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Abstract

The violation-of-expectation paradigm investigates infants'
physical knowledge by exploiting their tendency to look
longer at events that are surprising, unexpected, or physically
impossible. The current simulation study examines the role of
prediction as a fundamental component of infants'
expectations in physical-knowledge studies. A recurrent
network is presented with a computer-animated version of
Baillargeon’s “car study” (1986; Baillargeon & DeVos,
1991), in which a car rolls down a ramp and behind a screen.
After learning to predict the outcome of a training event, the
model is then tested on possible and impossible events from
the same study. During testing, the model successfully
predicts only superficial features of the test events. These
results are used to argue for the necessity of prior physical
knowledge, and perhaps also a built-in capacity for mental
representation, in order for a prediction system to work.

Introduction

Over the last 20 years, developmental researchers have
mounted a broad and compelling challenge to Piaget's
theory of infant cognitive development (e.g., Baillargeon,
1995; Spelke, Breinlinger, Macomber, & Jacobson, 1992).
Much of this research has focused on two particular
elements of Piaget's theory: first, that infants' physical
knowledge (i.e., their concepts of objects, space, time, and
causality) depends on sensorimotor experience, and second,
that the capacity for mentally representing the world
develops gradually over the first two years (Piaget, 1952).

In contrast, the "competent infant" view argues that Piaget
underestimated what young infants know and understand
about the physical world. This approach is based on three
closely-related ideas. The first is that infants' visual
expectations are guided by a core set of intuitive or naive
physical principles (e.g., that solid objects move along
continuous paths; Spelke et al., 1992). In addition, Spelke
and others have argued that this core knowledge may either
be innate, or develop too early in infancy to depend on input
from sensorimotor experience.

The second idea is that the ability to mentally represent
the world is also present early in life, if not innate (e.g.,
Baillargeon, 1986; Meltzoff & Moore, 1998). This capacity
is exploited by infants in a variety of ways, including
mentally tracking occluded objects (e.g., Carey & Xu,
2001), and also reasoning about the physical properties of
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those objects while they are out of sight (e.g., size and
location; Baillargeon & DeVos, 1991).

The third idea is built on the first two: during everyday
experiences, infants exploit both their prior knowledge and
capacity for representation as they generate predictions for
the events they observe. This tendency to forecast or predict
the outcome of events has helped motivate the predominant
methodology for studying infants' physical knowledge, that
is, the violation-of-expectation (VOE) paradigm.
Specifically, the VOE paradigm proposes that infants will
increase their attention toward events that violate their
understanding of the physical world, or in other words,
events that are surprising, unexpected, or physically
impossible (e.g., Baillargeon, 1993; Spelke, 1985).

Learning by Prediction

A number of developmental theorists have highlighted the
role of prediction-learning as a developmental mechanism,
and in particular, a wide variety of connectionist models
have implemented this idea in an artificial neural network
(e.g., Elman, 1990; McClelland, 1995). Prediction-learning
is typically simulated by training a neural network to predict
a sequence of stimuli (e.g., speech segments) as the
sequence is presented one element at a time. The success of
these models, which have no built-in knowledge, suggests
that prediction-learning can function without an a priori
knowledge base. In addition, mental representation need not
play a central role, at least in a strong form (e.g., internal
symbols, recall memory, etc.). However, weaker forms of
representation may be necessary for supporting a prediction-
learning system. For example, in the face of an ambiguous
stimulus, a sensory trace can provide a form of implicit
memory that facilitates predicting the next experience (e.g.,
in a recurrent network; Mareschal, Plunkett, & Harris, 1999;
Munakata, McClelland, Johnson, & Siegler, 1997).

Two recent models explore the role of prediction by
simulating the development of object-oriented behaviors in
infants (i.e., visual tracking and reaching; Mareschal et al.,
1999; Munakata et al., 1997). In particular, these models
simulate the ability to track the movement of an object
while it is briefly occluded. Although there are important
differences between the architectures and learning
algorithms employed by Mareschal and Munakata, both
models rely on a comparable learning rationale.



