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Abstract

Current models of human category learning and
subsequent recognition are either exemplar-based,
rule-based, or some combination of both ap-
proaches. We present learning and recognition data
that cannot be accounted for by current approaches.
The data suggest that the degree to which an item
is remembered is determined by the strength of the
expectation it violates. In our study, expectations
take the form of simple, imperfect rules where the
strength of the rules are determined by the number
of items that follow the rules in training. Exemplar-
based models cannot account for the results because
they do not posit organizing knowledge structures
that can be violated. The frequency insensitivity
of rule-based accounts leads to their failure. We
propose a cluster-based approach that is consistent
with our findings, as well as findings from schema,
stereotype, and basic memory research.

Introduction
Our ability to successfully categorize underlies many
of our cognitive abilities. Consequently, there has
been a great deal of interest in understanding how
we acquire categories from examples. Acquiring new
categories necessarily involves changes in memory.
The present work asks what is stored in memory
as a result of category learning. Specifically, the
current work explores the effect of category structure
on recognition memory.

While understanding the determinants of recogni-
tion is interesting in its own right, data on recog-
nition memory performance also provide constraints
for theories of categorization. For example, multiple
memory system theories of category learning mar-
shall support from dissociations such as amnesics’
above chance categorization performance in the ab-
sence of recognition (Knowlton & Squire, 1993;
Squire & Knowlton, 1995; see, however, Palmeri &
Flanery, 1999). Category learning research plays an
important role in such debates. For instance, Nosof-
sky and Zaki’s (1998) simulations of an exemplar
model cast some doubt on Knowlton and Squire’s
(1993) interpretation of their data. Nosofsky and
Zaki’s (1998) approaches are typical of other work
in category learning that posits that the same rep-
resentations subserve both categorization and recog-
nition.

In this paper, we present new category learning
and recognition data that cannot be accounted for
by current exemplar- and rule-based models of cat-
egory learning and recognition. The results are con-
sistent with a cluster-based approach to categoriza-
tion and recognition. The clustering approach is in
accord with work exploring the role of schemas in
memory. In the remainder of the paper, we will
discuss current approaches to category learning and
recognition, present data and model fits that are in-
consistent with these approaches, and discuss an al-
ternative cluster-based approach.

Previous Research in Category Learning
Palmeri and Nosofsky’s (1995) studies of category
learning and subsequent recognition are perhaps the
most challenging for models to address. In their
studies, an imperfect rule successfully classified the
majority of study items (e.g., most small items were
in category A, whereas most large items were in cat-
egory B), but two exception items violated the rule
(e.g., a large item that was a member of category
A). Their basic finding was that the exceptions were
recognized best.

Palmeri and Nosofsky modeled their data with
the context model (Medin & Schaffer, 1978) and
the RULEX (rule-plus-exception) model of category
learning (Nosofsky, Palmeri, & McKinley, 1994).
The context model is an exemplar model that stores
every studied item in memory as a separate trace.
Items are probabilistically classified into category A
or B depending on the item’s relative similarity to
all exemplars belonging to categories A and B. The
likelihood of recognizing a stimulus as a studied item
is proportional to the sum of similarity to all exem-
plars (from both categories A and B).

While the context model correctly predicts better
recognition for studied items than for novel items, it
cannot account for the enhanced recognition of ex-
ceptions. This failure arises because the exceptions
share the same similarity relations with other items
in memory as rule-following items do. Exceptions
are distinguished from rule-following items because
the exceptions’ category assignment runs counter to
the rule. According to the context model, this re-
versal is not germane to recognition.
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Palmeri and Nosofsky (1995) had more success
with the RULEX model. RULEX is a hypoth-
esis testing model of category learning that con-
structs rules and stores exceptions to the rules.
Rule-following items are not individually stored, but
rather are captured by the rule. Information about
inconsistent items is explicitly stored. The likeli-
hood of recognizing a test item is determined by
summing the response from RULEX’s rule system
and the items in the exception store. The stor-
age of rule-violating items allows RULEX to pre-
dict a memory advantage for exceptions. However,
RULEX under-predicts the recognition advantage of
rule-following studied items relative to novel items
as neither class of items resembles items in the ex-
ception store. In order to address this shortcom-
ing, Palmeri and Nosofsky created a combined model
that generates recognition responses by summing the
responses of RULEX and the context model (which
is sensitive to the difference between studied rule-
following items and novel items). This combined
model does a good job of accounting for the learn-
ing and recognition data.

