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Abstract

Latent Problem Solving Analysis (LPSA) is a theory of
knowledge representation in complex problem solving that
argues that problem spaces can be represented as
multidimensional spaces and expertise is the construction of
those spaces from immense amounts of experience. The
model was applied using a dataset from a longitudinal
experiment on control of thermodynamic systems. When the
system is trained with expert-level amounts of experience (3
years), it can predict the end of a trial using the first three
quarters with an accuracy of .9. If the system is prepared to
mimic a novice (6 months) the prediction accuracy falls to .2.
If the system is trained with 3 years of practice in an
environment with no constraints, performance is similar to the
novice baseline.

Introduction

In this paper, we introduce a computational theory of
representation in experienced problem solving that we call
Latent Problem Solving Analysis (LPSA). It is specially
suited to model performance in complex, dynamic tasks
such as control of dynamic systems. Complex tasks have
always been thought to involve high level processes, such as
mental models and reasoning. We would like to show in the
next sections that, although the conscious, effortful
reasoning path is certainly available, people can also use a
similarity-based way of action that can give good results in
certain situations. LPSA proposes that what people do in
some situations that have previously been considered
problem solving can be considered memory retrieval and
pattern matching.

LPSA is a spatial theory of representation, inheriting the
assumptions and concepts of Shepard (1987). That is, the
proximal stimulus is supposed to be represented as a point
in a multidimensional space, where all other past
experiences can be represented as well. The space is created
to capture the similarities between objects. Thus, two
objects that are similar tend to occupy close areas in the
mental space.

LPSA is inspired by Latent Semantic Analysis (LSA), a
theory of representation that explains how semantics can be
learned from large amounts of experience. LSA has been
applied to understand language comprehension phenomena,

and has been used extensively in contemporary cognitive
science. LPSA needs a corpus of experience, and does not
propose mechanisms to act when there is no experience. We
need to assume that there are two modes of reasoning, one
for situations in which we know very little and another for
those situations where we already have a knowledge base.
We will review current approaches to expertise and how
LPSA relates to them, and present data on how LPSA
models prediction in the complex thermodynamic task
DURESS (Vicente, 1991).

Expertise Theories

The most popular expertise theories are Long Term
Working Memory (LTWM), Elementary Perceiver and
Memorizer (EPAM), and Constraint Attunement Hypothesis
(CAH). We will briefly describe them in the next sections.

Long Term Working Memory (LTWM). The LTWM
theory claims that working memory has two different
components: a short-term working memory (STWM), which
is available under any condition, but of very limited
capacity, and a long-term memory (LTWM), that is
available only on the domain where one is an expert, but
provides unlimited capacity. STWM accounts for working
memory in unfamiliar activities but does not appear to
provide sufficient storage capacity for working memory in
skilled complex activities. LTWM is acquired in particular
domains to meet specific demands imposed by a given
activity on storage and retrieval. LTWM is task specific.
Intense practice in a domain creates retrieval structures:
associations between the current context and some parts of
LTM that can be retrieved almost immediately without
effort. That is, the retrieval is fast and automatic without
requiring voluntary resources as in intentional memory
search: the results ‘pop out’ in memory. The contents of
working memory act as the center of a focus that activates
other contexts from LTM that are related to them thanks to
the retrieval structures.

The concept of retrieval structures is inherited from the
Skilled Memory Theory (Chase & Ericsson, 1981). A
retrieval structure is defined as an abstract, hierarchical
knowledge structure used to organize cues used in the
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encoding and retrieval of information. LTWM theory
proposes that LTWM is generated dynamically by the cues
that are present in short term memory. During text
comprehension, for example, where the average human
adult is an expert, retrieval structures retrieve propositions
from LTM and merge them with the ones derived from text.

The evidence for the existence of LTWM comes from two
fronts (1) proactive and retroactive interference, and (2)
interruption and resumption of performance. If the
representations formed during text comprehension are
stored in short-term memory, interruption should hinder
performance, measured as memory for the text (free and
cued recall) and comprehension measures. However,
classical experiments (e.g., Glanzer, Dorfman, & Kaplan,
1981) find no detriment in performance at all. The only
difference between interrupted and non-interrupted
conditions was longer reading times. LTWM permits rapid
and reliable reinstantiation of a context after interruption
without a decrease in performance.

LTWM has been applied to several domains such as
memory for dinner orders, digit recall, chess, and text
comprehension, but to date there is no explicit explanations
of complex, dynamic tasks. The most promising
computational implementations of LTWM retrieval
structures have used LSA (see Kintsch, 1998; Kintsch,
Patel, & Ericsson, 1999).

