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Abstract

We describe a linguistic pattern acquisition algorithm that
learns, in an unsupervised fashion, a streamlined repre-
sentation of corpus data. This is achieved by compactly
coding recursively structured constituent patterns, and by
placing strings that have an identical backbone and simi-
lar context structure into the same equivalence class. The
resulting representations constitute an efficient encoding
of linguistic knowledge and support systematic general-
ization to unseen sentences.

Motivation
Considerations of representational parsimony dictate that
the explanation for the pattern of acceptable sentences in
a language be as concise as possible. A reduced repre-
sentation of linguistic knowledge need not, however, take
the form of a meta-language such as a prescriptive rule-
set or grammar [1]. Instead, syntax may constitute an
abstraction, emerging from a corpus of language [2], yet
coexisting within the same representational mechanism
that embodies the data. The process of abstraction can
be guided by principles such as complementarity of dis-
tributions: tokens that function similarly in some sense
(phonological, morphological, syntactic or semantic) but
represent systematic rather than free variation will form
complementary distributions or classes (e.g., [1, 3]).

In thinking about emergent regularities [2], or
syntactic-semantic constructions [4], we adopt Lan-
gacker’s vision:

“. . . particular statements (specific forms) coexist
with general statements (rules accounting for those
forms) in a speaker’s representation of linguistic
convention, which incorporates a huge inventory
of specific forms learned as units (conventional ex-
pressions). Out of this sea of particularity speakers
extract whatever generalizations they can. Most of
these are of limited scope, and some forms cannot
be assimilated to any general patterns at all. Fully
general rules are not the expected case in this per-
spective, but rather a special, limiting case along a
continuum that also embraces totally idiosyncratic
forms and patterns of all intermediate degrees of
generality.” [5], p.43.

Langacker’s conception of grammar as an inventory of
linguistic units, which is structured in the sense that some

units function as components of others, is well-suited to
serve as a basis for a psychologically motivated theory of
language learning, due to its clear parallels with the no-
tion of unitizationthat arises in cognitive psychology [6].
Recent developments in probability and information the-
ory and in computational learning have rendered distri-
butional [1] methods of linguistic unitization both more
tractable and more readily relatable to grammar-based
formalisms [7]. The present paper describes a project
that aims to transform the idea of the emergence of dis-
tributional syntactic and semantic knowledge into a con-
crete computational model, constrained by psycholin-
guistic data and striving for biological plausibility.

The ADIOS model
The ADIOS (Automatic DIstillation Of Structure) model
constructs syntactic representations of a sample of lan-
guage from raw, unlabeled corpus data. The model has
two components: (1) a Representational Data Structure
(RDS) graph, and (2) a Pattern Acquisition (PA) algo-
rithm that learns the RDS in an unsupervised fashion.
The PA algorithm aims to detectpatterns— repetitive
sequences of “significant”paths (strings) of primitives
occurring in the corpus. In that, it is related to prior
work on alignment-based learning [8] and regular ex-
pression (“local grammar”) extraction [9] from corpora.
We stress, however, that our algorithm requires no pre-
judging either of the scope of the primitives or of their
classification, say, into syntactic categories: all the in-
formation needed for its operation is extracted from the
corpus in an unsupervised fashion.

In the initial phase of the algorithm, the text is seg-
mented into the smallest possible morphological con-
stituents (e.g.,ed is split off bothwalked andbed; the
algorithm later discovers thatbed should be left whole,
on statistical grounds).1 This initial set of unique con-
stituents is the vertex set of the newly formed RDS
(multi-)graph. A directed edge is inserted between two
vertices whenever the corresponding transition exists in
the corpus (Figure 1(a)); the edge is labeled by the sen-
tence number and by its within-sentence index. Thus,
corpus sentences and sub-sentences initially correspond

1We remark that the algorithm can work in any language,
with any set of tokens, including individual characters – or
phonemes, if applied to speech.
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Figure 1:(a) A small portion of the RDS directed multi-graph for a simple corpus containing sentences #101 (is that
a cat?) #102 (is that a dog?) #103 (and is that a horse?) #104 (where is the dog?). Each sentence is depicted
by a solid colored line; edge direction is marked by arrows and is labeled by the sentence number and within-sentence
index. The sentences in this example join a patternis that a {dog, cat, horse} ?. (b). The abstracted pattern and the
equivalence class associated with it are highlighted (edges that belong to sequences not subsumed by this pattern, e.g.,
#104, are untouched).(c) The identification of new significant patterns is done using the acquired equivalence classes
(e.g., #200). In this manner, the system “bootstraps” itself, recursively distilling more and more complex patterns.
This kind of abstraction also supports generalization: the original three sentences (shaded paths) form a pattern with
two equivalence classes, which can then potentially generate six new sentences (e.g.,the cat is play-ing and the
horse is eat-ing).

to paths in the graphpathi = {ci1 → . . . , cik}, a path
being a sequence of edges that share the same sentence
number. Paths that correspond to entire sentences start at
the ’BEGIN’ node and end at the ’END’ node.

