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Abstract

Previous research has demonstrated that causal learning is
facilitated by observing interventions on a causal system (e.g.,
Lagnado & Sloman, 2002). Does the origin of these
interventions influence learning? Sobel (2003) demonstrated
that causal learning was facilitated when learners observed the
results of their own interventions as opposed the results of
another’s interventions, even though the data learners
observed were identical. Learners in the former condition
were able to test various causal hypotheses, while learners in
the latter condition were less able to do so. The present
experiment followed up on these findings by comparing
causal learning based on observing the results of a learner’s
own interventions with causal learning based on observing
data from a set of interventions a learner is forced to make.
Although learners observed the same interventions and
subsequent data, learning was better when participants
observed the results of their own interventions. These
findings are discussed in relation to various computational
models of causal learning.

Introduction

Causal knowledge is important for everyday interaction
in the world. A recent pursuit in cognitive science has been
to describe how human beings learn and represent causal
knowledge. Researchers in computer science have
examined causal graphical models as a way of representing
causal structure. Recently, psychologists have adopted this
formalism as a way of representing causal relations in a
variety of domains (Gopnik, Glymour, Sobel, Schulz,
Kushnir, & Danks, in press; Lagnado & Sloman, 2002;
Rehder & Hastie, 2001; Tenenbaum & Griffiths, 2002).

One issue in this discussion is whether a particular
algorithm or class of algorithms best instantiates human
causal learning. Glymour (2001) proposes that constraint-
based models offer the best account of human causal
learning (see also Gopnik et al., in press). These models
posit rules for learning causal structure based on observing
patterns of dependence and independence among a set of
events. In contrast, Tenenbaum and colleagues (Tenenbaum
& Griffiths, 2002; Steyvers et al., in press) propose that
human causal structure learning is better instantiated by
Bayesian algorithms.  Using these algorithms, learners
assign probabilities to a constrained set of hypotheses. They
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update those probabilities based on the observed data
through an application of Bayes’ rule. The resulting
posterior probabilities on the hypotheses represent how
likely each is the causal structure that generated the
observed data.

These algorithms make different predictions about the
role of interventions in causal learning. Constraint-based
algorithms treat interventions as special conditional
probabilities, which enable learners to distinguish between
otherwise equivalent causal graphs (Pearl, 2000).
Constraint-based algorithms ignore the source of the
interventions: only knowledge of conditional independence
and dependence is critical for learning.

In contrast, Bayesian algorithms require that learners
have particular hypotheses in mind, and given the observed
data, update the probability that each hypothesis reflects the
actual causal structure. If a learner observes interventions
that are relevant to those hypotheses, learning will be
facilitated. However, if a learner observes interventions that
are not relevant to those hypotheses, then those data will be
less beneficial, even if those data contain the critical
conditional independence and dependence information
necessary to discern a unique causal structure.

An (albeit simple) example might help. Suppose you
wake up one morning with the flu, and have two symptoms:
coughing and dry-mouth. Many different causal models
follow from these observations. For example, the flu could
cause the dry-mouth, which in turn could cause coughing.
Alternatively, the flu could independently cause coughing
and dry-mouth: coughing and dry-mouth could be unrelated,

but dependent given that you have the flu. Figure 1 depicts

these two potential causal models.
Figure 1: Two potential causal models




An intervention could distinguish between these two
hypotheses: drinking a glass of water would eliminate the
dry-mouth, but have no effect on the flu. Learners would
observe the probability of coughing given the presence of
the flu, but the absence of dry-mouth. If coughing persisted,
then the left-hand model of Figure 1 would be the more
likely causal structure. If coughing were eliminated, then
the right-hand model in Figure 1 would be more likely.

However, this “drink water” intervention is only
effective at discriminating among certain causal models,
such as the two shown in Figure 1. For example, another
hypothesis is that dry-mouth and flu both cause coughing,
and are independent from each other (perhaps because you
are also dehydrated). The “drink water” intervention does
not discriminate between this common effect model and the
common cause model depicted on the left side of Figure 1.
Given that you have the flu, both models predict that
coughing would persist if dry-mouth were eliminated.

What this example illustrates is that a learner’s initial
hypotheses matter. This is not a novel idea in cognitive
science: many researchers propose that adult learners have a
variety of hypothesis-testing strategies, which may lead
them to proper or improper conclusions (see e.g., Klayman
& Ha, 1987; Wason, 1968). Is this the case in the domain of
causal learning? If learners use constraint-based algorithms
to build a causal model from observed data, then the source
of those data should not matter. However, if learners are
actively testing hypotheses, then the source of interventions
might make a difference in causal learning.

