and insight in human reasoning (Tversky
and Kahneman 1983, Sun 1991, Sloman 1998). We
will look into the experimental data from Bowers
et al (1990), focusing on their third experiment,
which was concerned with gradual “warming up” to
a hunch and later to a conviction.



Although intuition has been defined as “the imme-
diate apprehension of an object by the mind without
the intervention of any reasoning process” (Oxford
English Dictionary), or “immediate knowledge, as in
perception or consciousness, distinguished from me-
diate knowledge as in reasoning” (Webster’s Dictio-
nary), we instead view intuition as a kind of reason-
ing. Reasoning encompasses both explicit processes
(explicit rules and logics) on the one hand, and im-
plicit processes (intuition and insight) on the other
(Sun 1991, 1995). In fact, intuition and insight are
important components of human reasoning. They
supplement and guide explicit reasoning. The lat-
ter has been amply documented in cognitive science
and AT (see, e.g., Collins and Michalski 1989, Davis
1990, Yang and Johnson-Laird 2001), but not yet the
former. More studies of human everyday reasoning
involving intuition and insight are needed.

In the discovery task of Bowers et al (1990), dur-
ing each trial, a set of 15 clue words (that is, an
“item”) were presented to subjects, one word at a
time. Fach clue word was a response to a stimu-
lus word in the Kent-Rosanoff word association test
(Kent and Rosanoff 1910). The first 12 clue words
occurred 5 or less times out of 1000 as a response to
the stimulus word, and they were randomly assigned
to position 1-12. The last three clue words occurred
more than 5 times and were randomly assigned to
position 13-15. Subjects’ task was to identify the
word that was associated with each of the 15 clue
words.

The clue words from each set were presented one
at a time. Subjects were required to generate a word
to which each of the clue words was associated af-
ter the presentation of each clue word. They were
given 10-15 seconds after the presentation of each
clue word. If subjects viewed a generated word as a
potential solution, they would check-mark it (indi-
cating a “hunch”). When they were convinced that
the word was a solution, they would mark it with an
X (indicating a “conviction”).

As reported in Bowers et al (1990), in a sample of
100 subjects, subjects arrived at a hunch on about
the 10th clue word on average (M=10.12, SD=4.55).
The average number of clue words it took for sub-
jects to go from a hunch to a conviction was about
1.79 (SD=0.96).

The Interpretation of the Data

As suggested by Bowers et al (1990), subjects
could respond discriminatingly to coherence that
they could not explicitly identify, and that this im-
plicit recognition of coherence guided subjects grad-
ually towards an explicit representation of a hunch.
Subjects “warmed up” to the solution in an in-
cremental and gradual manner. That is, whereas
hunches or convictions might surface quite suddenly
into consciousness, implicit cognitive processes were
rather continuous. An implicit representation grad-
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ually gained strength. When the level of activa-
tion reached a certain degree, crossing a certain
threshold, the implicit representation triggered an
explicit one. (On the other hand, an explicit rep-
resentation might also be activated as a result of
related explicit knowledge, e.g., explicit rules, al-
though usually there were relatively few such rules.)
A hunch was indicated, as a result of an emerged and
sufficiently activated explicit representation. Even
after that point, its strength might continue to
grow, and thus eventually, subjects might indicate
a “conviction”—an even stronger explicit represen-
tation.

Mechanistically (i.e., computationally), we can
easily imagine that people are frequently “trained”,
deliberately or incidentally, with word associations,
for example, desk-chair, pen-paper, and so on,
in everyday life.  Such training forms associa-
tions between pairs of words with varying degrees
of strengths, based in part on frequencies of co-
occurrences. Association formation happens mainly
in the implicit memory (specifically, in the part of
the implicit memory that is not concerned with pro-
cedural, or action-centered, information), because of
the (mainly) incidental nature of the training scenar-
ios. At the test setting of the experiment of Bowers
et al (1990), clue words are presented one at a time.
At the presentation of each clue word, all associated
words are activated to certain extents (some strongly
while others weakly). After the presentation of each
clue word, more activations are accrued. Gradually,
the activations of some words in the implicit mem-
ory become stronger and stronger. As a result of the
implicit memory (as well as explicit rules), explicit
representations are activated in the explicit mem-
ory (specifically, the explicit memory that is con-
cerned with the general non-action-centered knowl-
edge about the world). Eventually, a threshold (the
threshold for hunches) is crossed, and thus a hunch is
found. Furthermore, when more clue words are pre-
sented, more activations are accrued to the explicit
representations. A second threshold (the threshold
for convictions) is crossed, and thus a conviction is
declared.