In the second phase, the algorithm repeatedly scans
the RDS graph forSignificant Patterns (SP), which are
then used to modify the graph. EachSP consists of a
non-empty prefix (a sequence of graph edges), an equiv-
alence class of vertices, and a non-empty suffix (another
sequence of edges; cf. Figure 1(a)). For each pathpathi,
the algorithm constructs a setsj = {p1, . . . , pm} of
paths of the same length aspathi that together could
form a pattern. Of the many possible candidate sets, the
algorithm analyzes all those whose size exceeds a certain
fixed threshold. Each candidate set is assigned a scoreS
that assesses its likelihood of capturing a significant reg-
ularity rather than a random fluctuation in the data. The
definition of the scoreS (equation 1) combines a syn-
tagmatic consideration (preferring longer paths) with a
paradigmatic one (preferring informationally significant
equivalence classes).

In equations 1-3,L is the length of the typical pattern
the system is expected to acquire,k is the actual length
of the candidate pattern,P (k) is the probability of thekth

order statistics (k-gram) over the path{c1 → . . . → ck}
that is embedded in the graph, andP (2) is the probability
of the second order statistics (bi-gram) of the same path
in the graph.2 Thus,P (2) corresponds to the probability
of a random walker on the graph to have traversed the
pathc1 → c2, . . . ,→ ck, while P (k) corresponds to the
probability of a walker with an unlimited memory span
to complete the same path. To calculate the significance
of the entire set of candidate paths,P (k) andP (2) should
be summed over all the candidate paths in the set.

2P (1)(pathi) corresponds to the “first order” probabil-
ity of choosing the set of nodesc1, . . . , ck without taking
into account their sequential order along the path. Thus,
P (1)(pathi) = P (c1)P (c2)P (c3) . . . P (ck). P (2) is a bet-
ter candidate for identifying significantstrings(as opposed to
mere sets of nodes), because it takes into account the sequence
of nodes along the path.
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S(pathi) = e−(L/k)2
P (k)(pathi) log

(
P (k)(pathi)/P (2)(pathi)

)
, pathi

.= c1 → c2 → . . .→ ck (1)

P (k)(pathi) = P (c1)P (c2|c1)P (c3|c1 → c2) . . . P (ck|c1 → c2 → . . .→ ck−1) (2)

P (2)(pathi) = P (c1)P (c2|c1)P (c3|c2) . . . P (ck|ck−1) (3)

These probabilities can be estimated from frequencies
that are immediately available in the graph. Given the
pathpathi = c1 → c2 → c3 → . . . → ck, its prob-
ability P (k)(pathi) is the product along the path of the
probabilitiesp(cj |c1 → c2 → . . . cj−1), 1 < j ≤ k,
each of which is equal to the number of edges connect-
ing the pathc1 → c2 → . . . cj , divided by the number
of edges connecting the pathc1 → c2 → . . . cj−1 (see
Figure 2).P (2) is the product along the path of the prob-
abilitiesp(cj |cj−1), 1 < j ≤ k, each of which is equal
to the number of edges connectingcj−1 → cj , divided
by the total number of out-edges at nodecj−1.

(b)

C2

C1

C4C3

P(c2|c1) = 3/4

P(c3|c2) = 2/3

C2

C3
C4

C1
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(a)

C2
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P(c3|c1     c2) = 2/3

C4C3

Figure 2: (a) Thek-gram model used to calculateP (k),
the probability of a walker starting at nodec1 to reach the
nodec4 via the pathc1 → c2 → c3 → c4. Thekth order
probability of a path of lengthk is the product ofk con-
ditional probabilities along the graph, each of which is
equal to the number of paths that coincide along the ex-
act sequence of nodes ending atcj , 1 < j ≤ k, divided
by the total number of paths that reachcj−1. In this ex-
amplek = 4, andP (4)(c1 → c2 → c3 → c4) = 1

4 .
(b) The k-gram model can be compared to the bi-gram
model, in which there is no information about the his-
tory of the walker moving along the graph (this is illus-
trated by using the same color for all the paths in the
graph);P (k) is then calculated using equation 3. Here,
P (2)(c1 → c2 → c3 → c4) = 1

3 .