This hypothesis relies on two assumptions about causal
learning. The first assumption is that learners benefit from
interventions over simply observing data. Schulz (2001)
investigated whether adults and children could make causal
inferences based on interventions. In one experiment, she
presented participants with two creatures (A and B) that
moved together simultaneously, and told them that one was
the “boss”, and made the other creature move. From this
information alone, the directionality of the causal relation
between the two events was indeterminate: neither temporal
priority nor contingency information allowed the
participants to determine the nature of the causal relation
between the two creatures. Participants were then shown
that there was an intervention (i.e., a button), designed for
one of the creatures (B), which made it move. The button
was pressed and only creature B moved. After observing
this intervention, both adults and 4-year-olds consistently
claimed that the other creature (A) was the boss.

This valid conclusion follows from one of Pearl’s
(2000) algorithms for learning causal structure through
interventions. Learners have observed a critical conditional
independence: p(A | B) > p(A | do(B)) = 0. Thus, these data
are consistent with the predictions of constraint-based
model. However, Schulz’s (2001) experiments are also
consistent with a Bayesian model. The cover story of the
experiment specified that one of two hypotheses were
correct; the intervention produced data that distinguished
between them.
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The second assumption of this project is that when
learners are able to generate their own interventions, they
choose interventions that enable them to test their
hypotheses. Steyvers et al. (in press) provided a critical
piece of evidence for this assumption. They asked
participants to learn a causal structure from observing data.
After participants generated a set of structures that reflected
this learning, Steyvers et al. (in press) allowed learners to
observe the results of one intervention on that structure.
Learners did not choose their intervention randomly. The
majority of learners chose the intervention that provided
them with the information necessary to distinguish among
the models they chose previously. Steyvers et al. (in press)
presented a Bayesian model with an “active learning”
component (e.g., Murphy, 2001), which provided the best
model of these data.

However, neither of these experiments directly tested a
situation that compared learning from observing the results
of one’s own interventions with the results of another’s
interventions. Sobel (2003) presented participants with a
novel causal learning task: participants were told that “Dr.
Science” had wired up a set of colored lights and sensors.
The sensors were color sensitive and made the light they
were connected to activate. Thus, if a red sensor was
connected to a white light, then the white light would
activate whenever the red light activated. Since this
happened at the speed of light, learners just saw the white
and red lights activating together. Depending on the
experiment, the sensors could have deterministic or
probabilistic relationships. Participants were asked to learn
the causal structure among four colored lights (i.e., whether
each light had sensors on it, and if so, of which color). One
group of learners was allowed to intervene on those lights
themselves. Another group observed another person make
the same interventions (with the same results). Over several
experiments, although learners in both groups observed
identical interventions and data, learning was superior when
participants observed the results of their own interventions.

The goal of this investigation is to examine two
concerns with Sobel’s (2003) experiments. In these
experiments, learners actively manipulated the learning
environment; observers, in contrast, did not. The first
concern is that it is possible that learners in the intervention
condition were simply paying more attention than learners
in the observation of intervention condition. Sobel (2003,
Experiment 4) attempted to control for this by presenting
learners with the ability to select cases in which they
observed a particular light activating. In this condition,
learners actively manipulated the learning environment, but
had no information about interventions (and hence, little
information  about conditional independence and
dependence). Learning was quite poor in this situation.

However, a better manipulation would be to allow
learners to manipulate a learning environment, but disable
them from testing their own hypotheses. To do this, we
created a fixed intervention condition. In this condition, the
learning environment was identical to an intervention



condition, but learners were forced to make a particular set
of interventions. This way, learners generated interventions,
but those interventions were based on another learner.

This allows us to examine a second concern with
Sobel’s (2003) experiments, based on literature in
educational psychology. Several researchers suggest that
kinesthetic learning — the ability to act on the environment
as opposed to simply observing — may benefit learners even
in non-kinesthetic domains, such as language (e.g.,
Furuhata, 1999). Such a benefit may also translate to the
domain of causal structure learning. The results of the fixed
intervention condition allows us to examine whether
observing the results of interventions generated by a learner,
independent of their own hypotheses impairs causal
structure learning compared with learners who observe the
results of their own interventions.

Experiment

In this experiment, we presented learners with four
causal structure learning problems using the same paradigm
as Sobel (2003). Participants were introduced to Dr.
Science, and told that he had wired together colored lights
and sensors. Participants were asked to learn the causal
structure among four colored lights (i.e., whether each light
had sensors on it, and if so, of which colors). Participants
were either allowed to intervene on the data freely
(Intervention Condition), or were instructed to make
specific interventions (Fixed Condition). In the fixed
condition, these interventions and the subsequent data were
yoked to a learner in the intervention condition. Thus,
learners observed identical data across the two conditions.