Related Research in Memory
Palmeri and Nosofsky’s (1995) findings suggest that
items that stand in opposition to a salient knowledge
structure (in this case a rule) are remembered bet-
ter. Such special status of violating items is also sug-
gested by schema (Rojahn & Pettigrew, 1992) and
stereotype (Stangor & McMillan, 1992) research. If
violating a known regularity, such as a rule, leads
to improved recognition, how does the nature of the
regularity affect memory for deviant items, such as
exceptions?

One possibility is that the strength or coherency
of the knowledge structures determines the degree
to which violating items are remembered. In sup-
port of this position, Koffka (1935) reported that
when there were more anomalous items in a list, the
memory advantage for those items was smaller. Sim-
ilarly, Rojahn and Pettigrew’s (1992) meta-analysis
suggests that the memory advantage for the schema-
inconsistent items is weaker when the proportion of
those items is larger. These findings argue against a
strict rule-based knowledge organization because a
central property of rules is insensitivity to frequency
information (Pinker, 1991; Smith, Langston, & Nis-
bett, 1992).

Experiment
The present experiment tests our prediction that
the strength of a regularity determines the degree
to which violating items are remembered. Rule
strength is manipulated in a within-subjects design
by varying the frequency of rule-following items for
categories A and B during study. Each category con-
tains a single exception. We predict that the excep-
tion of the smaller category (B1 in Table 1) will be

remembered better than the exception of the larger
category (A1) because the exception of the smaller
category (B1) must be differentiated from the mem-
bership rule of the larger category (i.e., the stronger
of the two “rules”). That is, the exception of the
smaller category (B1) must be differentiated from
many rule-following items (A2-A9), whereas the ex-
ception of the large category (A1) has to be differ-
entiated from only a few rule-following items (B2-
B5). Such comparison based on rule dimension val-
ues (e.g., comparison between B1 and A2-A9) has
to take place in order to master the category mem-
berships and compare items within the same cate-
gories (e.g., compare B1 with B2-B5). As a result,
the exception of the smaller category (B1) will re-
sult in better recognition than the exception of the
large category (A1). This prediction conflicts with
RULEX (as well as the context model and the com-
bined model). RULEX predicts that the number
of rule-following items should not influence memory
for exceptions. Exceptions in both the small and
the large categories are equally likely to enter the
exemplar store and be remembered.

Method

Participants Eighty-two University of Texas un-
dergraduates participated for course credit.
Apparatus The experiment was run on Pentium
III computers operating in DOS. Data were collected
using an in-house real-time data collection system.
The monitors had 15 inch CRT color displays and a
refresh rate of 16.67 ms.
Stimuli The stimuli were 24 computer-generated
squares varying along five binary-valued dimen-
sions: size (large or small), border color (yel-
low or white), texture (smooth or dotted), slash
(present or absent), and main color (blue or pur-
ple). Psychologically, the five dimensions are in-
dependent and equally salient as verified by the
multi-dimensional scaling of similarity ratings. The
abstract structure of the stimuli is displayed in
Table 1. The assignment of the abstract di-
mensions to the physical dimensions, the binary
values, and category labels were randomized for
each subject. The stimuli can be downloaded at
http://love.psy.utexas.edu/stimuli/.
Design and Overview Subjects completed a
learning phase consisting of classification learning
trials of the items under the heading “Learning
Items” in Table 1. Trials were organized in blocks,
where each block is a presentation of each stimulus
in random order. Subjects completed 20 blocks of
learning trials. After the learning phase, subjects
completed a filler phase consisting of three arith-
metic problems in order to prevent rehearsal of in-
formation from the learning phase. Then, subjects
completed a recognition phase consisting of forced

1018



Table 1: The abstract structure of the categories.
There is an imperfect rule on the first dimension.
The Stimuli subsection details the physical dimen-
sions of the stimuli.

Learning Dimension Novel Dimension
Items Values Items Values

Category A
A1 21112 N1 11221
A2 12122 N2 12112
A3 11211 N3 12221
A4 12211 N4 12212
A5 11122 N5 12222
A6 12111 N6 21221
A7 11222 N7 22112
A8 11212 N8 22221
A9 12121 N9 22212

Category B N10 22222
B1 11121
B2 22122
B3 21211
B4 22211
B5 21122

choice recognition judgments involving items from
the learning phase and novel stimuli. Finally, sub-
jects completed a transfer phase in which they clas-
sified both the items from the learning phase and
the novel items presented in the recognition phase
without corrective feedback.

