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Abstract units function as components of others, is well-suited to

serve as a basis for a psychologically motivated theory of

We describe a linguistic pattern acquisition algorithm that 5n4,5ge learning, due to its clear parallels with the no-
learns, in an unsupervised fashion, a streamlined repre- ’

sentation of corpus data. This is achieved by compactly tion of unitizationthat arises in cognitive psychology [6].
coding recursively structured constituent patterns, and by Recent developments in probability and information the-
placing strings that have an identical backbone and simi- ory and in computational learning have rendered distri-
o e o2 i butonal [1] methars afinguistc Uiization both mre
of Iingu?sticpknowledge and support systematic generalEJ tractable and more readily relatable to gr_ammar-ba_sed
ization to unseen sentences. formalisms [7]. The present paper describes a project
that aims to transform the idea of the emergence of dis-
.. tributional syntactic and semantic knowledge into a con-
Motivation crete computational model, constrained by psycholin-
Considerations of representational parsimony dictate thajuistic data and striving for biological plausibility.
the explanation for the pattern of acceptable sentences in
a language be as concise as possible. A reduced repre- The ADIOS model

sentation of linguistic knowledge need not, however, tak . I
the form of a meta-language such as a prescriptive ru|§‘_I'he ADIOS (Automatic Distillation Of Structure) model

set or grammar [1]. Instead, syntax may constitute arfonstructs syntactic representations of a sample of lan-
abstraction, emerging from a corpus of language [2], ye uage from raw,.unlabeled corpus d_ata. The model has
coexisting within the same representational mechanis wo components: (1) a Representatlona_il_ Data Structure
that embodies the data. The process of abstraction caffP>) draph, and (2) a Pattern Acquisition (PA) algo-
be guided by principles such as complementarity of dis/1thm that learns the RDS in an unsupervised fashion.
tributions: tokens that function similarly in some sense 'he PA a'go“t!)m aims to detepat_terns— repetitive
(phonological, morphological, syntactic or semantic) butS€duénces of “significaniaths (strings) of primitives

represent systematic rather than free variation will form@ccurTing in the corpus. In that, it is related to prior
complementary distributions or classes (e.g., [1, 3]). work on alignment-based learning [8] and regular ex-

In thinking about emergent regularities [2], or pression (“local grammar”) extraction [9] from corpora.

syntactic-semantic constructions [4], we adopt Lan-YV€ Stress, however, that our algorithm requires no pre-
gacker’s vision: ' judging either of the scope of the primitives or of their

classification, say, into syntactic categories: all the in-
“...particular statements (specific forms) coexist formation needed for its operation is extracted from the
with general statements (rules accounting for those corpus in an unsupervised fashion.
forms) in a speaker's representation of linguistic In the initial phase of the algorithm, the text is seg-
convention, which incorporates a huge inventory mented into the smallest possible morphological con-
of specific forms learned as units (conventional ex- stituents (e.g.ed is split off bothwalked andbed; the
pressions). Out of this sea of particularity speakers algorithm later discovers théied should be left whole,
extract whatever generalizations they can. Most of on statistical grounds). This initial set of unique con-
these are of limited scope, and some forms cannot stituents is the vertex set of the newly formed RDS
be assimilated to any general patterns at all. Fully (multi-)graph. A directed edge is inserted between two
general rules are not the expected case in this per- vertices whenever the corresponding transition exists in
spective, but rather a special, limiting case along a the corpus (Figure(a)); the edge is labeled by the sen-
continuum that also embraces totally idiosyncratic tence number and by its within-sentence index. Thus,
forms and patterns of all intermediate degrees of corpus sentences and sub-sentences initially correspond
generality.” [5], p.43. -
We remark that the algorithm can work in any language,

Langacker’s conception of grammar as an inventory ofyith any set of tokens, including individual characters — or
linguistic units, which is structured in the sense that someghonemes, if applied to speech.
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Figure 1:(a) A small portion of the RDS directed multi-graph for a simple corpus containing sentencesigttt (

a cat?) #102 {s that a dog?) #103 @nd is that a horse?) #104 (where is the dog?). Each sentence is depicted

by a solid colored line; edge direction is marked by arrows and is labeled by the sentence number and within-sentence
index. The sentences in this example join a patiethat a {dog, cat, horse} ?. (b). The abstracted pattern and the
equivalence class associated with it are highlighted (edges that belong to sequences not subsumed by this pattern, e.g.,
#104, are untouchedic) The identification of new significant patterns is done using the acquired equivalence classes
(e.g., #200). In this manner, the system “bootstraps” itself, recursively distilling more and more complex patterns.
This kind of abstraction also supports generalization: the original three sentences (shaded paths) form a pattern with
two equivalence classes, which can then potentially generate six new sentenceabdecgt,is play-ing andthe

horse is eat-ing).