Participants in the intervention condition were allowed
to turn on lights, as well as temporarily remove any one
light from the causal structure (by placing a bucket over it,
which covers it and its sensors). Sobel (2003, Experiment
5) found that this additional type of intervention greatly
benefited learning. In particular, this enabled learners to
observe conditional independence relations as well as
conditional dependence relations — the exact data necessary
to learn a causal structure given a constraint-based
algorithm.  As long as the conditional independence
relations are present, these algorithms would predict no
difference between these two conditions. However, if
hypothesis testing is important to learners, then when they
observe the results of their own interventions, they do so
based on their own causal hypotheses. Learners in the fixed
intervention condition, in contrast, observe interventions
and data based on another’s hypotheses, which might not
match there own, and which might cause impaired learning.

Method

Participants: Forty-eight undergraduates were recruited
from an urban area university. Approximately equal
numbers of men and women participated in the experiment.
Participants were paid $7 for their participation.
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Materials: Participants were tested on a Dell Dimension
8100 desktop computer with a 19” monitor.

Procedure: Following Sobel (2003, Experiment 5), all
participants were seated at the computer and given the
following instructions:

“In Dr. Science's laboratory, he has created a
number of games. Each game has four lights, colored
red, white, blue, and yellow. Each light also has zero,
one, or many sensors. Some sensors are sensitive to red
light, others to blue light, others to white light, and
others to yellow light and will activate the light that it is
connected to. For example, if the red light is connected
to a yellow sensor, then whenever the yellow light
activates, the red light will also activate. But, because
this happens at the speed of light, all you will see is the
red and yellow lights activating together. It is also
possible that a light has no sensors attached to it, and
therefore is not activated by any other light. Dr. Science
is pretty absentminded, so he is not careful about how he
wires the lights together. Sometimes the sensors do not
always work perfectly, so they won't always turn the
lights they are connected to on.

For each game, you have to figure out how the
lights and sensors are wired up. To help you, Dr.
Science is going to let you turn on each of the lights. So,
you will see a set of buttons that turn on each light.

In addition, Dr. Science has given you a black
bucket. You can put the bucket over any one of the
lights (and the sensors it is connected to). Putting the
bucket over the light covers both it and its sensors. If the
bucket is over the light, then the light will not activate
because the other lights cannot reach its sensors.”

Participants were divided into two groups. In the
intervention group, participants were told that they would be
able to turn on any of the four lights as well as place the
bucket over any of the lights as many times as they wanted.
These participants were shown a computer screen with nine
buttons. Four of the buttons activated the four different
colored lights. If one of these buttons was pressed, then that
light appeared on the screen for 0.5s. In addition, any effect
of that light (and likewise any of its effects) also appeared at
the same time on the screen. The probability that any effect
occurred given that its cause occurred was 0.8. Thus,
turning on a light did not always cause its effects, which
learners can attribute to Dr. Science carelessness in how the
lights and sensors were wired together.

The other five buttons moved the bucket — either over
one of the four lights or off all of the lights. Pressing one of
these buttons would result in the bucket moving to the
appropriate place. The bucket appeared on the screen as a
black box.

Participants in this condition were told to intervene as
much as they wanted in order to learn how the lights and
sensors were wired together. However, they were required
to turn on the four lights a minimum of 25 times. Their
interventions and the subsequent data were recorded. When
they indicated they were finished, they were asked the test
questions described below.



Participants in the fixed intervention condition were
shown the same nine buttons. However, Dr. Science gave
them instructions to press particular buttons in a particular
order. Participants were not allowed to intervene on their
own accord, but could only generated interventions that
turned the lights on and moved the bucket based on what
Dr. Science told them. These instructions appeared on the
screen one at a time. If participants pressed an incorrect
button, then they received an error message.

Importantly, each sequence of interventions given to a
participant in the fixed intervention condition was yoked to
a participant in the infervention condition. Thus, the first
participant in fixed intervention condition was told to make
identical interventions (and observed identical results) as the
first participant in the intervention condition.

Before learning the four models, participants in both
conditions were given a training session with the bucket.
They were shown three lights (colored green, purple, and
gray), and three buttons that each activated one of the lights.
They were told that Dr. Science had wired these lights and
sensors perfectly. They were first told to press the button
that activated the gray light, and were shown that only the
gray light activated. They were told that from this they
could conclude that there was not a gray sensor on the other
two lights. One could conclude this since if there had been
a sensor on either of those lights, those lights would have
activated.