Of course, the processes described above are all
under the direction (control) of some executive func-
tions. Since such executive control is of the usual
variety, we will not analyze it in any more detail
here.

Below we will attempt to implement the above
analysis in a computational model, which serves to
verify and validate this analysis. As mentioned ear-
lier, the simulation is conducted within an existing
cognitive architecture CLARION.

The CLARION Model

CLARION is an integrative model with a dual repre-
sentational structure (Sun et al 2001, Sun 2002). It
consists of two levels: the top level captures explicit
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Figure 1: The CLARION architecture.

processes and the bottom level implicit processes.
See Figure 1.

First, the inaccessible nature of implicit knowl-
edge is suitably captured by subsymbolic distributed
representations provided by a backpropagation net-
work. This is because representational units in a dis-
tributed representation are capable of accomplishing
tasks but are subsymbolic and generally not individ-
ually meaningful (see Sun 1995). This characteristic
of distributed representation accords well with the
(direct) inaccessibility of implicit knowledge.

In contrast, explicit knowledge may be captured
in computational modeling by a symbolic or localist
representation (Sun 2002), in which each unit is eas-
ily interpretable and has a clear conceptual meaning.
This characteristic captures the property of explicit
knowledge being (directly) accessible and manipula-
ble (Smolensky 1988, Sun 1995).

This radical difference in the representations of
the two types of knowledge leads to a two-level
model whereby each level using one kind of repre-
sentation captures one corresponding type of pro-
cess, either implicit or explicit. The model may se-
lect to use one level or the other, or both, based
on current circumstances (e.g., experimental condi-
tions; see Sun 2002 for details).

At each level of the model, there may be mul-
tiple modules, both action-centered modules and
non-action-centered modules (Schacter 1990). !
We will refer to these two sets of modules as the
action-centered subsystem (or the ACS) and the non-
action-centered subsystem (or the NACS), respec-
tively. There are also other components, such as
working memory, goal structures, and so on.

!The reason for having both action-centered and non-
action-centered modules (at each level) is because, as it
should be obvious, action-centered knowledge (roughly,
procedural knowledge) is not necessarily inaccessible
(directly), and non-action-centered knowledge (roughly,
declarative knowledge) is not necessarily accessible (di-
rectly). Although it was argued by some that all proce-
dural knowledge is inaccessible directly and all declara-
tive knowledge is directly accessible, such a clean map-
ping )of the two dichotomies is untenable in our view (Sun
2002).
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In this work, we will focus on the NACS, due to
the declarative (non-action-centered) nature of the
discovery task. This subsystem, as stated earlier,
consists of (1) a top level, which is made up of a set
of explicit associative rules, and (2) a bottom level,
which is made up of implicit associative memories
(Sun 2002).

At the top level of the NACS, the essential ele-
ments are chunks, each of which is specified by a
chunk identifier and a set of dimension-value pairs
(i.e., attribute-value pairs) that describes an entity
or an object. These dimensional values are rep-
resented in the bottom level, and thus chunks are
linked to the bottom level. Links between chunks,
termed associative rules, encodes explicit associa-
tions between pairs of chunks. These rules may be
learned from externally provided information or in-
formation from the bottom level (from implicit mem-
ory). The top level of the NACS is termed the gen-
eral knowledge store (the GKS).

At the bottom level of the NACS, associative
memory networks (or AMNs) encode implicit asso-
ciations. Specifically, among many other possibili-
ties, a backpropagation network can be used for this
memory. Associations are formed by mapping an
input to an output. For example, the network may
learn to hetero-associate a pattern with another. In
this case, a pattern is presented as the input, and an-
other (different) pattern to be associated with it is
presented as the desired output. Through repeated
training, the network may be able to output the de-
sired pattern when a corresponding input pattern is
presented. This is useful for, for example, establish-
ing connections between concepts and facts (such as
linking climate information of a region to its agricul-
tural products, or linking a person to his professional
accomplishment).

When an output of the AMN is strong enough,
the chunk in the GKS corresponding to the output
from the AMN will be activated to the same extent.
At the same time, when an implicit association from
the AMN is strong enough, an associative rule corre-
sponding to the retrieved association from the AMN
will be established in the GKS. 2

Note that all of the operations of the non-action-
centered subsystem are under the control of the
action-centered subsystem, which makes action de-
cisions each step of the way. The top level of the
ACS consists of a set of explicit action rules, ei-
ther externally given or extracted from the bot-
tom level (from implicit action-centered knowledge),
while the bottom level consists of implicit action de-
cision networks (trained with reinforcement learning
algorithms). For details regarding the ACS and its
parameters, see Sun et al (2001) and Sun (2002).