Specifically, a recurrent network (i.e., a feed-forward
network that also includes an additional input loop from the
hidden layer back to the input layer; see Elman, 1990) is
presented with the event sequence, one "frame" at a time,
and the task of the network is to learn to predict the next
step in the sequence (using backpropagation-of-error as a
learning algorithm). Both models demonstrate that recurrent
feedback can function like an internal sensory trace, helping
the model to predict the reappearance of the target while it is
occluded.

The current investigation extends the work of the
Mareschal and Munakata models, by asking whether a
recurrent network that learns by prediction--but that has no
prior knowledge--can generalize what it learns to either
possible or impossible events. By analogy, to what extent do
infants' reactions in VOE studies depend on prediction-
learning mechanisms versus prior knowledge of the physical
world? Therefore, the goal of this paper is to decouple these
two processes, and to focus on the role of prediction during
possible and impossible events.

The rest of the paper is organized as follows: In the next
section, we briefly describe Baillargeon's "car study", which
provides a platform for investigating the role of prediction
in VOE studies. We then provide an overview of the
prediction model, which first learns to predict the outcome
of a computer-animated training event, and is then tested on
possible and impossible events from the same study. Next,
Simulations 1 and 2 examine the model's ability to
generalize to the novel test events. Finally, we discuss the
performance of the model, and relate the findings to current
debates in early infant cognition.

The "Car Study"

Baillargeon (1986; Baillargeon & DeVos, 1991) studied
infants' knowledge of the permanence and solidity of objects

by presenting young infants with a simple mechanical
display, in which a screen is raised then lowered, and then a
car rolls down a ramp, passing behind the screen and
reappearing on the other side (see Figure 1A, Habituation
event). Infants watched this event repeat several times until
they habituated (i.e., grew disinterested and began to look
away). After habituating, infants then saw two test events in
alternation (see Figures 1B and 1C). During both the
Possible and Impossible test events, a box is revealed
behind the screen. During the Possible event, the box
appears behind the track; during the Impossible event,
however, the box is placed on the track, in the path of the
car. Nevertheless, during both test events the car reappears
after passing behind the screen.

Baillargeon found that by at least age 6 months, and
perhaps earlier, infants look significantly longer at the
Impossible event than the Possible event. These findings
were replicated in a follow-up study, in which infants saw
the car placed on (Impossible) versus in front of the track
(Possible). She interpreted these results to suggest (a) that
infants mentally represent both the car and the box while
they are occluded, (b) that they do not expect the car to
reappear during the Impossible event, and (c) they
consequently look longer at the Impossible event because it
violates their expectations.

The Prediction Model

Note that the events in Baillargeon's car study pose at least
two challenges for a prediction model. First, like the events
simulated by Mareschal and Munakata, there is a moving
object that is briefly occluded. Second, there is also a
potential causal interaction between the car and box (i.e.,
obstruction or collision), which is also occluded. While the
occluded movement may be predictable, it is not clear what
experiences may be necessary for correctly learning to
predict an occluded obstruction or collision event.
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Figure 1: Schematic display of the Habituation (A), Possible (B), and Impossible (C)
events studied by Baillargeon (1986; Baillargeon & DeVos, 1991).
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Figure 2: Selected frames from the animation events used in Simulation 1 to train (A)
and test (B-C) the prediction model (frame number displayed in upper right corner).

From a design standpoint, the current prediction model
shares a number of features with both the Mareschal and
Munakata models. First, like the Mareschal model, the
prediction model receives as input a 2-dimensional array of
pixel values from an animation event, which is projected
onto a simplified retina. Second, like the Munakata model,
the input is propagated through a hidden layer, and then to
an output layer with the same number of units as the input
layer. On each timestep, the task of the network is to
produce as output the pattern of pixel values that correspond
to the next animation frame. Third, like both of the prior
models, the observed values on the next frame provide the
basis for a "teaching signal", which is used to adjust the
connection weights in the network.

Stimuli

Three animation events were designed as 2-dimensional
analogs to those in Baillargeon's car study. Figure 2 presents
selected frames from these events, which were used to train
and test the prediction model. Each event is 82 frames in
duration. Note that unlike Baillargeon's study, the model is
trained rather than habituated. Consequently, the habituation
event is renamed the Training event in the prediction model.