to paths in the graphath; = {¢;1 — ...,cix}, @ path In equations 1-3[ is the length of the typical pattern
being a sequence of edges that share the same sentertbe system is expected to acquikeis the actual length
number. Paths that correspond to entire sentences start@fthe candidate patter®(*) is the probability of the:*"
the 'BEGIN’ node and end at the 'END’ node. order statistics (k-gram) over the patty — ... — ¢}

In the second phase, the algorithm repeatedly scanghat is embedded in the graph, aRt? is the probability
the RDS graph fosignificant Patterns ¢P), which are  of the second order statistics (bi-gram) of the same path
then used to modify the graph. Easlk consists of a in the grapt? Thus, P(?) corresponds to the probability
non-empty prefix (a sequence of graph edges), an equivsf 3 random walker on the graph to have traversed the

alence class of vertices, and a non-empty suffix (anothepathe, — ¢y, ..., — 5, while P*) corresponds to the
sequence of edges; cf. Figur@]). For each patpathi,  probability of a walker with an unlimited memory span
the algorithm constructs a sef = {pi,....pm} Of o complete the same path. To calculate the significance

paths of the same length aath; that together could ot 6 entire set of candidate path*) and P(®) should

form a pattern. Of the many possible candidate sets, thfg gmmed over all the candidate paths in the set.
algorithm analyzes all those whose size exceeds a certain
fixed threshold. Each candidate setis assigned a store——
that assesses its likelihood of capturing a significant reg- 2P (path;) corresponds to the “first order” probabil-
ularity rather than a random fluctuation in the data. Thelty Of choosing the set of nodes, ..., c, without taking
definition of the scores (equation 1) combines a syn- into account their sequential order along the path. Thus,
tagmatic consideration ( ?eferrin longer paths) w)i/th PO (pathi) = Pley)Plea)Plea) ... Plex). PP is a bet-

gma . preterring longer patns) w er candidate for identifying significastrings (as opposed to
para_ldlgmatlc one (preferring informationally significant mere sets of nodes), because it takes into account the sequence
equivalence classes). of nodes along the path.
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S(path;) = e~ (L/0)? plk) (path;)log (P(k) (pathi)/P@)(pathi)) , path; =c —co— ... —cp (1)

P®) (path;) = P(er)P(ca)er)Plesler — ¢2) ... Plepler — ¢ — ... — cp_1) 2)
P(2)(pathi) = P(c1)P(ezler)Ples|ea) ... Plegleg—1) 3)

These probabilities can be estimated from frequenciesnust exceed a fixed threshald and is added as a new
that are immediately available in the graph. Given thevertex to the RDS graph, replacing the constituents and
pathpath; = ¢ — ¢co — ¢3 — ... — ¢y, its prob-  edges it subsumes (Figur¢b)). Note that only those
ability P*)(path;) is the product along the path of the edges of the multi-graph that belong to the detected pat-
probabilitiesp(cjlci — ¢ — ...¢j-1), 1 < j < k, tern are rewired; edges that belong to sequences not sub-
each of which is equal to the number of edges connectsumed by the pattern are left intact. This highly context-
ing the pathc; — ¢z — ...c;, divided by the number sensitive approach to pattern abstraction, which is unique
of edges connecting the path — ¢o — ...¢;_1 (see toour mode_l, allows ADIOS to achieve a hi_gh degree of
Figure 2).P® is the product along the path of the prob- epresentational parsimony without sacrificing its gener-
abilitiesp(cj|cj_1), 1 < j < k, each of which is equal alization power. . .
to the number of edges connecting ; — c¢;, divided During the pass over the corpus, the list of equiva-

by the total number of out-edges at nade; . lence sets is updated continuously; new significant pat-
& terns are found using ttoairrentequivalence classes. For

each set of candidate paths, the algorithm tries to fit one
or more equivalence classes from the pool it maintains.
Because a constituent can appear in several classes, the
algorithm must check different combinations of equiv-
alence classes. The winner combination is always the
largest class for which most of the members are found
among the candidate paths in the set (the ratio between
the number of members that have been found among the
paths and the total number of members in the equivalence
classis compared to a fixed threshold as the configuration
acceptance criterion). When not all the members appear
in the existing set, the algorithm creates a new equiva-
Pleje)=34 | lence class containing only those members that did ap-

\\ Plee) = 23 pear. Thus, as the algorithm processes more and more

\ = Ple ey = 213 text, it “bootstraps” itself and enriches the RDS graph

e G structure with newsprs and their accompanying equiva-
lence sets. The recursive nature of this process enables

the algorithm to form more and more complex patterns,

Figure 2:(a) The k-gram model used to calculafg®),  in @ hierarchical manner. .