2The outcomes from the AMN and the GKS can be
combined in various ways, for example, through a maz
function.



CLARION has been successful in simulating a va-
riety of cognitive tasks. The simulated tasks in-
clude serial reaction time tasks, artificial grammar
learning tasks, process control tasks, alphabetical
arithmetic tasks, Minefield Navigation, and Tower
of Hanoi (Sun 2002). We are now in a good position
to extend the effort to the capturing of a wide range
of human reasoning and memory processes, through
simulating reasoning and memory task data. This
paper is but one aspect of this effort.

Simulation Setup

During the training of the model, pairs of words
were presented to the AMN (the bottom level of the
NACS). The input to the AMN included three com-
ponents: the current clue word, the working memory
content, and the current goal. The input nodes of
the AMN corresponded to dimension-value represen-
tations of words and goals. The output nodes of the
AMN corresponded to dimension-value representa-
tions of words. 3 Each of the first 12 words on a list
in the stimulus material was used for training, paired
with the target word. That is, each of the 12 words
was presented as the input to the AMN and the tar-
get word was the desired output for the AMN. 4 Each
of these words was used about 4% of the times, for a
total of about 48% of the training time. These asso-
ciations were under-trained (thus the AMN did not
perform well at the end of the training), capturing
the weak, implicit associations between these pairs
of words. Each of the last 3 words on a list in the
stimulus material was also used for training, again
paired with the target word. Each of these words
was used for training 17% of the times, for a total of
51% of the training time. A total of 10 lists of words
(10 training “items”) was used.

Each word was represented as a chunk in the GKS
(the top level of the NACS), due to the presenta-
tion during training of these words as input and out-
put. Chunk encoding was such that each chunk had
a number of dimensions and each dimension had a
number of possible values. These values were repre-
sented in the AMN, and thus chunks were linked to
the AMN. However, due to the relatively infrequent
presentation of association pairs, there was the en-
coding of relatively few explicit associative rules in
the GKS. (The invocation of most explicit associa-
tive rules would be below the minimum invocation
frequency, and thus they would be deleted. There-
fore it would be unlikely that many rules would be
established in the GKS.)

During the test, clue words were presented one at

3In fact, the input and output should be phonological
and morphological features of words. However, for the
sake of simplifying the simulation, we used artificially
constructed features. This simplification does not affect
the outcome of the simulation.

4This process was in fact the reverse of the word as-
sociation test (Kent and Rosanoff 1910).
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a time. After the presentation of each clue word, it
would be stored into the working memory. So, in
effect, the partial sequence of words (seen thus far)
was presented at each step. Thus, the activation
of the target word became stronger and stronger in
activation as a result of the “accumulating” input.

Due to accumulating evidence, a tentative winner
(a hunch) first emerged, and then a final winner (a
conviction) was generated. In the GKS, a retrieved
chunk ¢ was considered a hunch (a tentative winner),
if Vj, S; > S§ and S7 > threshold;, where S indi-
cated the strength of chunk 7. A chunk ¢ was con-
sidered a conviction (a final winner), if Vj, Sy > S7
and S§ > thresholdy. Of course, threshold; was
lower than thresholds, leading to partial certainty
of a generated solution word.

The following action rules (among many other
rules) were implemented in the ACS for this specific
retrieval process:

If goal= solving-association-task, and Vj, S7 >
S5 and S{ > threshold,, then retrieve chunk ¢
and indicate hunch.

If goal= solving-association-task, and Vj, S{ >
S; and S > thresholdy, then retrieve chunk ¢
and indicate conviction.

These rules were “fixed” rules for this task acquired
presumably from a priori knowledge and task in-
structions given to subjects prior to experiments.
When both rules were applicable, a random selec-
tion was made. In these rules, the input chunks
were not involved in comparison: They were specifi-
cally excluded. The goal (which was involved in the
rules) was set in the goal structure, when the task
instructions were given before the test began.