The most significant set of candidate paths is now
tagged as a Significant Pattern (its significance valueS

must exceed a fixed thresholdα) and is added as a new
vertex to the RDS graph, replacing the constituents and
edges it subsumes (Figure 1(b)). Note that only those
edges of the multi-graph that belong to the detected pat-
tern are rewired; edges that belong to sequences not sub-
sumed by the pattern are left intact. This highly context-
sensitive approach to pattern abstraction, which is unique
to our model, allows ADIOS to achieve a high degree of
representational parsimony without sacrificing its gener-
alization power.

During the pass over the corpus, the list of equiva-
lence sets is updated continuously; new significant pat-
terns are found using thecurrentequivalence classes. For
each set of candidate paths, the algorithm tries to fit one
or more equivalence classes from the pool it maintains.
Because a constituent can appear in several classes, the
algorithm must check different combinations of equiv-
alence classes. The winner combination is always the
largest class for which most of the members are found
among the candidate paths in the set (the ratio between
the number of members that have been found among the
paths and the total number of members in the equivalence
class is compared to a fixed threshold as the configuration
acceptance criterion). When not all the members appear
in the existing set, the algorithm creates a new equiva-
lence class containing only those members that did ap-
pear. Thus, as the algorithm processes more and more
text, it “bootstraps” itself and enriches the RDS graph
structure with newSPs and their accompanying equiva-
lence sets. The recursive nature of this process enables
the algorithm to form more and more complex patterns,
in a hierarchical manner.

The relationships among the distilled patterns can be
visualized in a tree format, with tree depth corresponding
to the level of recursion (e.g., Figure 3). This tree can be
seen as a blueprint for creating valid sequences of con-
stituents (strings). The number of all possible string con-
figurations can be estimated and compared to the number
of examples seen in the training corpus. The reciprocal
of their ratio,η, is the generalization factor, which can
be calculated for each pattern in the RDS graph (e.g.,
in Figure 1(c), η = 0.33). Patterns whose significance
scoreS and generalization factorη are beneath certain
thresholds are rejected. The PA algorithm halts if it pro-
cesses a given amount of text without finding a newSP
or equivalence set (in real-life language acquisition this
process may never stop).

A collection of patterns distilled from a corpus can be
seen as an empirical grammar of sorts; cf. [5], p.63. The
patterns can eventually become highly abstract, thus en-
dowing the model with an ability to generalize to unseen
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Figure 3: The outcome of the acquisition process is a
set of significant patterns, which can be visualized recur-
sively as a tree, whose depth corresponds to the level of
recursion. The tree structure of a pattern can be seen as
a blueprint for generating valid strings; here, the arrows
illustrate the generation process – a depth-first search.
For each non-terminal, the children are scanned from left
to right; for each equivalence class (underscored num-
bers), one member is chosen. The scan continues from
the node corresponding to that member, with the con-
stituents reached at the terminal nodes being written out.
The figure shows a pattern (#136) generated during train-
ing on an artificial Context Free Grammar corpus.

inputs. Generalization is possible, for example, when
two equivalence classes are placed next to each other
in a pattern, creating new paths among the members of
the equivalence classes. Generalization can also ensue
from partial activation of existing patterns by novel in-
puts. This function is supported by theinput module,
designed to process a novel sentence by forming its dis-
tributed representation in terms of activities of existing
patterns (Figure 5). These are computed by propagating
activation from bottom (the terminals) to top (the pat-
terns) of the RDS. The initial activitieswj of the termi-
nalscj are calculated given the novel inputs1, . . . , sk as
follows:

wj = max
l=1..k

{
P (sl, cj) log

P (sl, cj)
P (sl)P (cj)

}
(4)

whereP (sl, cj) is the joint probability thatsl andcj will
appear in the same equivalence class. whileP (sl) and
P (cj) are the probabilities thatsl andcj will appear in
any equivalence class. For an equivalence class, the value
propagated upwards is the strongest non-zero activation
of its members; for a pattern, it is the average weight of
the children nodes, on the condition that all the children
were activated by adjacent inputs. Activity propagation
continues until it reaches the top nodes of the pattern lat-
tice. When the algorithm encounters a novel word, all
the members of the terminal equivalence class contribute
a value ofε = 0.01, which is then propagated upwards as

usual. This enables the model to make an educated guess
as to the meaning of the unfamiliar word, by considering
the patterns that become active (Figure 5).

Results
We now briefly describe the results of several studies de-
signed to evaluate the viability of the ADIOS model, in
which it was exposed to corpora of varying size and com-
plexity.