The Training and Test events were rendered in grayscale,
with the "car" pixel values represented as 1.0, the "box"
values as 0.6, the "screen" values as 0.3, and the background
as 0. The entire event display is 10 pixels tall by 30 pixels
wide, for a total of 300 pixels.

Architecture

The prediction model is implemented with a simple
recurrent network (SRN). The SRN has three layers that are
fully connected. First, the input layer (300 units) operates
like a simple retina; each input unit is activated by a single
corresponding pixel in the 10-by-30 animation display.
Second, the input layer feeds forward to a hidden layer (20
units), which not only feeds forward to the output layer, but
also sends a set of activations back to the input layer (i.e.,
via recurrent connections). Consequently, on each timestep
the hidden layer of the SRN receives signals from both the
input layer as well as from itself (i.e., from the hidden layer

1049

activation values during the previous timestep). Finally, the
output layer is the same size as the input layer (300 units).

Learning Algorithm

The backpropagation-of-error learning algorithm was
used to train the SRN. Specifically, on each timestep the
SRN received as input one frame from the animation
sequence. The corresponding output for that timestep was
then compared to the input frame for next timestep, using
the mean-squared difference between expected and
observed pixel values as the error metric (i.e., mean-squared
error or MSE).

Simulation Overview

Simulations 1 and 2 employed the same training and
testing regime. In each case, the SRN was first presented
with the Training event. The results of pilot simulations
suggested that 300 training trials were sufficient to reduce
the MSE per pixel to approximately 0.01 (recall that pixel
values ranged from 0 to 1). Therefore, training continued for
300 trials (i.e., repetitions of the training event). After
completing training, each SRN was tested on the Possible
and Impossible events. Note that for each simulation, 50
replications of the SRN were randomly initialized, trained,
and tested.

Performance Measures

Recall that the VOE paradigm relies on looking time (i.e.,
the amount of time spent fixating a stimulus or event) as an
index for infants' expectations. However, the prediction
model does not produce overt eye movements or fixations
(cf. Schlesinger, in press). Nevertheless, there are a variety
of ways in which both the model's internal activity and
output can be viewed as computations that would precede
and possibly modulate an attentional signal (e.g., gaze
control in the superior colliculus, tracking of motion in area
MT, etc.). Two such performance metrics are employed in
the current model.

First, prediction-errors (i.e., MSE) in the model can be
interpreted as an influence on looking behavior (e.g.,
Mareschal et al., 1999; Munakata, 1997). That is, when



discrepancies occur between predicted and observed inputs,
we should expect infants to continue monitoring an event,
until their predictions agree with their observations. This is,
of course, the rationale of the VOE paradigm.

Second, we can also compare the model's hidden-layer
activations across events. Specifically, the internal
activation pattern during the training event can be
interpreted as a template or sensory encoding, against which
the test events are compared (e.g., Mareschal et al, 1999; for
a discussion of template-matching as a developmental
mechanism, see Charlesworth, 1969). Much like prediction
errors, when differences occur between the encoding of the
training event and a test event, that test event is assumed to
be novel, and therefore, should increase attention.

Simulation 1

Simulation 1 follows the general procedure of Baillargeon's
(1986) Experiment 1, in which, during the test phase, infants
see the car placed either on or behind the track, respectively
(i.e., Impossible or Possible event).

Method

Fifty replications of the model were trained and tested.
During each replication, an individual SRN was first
initialized with random connection weights (in the range -1
to 1). Next, the SRN was presented with the Training event
(see Figure 2A), one frame at a time. For each input frame,
the model produced as output a corresponding set of pixel
values that were a prediction for the next input frame.

After each output was generated, it was then compared to
the next input frame. MSE was computed by comparing the
difference between predicted and observed pixel values, and
was then minimized by adjusting the connection weights of
the network with the backpropagation-of-error learning
algorithm. Learning was terminated after 300 repetitions of
the Training event. Connections weights in the SRN were
then "frozen" (i.e., learning was turned off).