The variables of primary interest were the item
type (either rule-following or exception) and the cat-
egory size (either small or large) in the learning
phase. The rule-following items (A2-A9 and B2-B5)
followed an imperfect category rule (see Table 1 for
the imperfect rule on the first dimension), and two
exception items (A1 and B1), one from each cate-
gory, violated the rule. Following Medin and Smith
(1981) and Palmeri and Nosofsky’s (1995) Experi-
ment 1, subjects were provided with a hint to at-
tend to the first dimension. The hint was provided
in order to ensure that subjects engaged in the rule-
plus-exception strategy.

The recognition phase involved two-alternative
forced choice (2AFC) judgments on 50 pairs of stim-
uli presented in a random order. Each pair consisted
of a studied item from the learning phase and a novel
item they had never seen before. Ten studied items,
five items from category A (A1-A5) and the other
five from category B (B1-B5), and ten novel items
displayed under Novel Items in Table 1 were used.
Because items with value 1 on the first dimension
were more frequent than items with value 2 in the
learning phase, the false alarm rate for recognizing
the items with value 1 on the first dimension would

be higher than items with value 2. One way to over-
come this bias was to pair the items with the same
value on the first dimension. Thus, each of the five
studied items with value 1 on the first dimension
(i.e., A2-A5 and B1) was paired with each of the
five novel items with value 1 on the first dimension
(i.e., N1-N5), which resulted in 25 pairs. Another set
of 25 pairs was created in the same manner using the
items with value 2 on the first dimension.

In the transfer phase, subjects classified the same
20 stimuli used in the recognition phase without cor-
rective feedback. Subjects completed two blocks of
transfer trials.
Procedure The general introduction and instruc-
tions were presented on the monitor at the begin-
ning of the experiment. The specific instructions for
the learning, filler, recognition, and transfer phases
were displayed on the monitor immediately before
subjects started each phase. The background color
was black during the entire experiment. The stimuli
were presented in a different random order for each
subject in all of the phases.

On each trial in the learning phase, one stimulus
appeared at the center of the monitor, and the text
“Category A or B?” was displayed above the stim-
ulus. If size was the rule dimension, the hint “Look
whether the size is small or large.” appeared above
the text. Subjects indicated their category member-
ship judgment by pressing the A or the B key. After
responding, the text and the hint above the stimulus
were replaced with visual (e.g., “Right! The correct
answer is A.”, “Wrong! The correct answer is B.”)
and auditory corrective feedback (i.e., a low pitch
tone for errors and a high pitch tone for correct re-
sponses). The stimulus and the visual feedback was
displayed for 2501 ms (150 screen refreshes) after
responding. Then, a blank screen was displayed for
834 ms (50 screen refreshes) and the next trial be-
gan.

After completing the learning phase, subjects were
presented with a series of three arithmetic problems.
Each problem consisted of two integers (randomly
generated between 10 and 49) presented side by side
(e.g., 22 + 34 = ?) and the problem remained dis-
played until subjects responded. The subjects re-
ceived both auditory and visual feedback indicating
whether they added the numbers correctly.

A pair of stimuli was presented on each trial in the
recognition phase. Each pair consisted of a studied
item and a novel item as described earlier. The two
stimuli were displayed side by side at the center of
the monitor together with the text “Old: left (Q)
or right (P)?” above the stimuli. Subjects pressed
the Q key if they thought the studied item was on
the left. They pressed the P key if they thought the
studied item was on the right. For each pair, the
studied and novel items were randomly assigned to
the left or the right position. No corrective feedback
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was given to the subjects. Instead, a high pitch tone
was presented after the subjects responded together
with the text “Thank You” below the stimulus. The
pair of stimuli and the texts were displayed for 2501
ms (150 screen refreshes) after responding. Then,
a blank screen was displayed for 834 ms (50 screen
refreshes) and the next trial began.

The transfer phase followed the recognition phase.
The procedure for the transfer phase was identical
to that for the learning phase except that subjects
received no hint or feedback. After responding A
or B, a high pitch tone was presented and the text
“Thank You” appeared below the stimulus.

Results
One subject who performed at the chance level of
50% in the learning phase was excluded from fur-
ther analysis. Including this subject does not change
the pattern of the results. Table 2 displays the sub-
jects’ performance on different items in the learning,
recognition, and transfer phases.

Subjects’ overall accuracy in the learning phase
(.84) was significantly better than the chance (.50),
t(80) = 48.87, p < .001. The overall recognition ac-
curacy (.72) was significantly better than the chance
(.50), t(80) = 14.53, p < .001. Although no feed-
back was provided in the transfer phase, for the pur-
poses of analyses novel items were considered to be
in the category for which they satisfied the imper-
fect rule. The overall accuracy in the transfer phase
(.83) was significantly better than the chance (.50),
t(80) = 13.45, p < .001, which suggests a high oc-
currence of rule application in classifying stimuli.