EPAM and the chunking theories. EPAM (e.g., Richman,
Staszewski, & Simon, 1995) has three main components: an
STM, a LTM, and a discrimination net, which allows nodes
in LTM to be accessed. Short term memory includes
specialized auditory and visual subcomponents, whereas
long term memory is divided into declarative and procedural
systems. EPAM is the natural evolution of the chunking
theory (Chase & Simon, 1973). In EPAM, chunks are
extended into templates. Templates are a large chunk, which
contains slots (which are variables) that can be filled with
concrete values for the current situation that the expert
experiences or recreates. The slots might have default values
that can reflect the statistically most frequent item that
appear in the situation described by the template. Slots are
fundamental concepts in EPAM. Within EPAM there are
two types of slotted structures: schemas with all slots
(generic retrieval structures) and schemas with only a few
slots and mostly fixed values, called templates.

The concept of template is intimately bound to the nature of
the discrimination net that is assumed as the representational
format in EPAM. Slots are created as a function of the
number of tests below a node in the discrimination net (e.g.,
Gobet, 1998). Like the chunking theory, the template theory
proposes that expertise is due to ‘(a) a lager database of
chunks indexed by a discrimination net. (b) a large
knowledge base, encoded as production and schemas; and
(c) a coupling of the (perceptual) chunks in the index to the
knowledge base’ (Gobet, 1998, p. 127). Like LPSA, EPAM

creates the representations (classification networks) starting
from empirical information of similar proportions to what
humans accumulate in their experience with the tasks. For
example, to mimic DD’s (a digit memory expert) behavior,
Richman et al. trained the system with exactly the same
information the expert had used to reach his expertise level.
However, there are no models of continuous, dynamic
processes like the one we present in this paper. The main
difference is in the representations proposed. LPSA uses a
comparatively simple spatial model, whereas EPAM uses
discrimination nets, which are eclaborated structured
representations. The symbolic approach of the
discrimination net makes it difficult to apply it to represent
domains where variables change continuously, whereas
LPSA does not show this problem.

Constraint Attunement Hypothesis (CAH). The LTWM
and EPAM theories of expertise are process theories, that is,
they try to specify the psychological mechanisms that
explain the observable effects. That is, they are theories of
‘how’. An alternative view would be to create a product
(i.e., input-output) theory of expertise, where the question to
answer is ‘what’ conditions are needed to observe expertise
effects. This is the role of the Constrain Attunement
Hypothesis (CAH) theory by Vicente and Wang (1998).
Contrary to what process theories maintain, CAH does not
commit to a particular psychological mechanism to explain
the phenomenon of expertise. As a product theory, it aims to
address three related issues: ‘(1) How should one represent
the constrains that the environment (i.e., the problem
domain) places on expertise? (2) Under what conditions will
there be an expertise advantage? (3) What factors determine
how large the advantage can be?’ (Vicente & Wang, 1998,
p- 39).

The CAH theory proposes an important distinction between
intrinsic and contrived tasks. Intrinsic tasks are those that
are definitive features of the domain of expertise, for
example, blindfolded chess, memorizing dinner orders, and
memorizing digits. A contrived task is one that is not part of
the domain of expertise, but designed to fulfill some
experimental purposes. For example, chess players just play
chess, and remembering chess configurations is not part of
the task. This distinction is important because (1) in the
expertise literature, contrived tasks abound and (2) for some
theories such as LTWM the proposed retrieval structures are
obtained through a deliberate effort and then will be only
relevant on the explanation of intrinsic tasks, that is, tasks
that are needed to be an expert in the domain, such as
memory enhancement in the waiter case. Vicente and Wang
consider that most of the tasks used in the literature that
studies memory expertise are contrived, not intrinsic, and in
this sense LTWM and other process theories cannot explain
them.

CAH is an ecological theory of expertise in memory recall,
inheriting some of the basic ideas from Gibson’s (1979)
ecological theories of perception. In CAH, the experimenter
is after a definition of the goal-relevant constraints in a
domain. For example, the concept of affordance (what can
be done in a particular environment) is reused indirectly and
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extrapolated to the domain of memory recall and expertise.
However, affordances are defined to describe properties of
objects, events, and places, and what Vicente and Wang
(1998) propose is a description of the whole domain of
expertise, so they fall short. Vicente and Wang (1998)
proposal needs a mechanism to identify and describe
relations between the high numbers of components that
make up a domain of expertise instead of the components
themselves. The solution proposed to study goal-oriented
constrains in the environment is the Abstraction Hierarchy
(AH). The AH is a hierarchical description of the constrains
of the problem domain, but a particular kind of hierarchy.
Possible hierarchical descriptions to describe environments
are part-whole relations, is-a relations, ‘obeys’ relations, and
mean-ends relations. The definitive characteristic of the AH
is that it describes the environment as mean-ends relations,
connecting objects within and between levels. Thus, the AH
is explicitly goal oriented.