the probability of a walker starting at nodgto reachthe 1€ relationships among the distilled patterns can be
nodec, via the pativ; — ¢y — ¢35 — cq. Thekt™ order visualized in a tree fqrmat, with tree depth c_orrespondlng
probability of a path of lengtlt is the product of con- to the level of recursion (e.g., Figure 3). This tree can be

ditional babilit | h h h of which i seen as a blueprint for creating valid sequences of con-
itional probabilities along the graph, each of Which IS gjy,ents (strings). The number of all possible string con-

equal to the number of paths that coincide along the exfigyrations can be estimated and compared to the number
act sequence of nodes ending:atl < j < k, divided  of examples seen in the training corpus. The reciprocal
by the total number of paths that reagh ;. In this ex-  of their ratio, 7, is the generalization factor, which can
amplek = 4, andPW(¢; — ¢3 — ¢35 — ¢4) = i. be calculated for each pattern in the RDS graph (e.g.,
(b) The k-gram model can be compared to the bi-gramin Figure Xc), n = 0.33). Patterns whose significance
model, in which there is no information about the his- scoreS and generalization factoy are beneath certain
tory of the walker moving along the graph (this is illus- thresholds are rejected. The PA algorithm halts if it pro-
trated by using the same color for all the paths in thec®SSes a given amount of text without finding a resw

graph); P®) is then calculated using equation 3. Here, O equivalence set (in real-life language acquisition this
PO (cy — ey — 5 — ca) = L. process may never stop).
3 A collection of patterns distilled from a corpus can be
The most significant set of candidate paths is nowseen as an empirical grammar of sorts; cf. [5], p.63. The
tagged as a Significant Pattern (its significance v&lue patterns can eventually become highly abstract, thus en-

dowing the model with an ability to generalize to unseen
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<136 usual. This enables the model to make an educated guess
as to the meaning of the unfamiliar word, by considering
the patterns that become active (Figure 5).

0 Results
We now briefly describe the results of several studies de-

94 137 signed to evaluate the viability of the ADIOS model, in

I

1758 L75 %

014
I which it was exposed to corpora of varying size and com-
1 plexity.
101 B i i
SIdLENVNN LY 08 48y Emergence of syntactic structures.Figure 3 shows
ZS 3 5ESE2ERPSESEZ"SETE S an example of a sentence from a corpus produced by
c 50 0 ®© c 5 D D i W a . e H H
% 25 § e a3 § R 1 a simple artificial grammar and its ADIOS analysis

(the use of a simple grammar, constructed with Rmutt,
e vy L http://www.schneertz.com/rmutt, in these initial ex-

BEGIN George and Pam have a fast car periments allowed us to examine various properties of
the model on tightly controlled data). The abstract repre-

Figure 3: The outcome of the acquisition process is gentation of the sample sentence in Figure 3 successfully
set of significant patterns, which can be visualized recuridentified the grammatical structure used to generate its
sively as a tree, whose depth corresponds to the level dlata.

recursion. The tree structure of a pattern can be seen %D?Sréer;'éﬁ{ﬁﬂg f;;o trTeea}Zl;rriirgge gsp(;(s:'ltmgﬂlics:]ged

_ablueprlnt for genergtlng valid strings; here, 'ghe arroWsom memorization or table lookup [10], we exposed
lllustrate the generation process — a depth-first searche a15rithm to an artificial corpus generated by a very
For.each non—termmal., the children are scanned from |eft5imple finite-state grammar. Because this grammar is fi-
to right; for each equivalence class (underscored numpjte, so is the set of all possible sentences. We ran sev-
bers), one member is chosen. The scan continues fromral learning sessions, in which we varied the propor-
the node corresponding to that member, with the contion of sentences used to train the algorithm frobfi to
stituents reached at the terminal nodes being written outl00%. Figure 4 presents the performance (the precision
The figure shows a pattern (#136) generated during trainin accepting unseen sentences) versus the fraction of sen-
ing on an artificial Context Free Grammar corpus. tences in the training data. The model is seen to perform
nearly perfectly after exposure 0% of the corpus.
inputs. Generalization is possible, for example, when Novel inputs; systematicity. An important charac-
two equivalence classes are placed next to each otheeristic of a cognitive representation scheme is its sys-
in a pattern, creating new paths among the members dEmaticity, measured by the ability to deal properly with
the equivalence classes. Generalization can also enswséucturally related items (see [12] for a definition and
from partial activation of existing patterns by novel in- discussion). We have assessed the systematicity of the
puts. This function is supported by tfveput module  ADIOS model by training the algorithm on the corpus
designed to process a novel sentence by forming its disgenerated by the grammar of Figure 3 and by examin-
tributed representation in terms of activities of existinging the representations of unseen sentences. The gen-
patterns (Figure 5). These are computed by propagatingral finding was of Level 3 systematicity according to
activation from bottom (the terminals) to top (the pat- the nomenclature of [12]. The ADIOS system’s input
terns) of the RDS. The initial activities; of the termi-  module allows it to process a novel sentence by form-
nalsc; are calculated given the novel inpyt, ..., s, as  ing its distributed representation in terms of activities of