During the test phase, three events were presented. First,
in order to establish a prediction-error baseline, the Training
event was re-presented; in this case, to distinguish between
the SRN's reactions during the training and test phases, this
event was called the Control event. Next, the Possible and
Impossible events were presented (see Figures 2B and 2C),
corresponding to Baillargeon's study in which the box was
placed on or behind the tracks, respectively.

Results

As proxies for looking time, analyses focused on
prediction errors and similarity between hidden-layer
patterns. First, as noted above, mean prediction error was
computed as the MSE per pixel in the output layer
(averaged over the 82 frames of animation during each test
event).

Figure 3A presents the MSE per pixel as a function of test
event. Mean prediction errors were 0.014, 0.015, and 0.019
during the Control, Possible, and Impossible events,
respectively. All three events were significantly different.

1050

o
o
IS}
a

o

=S o
= Q
a [N]

Mean "Novelty"

0.005

Mean Prediction Error

0
Possible Impossible Control

Event Type

Control Possible Impossible

Event Type

Figure 3: Mean prediction error (A) and "novelty" (B) in
Simulation 1, during the Control, Possible, and Impossible
events. Error bars indicate 95% confidence intervals.

Specifically, prediction error was higher during the Possible
than the Control event (#49) = 36.60, p < .001), but lower
during the Possible than the Impossible event (#(49) = 37.57,
p <.001).

Next, we computed Euclidean distance between Training
and the Control, Possible, and Impossible events. First, as a
baseline, hidden-layer activations during the last five
training trials were pooled and averaged, resulting in an
82x20 (i.e., frames by hidden-layer units) matrix. Second,
Euclidean distance was then computed, using comparable
activation values during the Control, Possible, and
Impossible events.

Figure 3B presents the mean "novelty" (i.e., Euclidean
distance) during the test phase (averaged over the 82
frames). Note that higher novelty corresponds to greater
dissimilarity or distance between the Training and test
event. Mean novelty was 0.04, 0.14, and 0.28 for the
Control, Possible, and Impossible events, respectively. As
before, all events were significantly different. In particular,
the Impossible event was significantly more novel than the
Possible event (#(49) = 20.63, p <.001).

Discussion

Both sets of analyses provide convergent results. In
particular, the prediction model produces (a) higher
prediction errors and (b) a more novel or dissimilar pattern
of internal activity, during the Impossible event.

A preliminary conclusion based on these findings is that
prediction-based learning that occurs during the Habituation
event may be sufficient to explain infants' greater attention
to the Impossible event during the test phase. A related
conclusion is that prior physical knowledge (i.e., naive
physics) does not seem necessary to explain why infants
look longer at the Impossible event in the car study.

However, a potential qualification to these results is that
the box appears at different times, and for different
durations, during the two test events. Specifically, it is
revealed sooner and for more time during the Impossible
event. Recall that Baillargeon addressed this confound by
testing infants in a second condition, in which the car was
placed either on (Impossible) or in front of the tracks
(Possible). Therefore, in order to replicate and extend the
current results, Simulation 2 modifies the trajectory of the
car, so that now (in contrast to Simulation 1) the box
appears first, and for more time, during the Possible event.
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Figure 4: Selected frames from the animation events used in Simulation 2 to train (A)
and test (B-C) the prediction model (frame number displayed in upper right corner).

Simulation 2

While the results of Simulation 1 suggest that the
Impossible event may be more difficult to predict, a careful
examination of Figure 2 shows that in fact the Possible and
Impossible events are nearly identical. In fact, the only
visible difference is the location and timing of the box's
appearance during the two test events. One possibility is that
the Impossible event is more "surprising" because the box is
revealed in the car's trajectory. Alternatively, it is because
the box, a novel object, is revealed sooner and for more time
during the Impossible event.

Simulation 2 investigates this second account by moving
the car's trajectory to the upper half of the display (see
Figure 4). Thus, the box is now revealed later and for less
time during the Impossible event. If in fact the model
acquires some kind of expectations or general knowledge
about physical objects during the training phase, the
Impossible event should still generate greater prediction
errors and be more dissimilar to the Training event.
Alternatively, if the prediction model is simply reacting to
the appearance of a novel object in the display, then the
Possible event should now produce greater prediction errors
and be more dissimilar to the Training event.