The AH provides a different language for each level of
analysis, providing the faculty of abstracting in an out (as in
zooming) from the deeper significance of the system goals
to the lowest physical levels of description (what physical
changes need to be made in order to implement those goals).

The descriptions produced by experimenters using the AH
approach are a-posteriori, and there is no guarantee that two
experimenters would come up with the same AH when
trying to describe the exact same task. AHs have been
proposed for complex, dynamic tasks such as DURESS by
Vicente. However, our proposal with LPSA is to create a
similarity-based set of operations that define the
representation of the environment in such a way that the
similarity measures can be derived automatically for any
task. That is, the definition of similarity is bound to
experience in the particular environment, so the input for the
theory will be the exact same information that humans use
when they solve the tasks for the same period of time in
which the human was exposed to the environment.

Comparing the theories

Comparing these theories has proven to be a difficult task.
Even though some part from the same concepts (for
example, EPAM and LTWM share the concept of retrieval
structures), and in some cases the same phenomena have
been targeted (for example, chess memory), the theories are
not well compared in the literature. The reviews that do
compare them normally attribute the advantage to the theory
that the author of the review proposed (e.g., Gobet, 1998)
and that normally originated a retaliation in related articles
where the authors of the alternative theories try to amend
the criticisms.

In the case of CAH vs. the process theories (LTWM and
EPAM) the comparisons are even more difficult because the
phenomena of interest are different for the different theories.

The ongoing discussion maintained by Gobet (2000) and
Ericsson and Kintsch (2000) seems to be concentrated in
two main points: (1) the necessity for slotted schemas.

Eriksson and Kintsch (1995; 2000) predicate that they are
not needed, whereas Gobet (1998; 2000) cannot conceive
EPAM without them. (2) LTWM proposes a gradual speed-
up of encoding in LTWM, but EPAM proposes that there
are fixed times for storage, and they are estimated. These
two points are not addressed directly in LPSA and will not
be commented further. Where LPSA does have a
contribution to make is on the definition of retrieval
structures, which has been criticized as vague in LTWM,
and on the effects of amount of practice on expertise. The
CAH assertions about the amount of structure of the
environment are explained as well under a computational
framework in LPSA.

LTWM claims that the magnitude of expertise effects is
related to the level of attained skill and to the amount of
relevant prior experience. CAH argues that this claim is
incomplete. Expertise effects in memory recall are also
determined by the amount of structure in the domain (and
by active attunement to that structure).: CAH ‘predict[s] ...
a memory expertise advantage in cases in which experts are
attuned to the goal-relevant constraints in the material to be
recalled and that the more constraints available, the greater
the expertise advantage can be’ (Vicente & Wang, 1998, p.
33). A theory that could explain both these assertions
(amount of experience and structure of the environment)
would be welcomed. LPSA is sensitive both to ‘relevant
previous practice’ and to ‘amount of structure in the
domain’, as we will show in the next sections.

The LPSA proposal for an expertise theory

One of our interests is to show that the abstraction
hierarchy, the main innovation and contribution in Vicente
and Wang theory (Vicente, 2000 ; Vicente & Wang, 1998)
falls short in meeting the requirements for a theory of the
environment in its actual form. A good theory that attempts
to model the environment should be consistent and effective
in different domains. The units and operators proposed
should be the same for different environments, even though
the basic structures can be very different. We agree with
Vicente that it is important that a single theory can model
different environments without changes in its basic
assumptions. However, when CAH is used for modeling
different environments “the details of such models usually
differ tremendously from one domain to the next because
the relevant cues and their ecological validities can change
dramatically (...)” (Vicente & Wang, 1998, p. 603)

LSA is based on the idea of portraying environments as
complex networks of coocurrences, that, given a big enough
scale, can be mapped onto a multidimensional space of
much lower dimensionality. Thus, it provides the means for
modeling different domains in a comparable manner. At the
moment of this writing, LSA has been applied to a variety
of domains including the followings: understanding of
source code (Maletic & Marcus, 2000a), text comprehension
(e.g., Kintsch, 1998; Kintsch, 2001), categorization (Laham,
1997), metaphor understanding (Kintsch, 2000) and
vocabulary acquisition and semantic priming (Landauer &
Dumais, 1997). LPSA has been applied to model human
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similarity judgments in problem solving tasks (Quesada,
Kintsch, & Gomez, 2002), practice effects (Gonzalez &
Quesada, submitted), and expert evaluations of landing
technique (Quesada, Kintsch, & Gomez, submitted).