4 » v v

follows: existing patterns. Figure 5 shows the activation of pat-
P(si.c;) tern #185 by a phrase from the test set that contains three
wj = ma {P(sl, c;)log 7’7} (4) novel words, never before seen by the model.
=1k P(s1)P(c)) Working with real data: the CHILDES corpus. To

whereP(s;, ¢;) is the joint probability thas; andc; will illustrate the scalability of our method, we describe here
appear in the same equivalence class. whilg;) and  briefly the outcome of applying the PA algorithm to a
P(c;) are the probabilities thay andc; will appear in  subset of the CHILDES collection [13], which consists
any equivalence class. For an equivalence class, the valw# transcribed speech produced by, or directed at, chil-
propagated upwards is the strongest non-zero activatiodren. The corpus we selected contained 9665 sentences
of its members; for a pattern, it is the average weight of(74500 words) produced by parents. The results, one of
the children nodes, on the condition that all the childrenwhich is shown in Figure 6, were encouraging: the algo-
were activated by adjacent inputs. Activity propagationrithm found intuitively significansps and produced se-
continues until it reaches the top nodes of the pattern latmantically adequate corresponding equivalence sets. Al-
tice. When the algorithm encounters a novel word, alltogether, 317 patterns and 404 equivalence classes were
the members of the terminal equivalence class contributestablished, representing the corpus in terms of these
avalue ofe = 0.01, which is then propagated upwards as constituents.
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Figure 4: Top: a very simple finite-state grammar that Figure 5: The input module in action; the most relevant
can generate a corpus of 2016 phragsstom: general- (|_.e., highly active) pattern responding to the_ noyel mput
ization error (a measure of precision), defined agits, ~Linda and Paul have a new car. Leaf activation is
wherehits is the proportion of the total possible number d€términed by equation 4, then propagated up the tree by
of phrases that has been correctly accepted by the moddfking the average at each junction.

plotted vs. the fraction of the corpus used for training. sensitivity — in particular, the manner whereby ADIOS
In this case, the model performs nearly perfectly afterhzjances syntagmatic and paradigmatic cues provided by
exposure t@0% of the corpus. Note that this kind of the data — is mainly what distinguishes it from other
test is highly relevant to psycholinguistic explorations of current work on unsupervised probabilistic learning of

productivity, e.g., [11]. syntax [8, 14, 15]. The present paper describes a vi-
) able algorithmic approach to unsupervised distributional
Concluding remarks learning of language patterns. The ultimate goal of this

The ADIOS model learns (morpho)syntax on the basigProject is to ag:hleve a computat|ona_1lly explicit, empir-
of distributional information in the “raw” input, and sup- cally proven, integrated understanding of three aspects
ports the distillation of structural regularities (which can Of the representation of linguistic structures:

be thought of as constructions [4]) out of the accruedtheoretical, computational, and psychological.
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original sentences from CHILDES rephrase sentences by ADIOS
I'll play with the eggs and you play with your Mom. I'll play with the toys and you play with your bib.
there's another chicken. there's another bar+b+que.
there's a square! there's a chicken!
play with the cars and the people? play with the dolls and the roof?
oh ; the peanut butter can sit right there. oh ; the peanut butter can go up there .
you better eat it. you better finish it.
we better finish it ; then. we better hold that ; then.
yeah ; that's a good one! uh ; that's another little girl!
should we put this chair back in the bedroom? should we put this stuff in in another chick?

Figure 6:(a) Two strongly connected patterns extracted from a subset of the CHILDES collection [13]. Hundreds of
such patterns and equivalence classes (underscored) together constitute a concise representation of the raw data. Some
of the phrases that can be described/generated by patterns #1903 and #168d@8/atehave to go home?; do you

like to go in that truck?; do you want to go up the ladder?; do you like to go the bench?. None of these sentences

appear in the training data, illustrating the ability of ADIOS to generalize. The numbers in parentheses denote the
generalization factor) of the patterns and their components (e.g., pattern #1903 geng&bdtesew strings, while

pattern #1678 generates nonf)) Some of the phrases generated by ADIOS (left) using sentences from CHILDES
(right) as examples. The generation module works by traversing the top-level pattern tree, stringing together lower-
level patterns and selecting randomly one member from each equivalence class. Extensive testing (currently under
way) is needed to determine whether the acceptability of the newly generated phrases (which is at present less than
ideal) improves with more training data.
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