Method

The method of Simulation 2 was identical to that of
Simulation 1, with one exception as noted above:
specifically, the path of the car was modified so that it
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Figure 5: Mean prediction error (A) and "novelty" (B) in
Simulation 2, during the Control, Possible, and Impossible
events. Error bars indicate 95% confidence intervals.
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moved along the upper half of the display (see Figure 4). As
before, 50 SRNs were trained and tested.

Results

As Figures 5 indicates, the overall pattern of results in
Simulation 2 was the mirror-image of that in Simulation 1.
First, Figure SA presents MSE per pixel during the test
phase. Mean errors were 0.014, 0.019, and 0.015 for the
Control, Possible, and Impossible events, respectively. In
contrast to Simulation 1, prediction errors during the
Impossible event were significantly lower than during the
Possible event (#(49) = 48.90, p <.001).

Second, mean novelty of the Control, Possible, and
Impossible events was 0.05, 0.30, and 0.15, respectively
(see Figure S5B). Paralleling the previous analysis, the
Impossible event was significantly less novel than the
Possible event (#49) =26.46, p <.001).

Discussion

Unlike the results of Simulation 1, those of Simulation 2
suggest that the Possible event should not only be more
difficult to predict, but also more dissimilar to the Training
event than the Impossible event. Therefore, in this case the
prediction model fails to replicate the findings of
Baillargeon (1986; Baillargeon & DeVos, 1991), as it
implies that infants in this condition should look longer at
the Possible than the Impossible event.

General Discussion

Taken together, the results of Simulations 1 and 2 provide at
best a partial replication of Baillargeon's car study
experiments. However, even the success of Simulation 1
seems to raise more questions than it answers. In particular,
why does the performance of the prediction model
correspond with infants' looking time patterns, when (a) the
model has no prior physical knowledge, and (b) it is
presented with computer-animated events (i.e., that are not
bound by the laws of physics)?

The answer to this question, perhaps obvious in
retrospect, is that during training the prediction model learns
to base its predictions, not on a set of underlying physical



regularities or principles, but instead on superficial
perceptual features of the event display. Specifically, the
model's performance during the test phase is determined in
large part by the appearance of the box. Therefore, in
whichever event the box appears sooner and for more time
(i.e., the Impossible event in Simulation 1, and the Possible
event in Simulation 2), that event leads to greater prediction
errors and appears more novel in comparison to the Training
event.

Consequently, at least one implication of the prediction
model is that in order to correctly predict or anticipate the
outcomes of causal events (and consequently, be surprised
when those predictions are violated), prior knowledge or
experience may be necessary. Given this close and possibly
necessary tie between causal expectations and prior
knowledge, it is perhaps inevitable that some theorists have
taken a strong theoretical stand in favor of innate, or at least
very precocious physical knowledge in infants (e.g.,
Baillargeon, 1986; Spelke et al., 1992).

How might we incorporate prior knowledge into the
prediction model, so that the appearance of novel objects
such as the box has a negligible effect, while violations of
basic physical principles (e.g., two objects in the same place
at the same time) cause large prediction errors? Specifically,
what would need to be added to the model in order to
replicate Baillargeon’s findings? One solution would be to
give the prediction model basic knowledge about the
behavior of solid objects. This knowledge could be pre-
programmed in any of several ways (e.g., via the network
architecture, connection weights, etc.), or alternatively,
learned through an appropriate series of pre-training
experiences. For example, prior to watching the training
event, the model could learn to predict the path of a car that
approaches a fully visible obstacle (for an example of this
training strategy, see Schlesinger & Barto, 1999). This prior
knowledge would then provide a basis for correctly
predicting when the car should reappear during the Possible
and Impossible test events.

A related question concerns the fact that a large number
of physical knowledge studies not only use the VOE
paradigm, but also use occluded objects. Therefore, an
additional implication of the prediction model is that a
"strong" form of representation (e.g., counterfactual or
hypothetical reasoning) may also be necessary, so that the
prediction system can systematically generate predictions
about events that are only partially observed.
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