Table 2: Mean accuracies in the learning, recogni-
tion, and transfer phases are shown. Xcept S is the
exception of the small category, Xcept L is the ex-
ception of the large category, Rules S are the rule-
following items of the small category, and Rules L
are the rule-following items of the large category.

Item Types Learning Recognition Transfer
Xcept S .44 .87 .64
Xcept L .46 .79 .56
Rules S .86 .69 .85
Rules L .91 .70 .86

Our main interest was whether the size of the cat-
egories influences the recognition memory for the
different types of items. A factorial category size
by item type analysis of variance (ANOVA) was
performed on 2AFC recognition accuracy. Subjects
were more accurate (.78 vs. .74) with items in the
small category than with items in the large category,
F (1, 80) = 5.28, MSe = .02, p < .05. As predicted,
the exceptions were better remembered (.83 vs. .70)
than the rule-following items, F (1, 80) = 39.31,

MSe = .04, p < .001. As predicted, there was a
significant category size by item type interaction,
F (1, 80) = 7.25, MSe = .02, p < .01. For the ex-
ceptions, recognition was 8% higher for the small
category than for the large category (.87 vs. .79). In
contrast, recognition for the rule-following items was
1% lower for the small category than for the large
category (.69 vs. .70).

Consistent with our main prediction, subjects re-
membered the exception from the small category
better (.87 vs. .79) than the exception from the large
category, t(80) = 2.72, p < .01. The difference be-
tween the rule-following items from the small (.69)
and large (.70) categories was not significant, t < 1.

Model Fits
The context model, RULEX, and the combined
model were tested on the recognition performance
and the transfer phase classification performance as
in palmeri and Nosofsky (1995). For all the mod-
els, the fit was measured by mean squared devia-
tions (RMSD). The best fitting parameters (i.e.,
minimizing RMSD) were found by searching the
parameter space using a genetic algorithm for 1000
generations. Each parameter evaluation for the con-
text model involved a single run because the con-
text model generates the same response probabil-
ities on each run. Because RULEX is stochastic,
each parameter evaluation was determined by aver-
aging over 5000 model runs. The combined model
was evaluated in the same manner as RULEX. The
model fits are displayed in Table 3. For the formal
descriptions of the models, see Palmeri and Nosofsky
(1995).

Table 3: The recognition and the transfer classifica-
tion performances observed in the experiment and
predicted by the models. Obs, Cont, RUL, and
Comb stand for observed, context model, RULEX,
and combined model, respectively.

Stimuli Obs Cont RUL Comb
Recognition

Xcept S .869 .754 .783 .836
Xcept L .788 .754 .794 .841
Rules S .692 .755 .619 .690
Rules L .699 .755 .619 .691

Classification
Xcept S .636 .513 .636 .586
Xcept L .562 .683 .661 .625
Rules S .853 .862 .893 .838
Rules L .863 .906 .881 .852

Context model A three-parameter version of the
context model fit poorly (RMSD = 0.08) and failed
to capture the qualitative patterns in the data. The
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context model made uniform predictions across item
types for recognition (see Table 3). The three pa-
rameters with the best fitting values were similarities
of mismatches along the first dimension, s1 = 0.055,
and along the second through the fifth dimensions,
sx = 0.291, and the decision parameter for the forced
choice tasks, D = 1.229. The lower setting of s1 indi-
cates that the context model is devoting more atten-
tion to the rule-relevant dimension than to the other
dimensions. This focus allows the context model to
correctly predict that exceptions result in more er-
rors than rule-following items during classification,
but is not sufficient to explain the recognition ad-
vantage for exceptions.

RULEX A six-parameter version of RULEX also
fit poorly (RMSD = 0.06) and did not capture
the qualitative patterns in the data. As predicted,
RULEX failed to predict the memory advantage for
the exception in the small category over the excep-
tion in the large category, although it correctly pre-
dicted that the exception items were remembered
better than the rule-following items (see Table 3).
The six parameters with the best fitting values were
the salience parameter for the rule dimension, W1 =
0.61 (with W2 = W3 = W4 = W5 = 0.0975; the
Wis are constrained to sum to 1.0), the criterion
for accepting a permanent rule, scrit = 0.65, the
exception storage probability, pstor = 0.85, the sim-
ilarity parameter for the dimensions that were not
sampled, sw = 1.0, the similarity parameter for the
mismatching dimensions ss = 0.80, and the decision
parameter for the forced choice tasks, D = 26.57.
The higher saliency of the rule-relevant dimension is
sensible and psychologically plausible given that this
was the most diagnostic dimension and was cued by
the hint provided to subjects. The saliency for di-
mensions two through five were set to a common
value because nothing in the experimental design
distinguishes one dimension from another.