Emergence of syntactic structures.Figure 3 shows
an example of a sentence from a corpus produced by
a simple artificial grammar and its ADIOS analysis
(the use of a simple grammar, constructed with Rmutt,
http://www.schneertz.com/rmutt, in these initial ex-
periments allowed us to examine various properties of
the model on tightly controlled data). The abstract repre-
sentation of the sample sentence in Figure 3 successfully
identified the grammatical structure used to generate its
data.

Generalization. To measure the capacity of the
ADIOS algorithm for true learning, as distinguished
from memorization or table lookup [10], we exposed
the algorithm to an artificial corpus generated by a very
simple finite-state grammar. Because this grammar is fi-
nite, so is the set of all possible sentences. We ran sev-
eral learning sessions, in which we varied the propor-
tion of sentences used to train the algorithm from10% to
100%. Figure 4 presents the performance (the precision
in accepting unseen sentences) versus the fraction of sen-
tences in the training data. The model is seen to perform
nearly perfectly after exposure to20% of the corpus.

Novel inputs; systematicity. An important charac-
teristic of a cognitive representation scheme is its sys-
tematicity, measured by the ability to deal properly with
structurally related items (see [12] for a definition and
discussion). We have assessed the systematicity of the
ADIOS model by training the algorithm on the corpus
generated by the grammar of Figure 3 and by examin-
ing the representations of unseen sentences. The gen-
eral finding was of Level 3 systematicity according to
the nomenclature of [12]. The ADIOS system’s input
module allows it to process a novel sentence by form-
ing its distributed representation in terms of activities of
existing patterns. Figure 5 shows the activation of pat-
tern #185 by a phrase from the test set that contains three
novel words, never before seen by the model.

Working with real data: the CHILDES corpus. To
illustrate the scalability of our method, we describe here
briefly the outcome of applying the PA algorithm to a
subset of the CHILDES collection [13], which consists
of transcribed speech produced by, or directed at, chil-
dren. The corpus we selected contained 9665 sentences
(74500 words) produced by parents. The results, one of
which is shown in Figure 6, were encouraging: the algo-
rithm found intuitively significantSPs and produced se-
mantically adequate corresponding equivalence sets. Al-
together, 317 patterns and 404 equivalence classes were
established, representing the corpus in terms of these
constituents.
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Figure 4: Top: a very simple finite-state grammar that
can generate a corpus of 2016 phrases.Bottom:general-
ization error (a measure of precision), defined as1−hits,
wherehits is the proportion of the total possible number
of phrases that has been correctly accepted by the model,
plotted vs. the fraction of the corpus used for training.
In this case, the model performs nearly perfectly after
exposure to20% of the corpus. Note that this kind of
test is highly relevant to psycholinguistic explorations of
productivity, e.g., [11].

Concluding remarks
The ADIOS model learns (morpho)syntax on the basis
of distributional information in the “raw” input, and sup-
ports the distillation of structural regularities (which can
be thought of as constructions [4]) out of the accrued
statistical knowledge. Although our pattern-based rep-
resentations may look like collections of finite automata,
the information they contain is much richer, because of
the recursive invocation of one pattern by another, and
because of the context sensitivity implied by relation-
ships among patterns. Thus, unlike probabilistic finite
automata such as Hidden Markov Models, ADIOS can
learn Context Sensitive Languages. ADIOS is also bet-
ter at dealing with the problem of sparse data, because
it bootstraps the relevant statistics using the extracted
equivalence classes. Furthermore, the recursive nature of
the ADIOS algorithm allows it to capture longer-range
dependencies than those found in any fixed-width win-
dow. Finally, the sensitivity to context of pattern ab-
straction (during learning) and use (during generation)
contributes greatly both to the conciseness of the ADIOS
representation and to the conservative nature of its gener-
ative behavior (note that ADIOS defines patterns in terms
of specific morphemes or combinations of other patterns
and equivalence classes, rather than in terms of ideal-
ized “part of speech” categories; cf. [4]). This context
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Figure 5: The input module in action; the most relevant
(i.e., highly active) pattern responding to the novel input
Linda and Paul have a new car. Leaf activation is
determined by equation 4, then propagated up the tree by
taking the average at each junction.

sensitivity — in particular, the manner whereby ADIOS
balances syntagmatic and paradigmatic cues provided by
the data — is mainly what distinguishes it from other
current work on unsupervised probabilistic learning of
syntax [8, 14, 15]. The present paper describes a vi-
able algorithmic approach to unsupervised distributional
learning of language patterns. The ultimate goal of this
project is to achieve a computationally explicit, empir-
ically proven, integrated understanding of three aspects
of the representation of linguistic structures:
theoretical, computational, and psychological.
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