Simulation Results

Recall that the human data of this task indicated
that (1) the average number of the clue words at
which a hunch was arrived at was 10.12, with SD
= 4.55; (2) the average number of the clue words it
took for subjects to go from a hunch to a conviction
was 1.79, with SD = 0.96. Matching the human data
closely, our simulation result indicated that (1) the
average number of clue words at which a hunch was
arrived at was 10.23, with SD = 3.07; (2) the average
number of clue words it took for subjects to go from
a hunch to a conviction was 1.72, with SD = 2.09.
Clearly, the match was excellent.

To understand the simulation and the interpreta-
tion of the data as embodied in this simulation bet-
ter, let us examine some details. First of all, from
Figure 2, we see that there was a gradual accumu-
lation of activation on the target word over time,
due to successive additions of clue words. Note that
this accumulation was the result of both the bot-
tom level (the AMN) as well as the top level (the
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Figure 3: The number of matching rules at the top
level for each clue word.

associative rules in the GKS). For example, the con-
tribution of the top level was as shown in Figure 3,
in terms of number of matching associative rules.
As we can see, there was an increase of number of
matching rules towards the end of the list. This led
to an increasing probability of activation. However,
the accumulation was also due to the bottom level,
which was shown in Figure 4.

During training, the implicit association at the
bottom level developed gradually. Figure 5 shows
the gradual development of implicit associations at
the bottom level (the AMN) over time during the
course of training.

During training, explicit associative rules were
also formed at the top level. A (randomly selected)
sample set of rules in the GKS, extracted during
training, was as follows:

Item2-Wordbs — Item2-Target
Item2-Word14 — Item2-Target
Item3-Word3 — Item3-Target
Item3-Word13 — Item3-Target
Item4-Word2 — Item4-Target
Item4-Word13 — Item4-Target
Item5-Word13 — Itemb5-Target
Item5-Word15 — Itemb-Target
Item8-Word3 — Item8-Target
Item10-Word6 — Item10-Target
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Figure 5: The training curve of the bottom level.

where “item” indicated a list of words, “word” indi-
cated a particular word at a particular position on
the list, and “target” indicated the corresponding
target word. As we can see, there were, in gen-
eral, more rules for words towards the end of the
list than towards the beginning. This was because
these words were used more frequently in training,
and thus were more likely to form explicit associa-
tive rules at the top level (as well as to develop
stronger implicit associations with the target word
in the AMN).

Discussions

Although not a typical topic in cognitive science,
intuition and insight have been documented exper-
imentally in recently years (see, e.g., Bowers et al
1990, Schooler et al 1993, etc.). A lot of experi-
mental data have been accumulated on that. The
explanation of this phenomenon, however, is not as
clear as one would like to see. Computational model-
ing and simulation may help in this regard. Detailed
simulations help to substantiate theories concerning
these experiments and help to bring out the essential
cognitive processes involved.

Our simulation demonstrated the capability of
CLARION in capturing this type of situation. The
simulation succeeded without adding any new mech-



anisms or components—the simulation falls out of
the existing mechanisms in CLARION, which include,
in particular, implicit associative memory and ex-
plicit (non-action-centered) memory.

Our model shows that it is useful to posit the ex-
istence of these two separate memory systems: ex-
plicit versus implicit. While explicit memory en-
codes rules that are all-or-nothing, implicit mem-
ory allows more gradual accumulation of informa-
tion. Furthermore, the simulation shows that the
interaction between the two memory systems, in the
sense that intuition gives rise to explicit awareness
and vice versa, is important in everyday reasoning.
As has been previously shown by Sun (1995), this in-
teraction in fact underlies much of human everyday
reasoning.

Compared with other existing cognitive architec-
tures such as ACT-R (see Anderson and Lebiere
1998), CLARION embodies a different set of assump-
tions, which include, most notably, the separation of
the two dichotomies: action-centered vs. non-action-
centered knowledge, and implicit vs. explicit knowl-
edge (Sun 2002). These alternative assumptions and
structures enable CLARION to faithfully capture a
variety of cognitive data (see Sun 1999, Sun et al
2001, Sun 2002 for details).

In terms of capturing human everyday reason-
ing in general (of which intuition is part, in our
view), although logic-based models are useful, they
are known to suffer from a number of shortcom-
ings, including their restrictiveness concerning pre-
conditions, consistency, and correctness, and their
inadequacy in dealing with inexactness (see, e.g., Is-
rael 1987, Sun 1995). In a different vein, psycholog-
ical work on reasoning is relevant also. Such work
mostly centers around either mental logic (Braine
and O’Brien 1998) or mental models (Yang and
Johnson-Laird 2001). These approaches, however,
do not deal with the kind of situation embodied in
this task.
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