Combined model An eight-parameter version of
the combined model fit poorly (RMSD = 0.04) and
failed to capture the qualitative patterns in the data.
As displayed in Table 3, the combined model failed
to predict that the exception in the small category
was remembered better than the exception in the
large category. Like RULEX, the combined model
correctly predicted that the exception items were re-
membered better than the rule-following items. The
eight parameters were the same six parameters used
in RULEX plus two additional parameters, s and ω.
The parameter, s, determined the residual exemplar-
similarity and the parameter ω weighted how much
exceptions or exemplars contributed to the famil-
iarity of a given stimulus. The best fitting param-
eters were W1 = 0.47 (with W2 = W3 = W4 =
W5 = 0.1325; the Wis sum to 1.0), scrit = 0.68,
pstor = 0.86, sw = 0.65, ss = 0.56, D = 14.83,
s = 0.83, and ω = 0.67.

General Discussion
As predicted, the memory trace for the exception
from the small category was stronger than the mem-
ory trace for the exception from the large category.
Recognition memory for violating item is better
when the violated knowledge structure is stronger.
Our results are consistent with basic work in mem-
ory (Koffka, 1935) and schema research (Rojahn &
Pettigrew, 1992; Stangor & McMillan, 1992). The
parallels suggest that exploring further connections
between these literatures and the categorization lit-
erature could be fruitful.

Existing models that utilize strict rules cannot ac-
count for the frequency manipulation in our exper-
iment. Likewise, exemplar models cannot account
for our results because they do not posit organizing
knowledge structures that can be violated. Previous
experiments and simulations by Palmeri and Nosof-
sky (1995) in support of the rule-based account did
not manipulate the strength of rules and thus did
not disconfirm the rule account of mental represen-
tation.

Interestingly, analysis of RULEX’s performance
suggests an alternative explanation of the results
closely related to the frequency explanation. In-
creasing the number of items following a rule typ-
ically leads to increase in the diversity of rule-
following items. One possibility is that the strength
of the large category’s imperfect rule was partially
attributable to diversity rather than to frequency
alone. On this view, the exception from the small
category is better remembered because it must be
differentiated by a number of different, but re-
lated, items. Although exception storage processes
in RULEX are sensitive to diversity (see Palmeri
& Nosofsky, 1995), RULEX was unable to fit the
observed pattern in the data. If this proves to
be a critical theoretical issue, future experiments
should tease apart these two closely related expla-
nations. The answer partially lies in understanding
how human learners draw type/token distinctions
(cf., Barsalou, Huttenlocher, & Lamberts, 1998).

Given the disconfirmation of existing models, one
key question is what mechanism would give rise
to our results. Love (2002) presented a cluster-
ing model related to the SUSTAIN model (Love &
Medin, 1998; Love, Medin, & Gureckis, in press)
that accounted for Palmeri and Nosofsky’s (1995)
results. The model stored rule-violating items in
their own cluster. Importantly, the model developed
sharper tunings (related to memory distinctiveness)
for exception clusters, which, in part, allowed the
model to predict improved recognition memory for
exceptions. The model should be able to account for
our results because it predicts that the tuning of the
cluster encoding the exception from the small cate-
gory should be sharper than the tuning of the cluster
encoding the exception from the large category.

The dynamics that drive this outcome are con-
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sistent with our explanation of the results. Each
cluster’s tuning is adjusted on each learning trial in
order to minimize prediction errors. The cluster en-
coding the exception from the small category tends
to be activated by the presentation of rule-following
items from the large category because this cluster
matches these items on the rule-relevant dimension.
In order to avoid these unwanted intrusions, the clus-
ter becomes highly tuned and specific, which mini-
mizes activation by items other than the exception
from the small category. The increased distinctive-
ness of the cluster enhances its recognition. The
same dynamics govern the cluster encoding the ex-
ception of the large category, but this cluster does
not become as distinct as the cluster encoding the
exception from the small category because of the fre-
quency manipulation (i.e., fewer trials in which its
tuning is sharpened).

Modeling work along these lines is currently being
carried out. Importantly, this modeling endeavor
seeks to unite previous work in the memory lit-
erature with work in categorization. In addition
to accounting for findings in category learning and
schema research, the same mechanisms should al-
low this clustering model to account for basic mem-
ory phenomena like the list strength effect (Ratcliff,
Clark, & Shiffrin, 1990; Tulving & Hastie, 1972) in
which increasing the study of certain items can ac-
tually increase the recognition of other items as well.
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