Then they were told to activate the green light and
observed that green and gray activated together. From this,
they were told to conclude that there was a green sensor on
the gray light. Then, they were then told to activate the
purple light, and shown that all three lights activated. From
this, they were told that they could conclude that there was a
purple sensor on the green light. However, whether there
was a purple sensor on the gray light was uncertain, since
they already knew that there was a green sensor on the gray
light and that the green light activated.

They were then told that using the bucket could help.
In particular, if the purple light was activated with the
bucket on the green light, then they could observe whether
the purple light activated the gray light in the absence of the
green light. Participants were told to make this intervention
and shown that under this circumstance only the purple light
activated. Thus, participants observed the relevant
conditional independence between purple and gray given the
absence of green. The probability that the gray light
activated given the purple light and not the green light was
zero. There must not be a purple sensor on the gray light.
Thus, there was only a purple sensor on the green light and
a green sensor on the gray light.

After this training, participants were asked to learn four
different causal models, a chain, a chain with a link from the
root light to the leaf light (A->D), a common effect and
chain and a diamond model. These are shown in Figure 2.
The color of the lights was randomly determined for each
model. The causal connections were always probabilistic.
Thus, if a cause occurred, the probability that its effect
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occurred was 0.8. Importantly, lights never occurred
spontaneously: the probability of an effect given the absence
of a cause was zero. The models were presented in one of
four quasi-random orders. In both conditions, participants
were allowed to take notes.

After participants indicated that they thought they knew
how the lights and sensors were wired together (in the
intervention condition) or were shown the same intervention
sequence (in the fixed intervention condition), participants
were asked two sets of questions. First, participants were
asked a set of causal structure questions — whether each
light had a sensor of each other color attached to it (e.g., was
there a blue sensor on the red light?). Participants first
answered the yes/no question, then rated their level of
confidence in their answer on a scale of 0-100, with zero
being a total guess, and 100 being fully confident. There
were twelve of these questions (one for each possible
combination), asked in a random order.

Participants were also asked a set of conditional
probability questions, in which they were asked to rate the
likelihood of a particular light activating given that they had
turned on another light. These questions were phrased as
follows: “suppose you turned on the X light and the bucket
wasn’t on any of the lights, what is the probability that the
Y light (among possible others) would activate”.
Participants were asked the twelve exhaustive pair-wise
combinations, plus four questions that asked about the
conditional probability of that light activating by itself (e.g.,
what is the probability that only the X light comes on if you
turn on the X light). The order of these question sets was
counterbalanced across participants.
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Figure 2: The four causal structures that participants were
asked to recover. The colors were randomly assigned for
each participant

Results

For each model, participants received a score of one for
each causal structure question they answered correctly, and
a score of zero for each question they answered incorrectly.
These scores were summed to reflect an overall accuracy



score for each model (maximum: 12). These scores are
shown in Table 1. Preliminary analyses revealed no order
effects: neither the question order nor the order the models
were presented in influenced responses.

A 4 (model) x 2 (condition) mixed Analysis of
Variance was performed on participants’ accuracy scores.
Model was a within-subject factor; condition was a
between-subject factor. This analysis revealed a main effect
of condition: overall, learners were more accurate in the
intervention condition than the fixed intervention condition:
F(1, 46) = 8.74, p < .01. A main effect of model was not
found. No significant interactions were found. Simple
effect analysis revealed that this difference was consistent
for each of the four models: #46) = 2.07, 2.01, 3.24, and
2.20 for the chain, chain with A->D link, common effect
and chain, and diamond models respectively, all p-values <
.05.

Table 1: Accuracy scores on causal structure questions for
each model and condition (Maximum = 12). Standard
deviation shown in parentheses

Model Intervention  Fixed
Condition Intervention
Condition
Chain 10.88 9.88
(1.44) (1.87)
Chain with 11.08 9.96
A->D link (1.10) (2.51)
Common 11.33 9.79
Effect and (1.47) (1.82)
Chain
Diamond 10.96 9.88
(1.08) (2.15)

Table 2: Deviance scores on conditional probability
questions for each model across the conditions.
Standard deviation shown in parentheses

Model Intervention  Fixed
Condition Intervention
Condition
Chain 12.66 14.44
(10.37) (10.59)
Chain with 17.23 25.23
A->D link (11.67) (16.19)
Common 12.80 15.35
Effect and (10.47) (11.68)
Chain
Diamond 13.18 13.38
(8.48) (9.06)

For each model, a deviance score was computed on
participants’ answers to the conditional probability
questions. This was done by averaging the absolute value of
the difference between the judged conditional probability
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and the expected conditional probability for the sixteen
questions. These scores are shown in Table 2. A similar

4 (model) x 2 (condition) mixed Analysis of Variance was
performed on these scores. A main effect of model was
found: overall, deviance on the conditional probability
questions differed among the four models: F(3, 138) = 7.22,
p <.001. A main effect of condition was not found. No
significant interactions were found. Simple effect analysis
revealed that the deviance score on the chain with A->D
model was greater than any of the other three models: #47)
=3.06, 2.96, and 3.49, in contrast with the chain, common
effect and chain, and diamond models respectively, all p-
values <.005.

Did learners’ error on the conditional probability
questions reflect their ability to recognize causal structure?
If learners are building accurate causal models, then
responses to the conditional probability questions should be
predictive of accuracy on the causal structure questions. To
examine this, four hierarchical regressions were performed;
accuracy on the causal structure questions for each model
was the dependent variable. First, condition was factored
into the model. Next, deviance scores on the other three
models were factored in. This was done to control for
participants’ individual differences in the deviance scores.
Finally, the deviance score for the model in question was
factored in. This score contributed to the variance in the
accuracy on the causal structure questions for the chain and
the common effect and chain models: Ar* =110 and .048
respectively, F(1, 42) = 7.22 and 3.99, both p-values < .05.

Discussion

Learners who were able to observe the results of their
own interventions were better at recovering the causal
structure among a set of events than learners who observed
the results of interventions they were forced to make. This
result parallels Sobel (2003), who found that observing the
results of another’s interventions resulted in worse causal
learning than observing the results of one’s own
interventions. In both Sobel’s (2003) observation of
intervention condition and the present fixed intervention
condition, learners were unable to test their own causal
hypotheses. Even though learners might have observed
critical information about conditional independence and
dependence, learning in these circumstances was impaired
compared with observing the results of one’s own
interventions. In fact, subsequent analysis revealed that all
the participants in the intervention condition generated data
that presented them with the specific conditional
independence and dependence information necessary to
learn each causal structure via constraint-based algorithms.
Thus, all learners were given the relevant conditional
independence and dependence information necessary to
learn the causal structure. However, learning was facilitated
when the learner controlled when they were given that
information.



This experiment was motivated by two concerns with
the procedure used by Sobel (2003). First, learners who
observe the results of their own interventions might have
simply been more involved with the task of learning than
learners who observe another’s interventions because of
their ability to act on the system. Further, the benefit of
observing the results of one’s own interventions might by
due to learners relying on kinesthetic learning skills. These
two possibilities are inconsistent with the present data.

These data seem inconsistent with the hypothesis that
constraint-based algorithms of causal structure learning best
account for human learning. However, it is possible that
constraint-based methods could be modified to account for
these data. We suggest that Bayesian accounts of causal
structure learning are at least more qualitatively consistent
with these data than other approaches to causal structure
learning. This is clearly a topic for future research.

One question that must be addressed is whether learners
explicitly engage in hypothesis testing, or are relying on
processes that are more implicit. Several researchers (e.g.,
Kuhn, 1989) have argued that children and in some cases,
even adults lack the ability to design experiments that
explicitly test causal hypotheses. Such deficits in scientific
reasoning indicate that adults and children might lack the
metacognitive skills necessary to design unconfounded
experiments or interventions that discriminate among causal
hypotheses.

Steyvers et al. (in press), however, demonstrated that
adult learners would usually make a single intervention that
offered them the most information to discern among various
causal structures consistent with the data already observed.
They proposed that there might be a difference between
implicit causal knowledge, which is used in this kind of
learning situation, and explicit causal knowledge, which
was tested by researchers investigating scientific reasoning.
For instance, participants in both the present experiment and
in Steyvers et al.’s (in press) experiments were not asked to
justify their responses, nor were they asked to reflect on the
strategies they used to garner their knowledge. Learning
through a Bayesian algorithm does not require explicit
verbal representations of those hypotheses (see also Gopnik
et al., in press).

To conclude, researchers in causal learning have been
seeking a way to instantiate algorithms for learning causal
structure.  We believe that causal learning is better
instantiated by the causal graphical model framework,
particularly because of its ability to account for data from
interventions (see Gopnik et al., in press). The present
experiment represents an ongoing effort to investigate
algorithms within that framework (see also Sobel, 2003).
This line of research is more consistent with the qualitative
predictions of Bayesian algorithms. Future work, however,
must specify exactly what the nature of these algorithms is
and how they might be represented in the brain.
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