A complex, dynamic task: DURESS II. Manipulating
previous knowledge by eliminating it has been a dominant
in cognitive science, due in part to the need for random
assignment of participants to groups that is an exigency of
the experimental method. An alternative and very popular
take is the expert-novice approach (e.g., Chase & Simon,
1973), that is, to manipulate previous knowledge by pre -
selecting participants, forgetting about random assignment
of participants to groups. In a wide and diverse range of
contexts, from academic disciplines through to games and
sports, comparisons of the performance of novices and
experts have established consistent relations between
knowledge, task performance and level of expertise.

However, not many researchers have the possibility of
manipulating the environment for the time necessary to
make a person an expert in a domain. Most of the studies in
expertise and skill acquisition have to content themselves
with analyzing diaries and interviews (i.e., Ericsson,
Krampe, & Tesch-Romer, 1993) to estimate a posteriori the
amount of deliberate practice that their participants invested.

Important exceptions to the problem posited above are
single-subject designs such as Richman, Staszewski and
Simon (1995), but it is only possible in very simple
environments like digit recall tasks. In that case, the
experimenter controls the environment (i.e. the sequence of
digits that the memonist is to learn) completely and can
manipulate it. The basic idea in this research paradigm is to
move complexity to the lab, and manipulate previous
knowledge by giving exactly the same amount of practice,
enough to show expertise levels of skill, to all participants.
To simulate expertise environments in labs, we need tasks
more complex than the standard ones: more representative,
with a long learning curve, and interesting enough to keep
the motivation for a long period of time. An example of this
kind of tasks is DURESS (DUal REServoir System).
DURESS is a thermal-hydraulic process control simulation
that was designed to be representative of Industrial process
control systems. It consists of two redundant feedwater
streams that can be configured to supply either, both or
neither of the two reservoirs. The goals of the game is to
keep each of the reservoir temperatures (T1 and T2) at a
prescribed level (e.g., 40 C and 20 C, respectively), and to
satisfy the current mass (water) output demand (5 liters per
second and 7 liters per second, respectively). Thanks to the
seminar work of Vicente and collaborators (Christoffersen,
Hunter, & Vicente, 1996, 1997, 1998), the equivalent of
three years of experience with the system DURESS 1I is
available and we used it in our LPSA simulations.

Method. Complex experimental tasks normally keep a log
file containing all the actions and states that every
participant has experienced. Since the number of variables is

very high and their relations can be intricate, the analysis are
usually beyond the scope of most statistical methods
normally employed in experimental psychology, particularly
when system states are not in interval scale. As a result, the
richness of these log files is underused. However, a clear
analogy can be drawn between this particular problem and
representational theories of semantics such as LSA: like
words, states and actions appear in particular contexts but
not in others. Some states and actions are interchangeable,
being ‘functional synonyms’. Given the right algorithms and
sufficient amounts of logged trials, a problem space can be
derived in a similar way as semantic spaces are. The
underlying idea is that the aggregate of all the action
contexts in which a given state does and does not appear
provides a set of mutual constraints that largely determines
the similarity of meaning of states and sets of states to each
other.

(b)

7N
[ [

Figure 1: Prediction method employed to estimate the next
states in the task in LPSA. Each rectangle represents a trial
in DURESS 1II. (a) The nearest neighbors of the predicting
part are retrieved; (b) a composite using the ends of these
neighbors serves to predict the target trial’s final states.

The AH proposed for DURESS (e.g., Vicente & Wang,
1998) contains four levels: (1) Functional, that describes the
purposes: keep the temperature and demand flow rate for
each reservoir, (2) Abstract, that describes the system as a
function of the laws of conservation of mass and energy, (3)
generalized, that uses rates of heat and flow transfer, and (4)
physical, that describes the physical position and settings of
the components (valves, pumps, and heaters).

A different LPSA corpus was created for each level of the
Abstraction Hierarchy. After performing the SVD, the first
100 dimensions were used. Since the goal values are
different at each level, the pertinent variables were
normalized to goal values in order to make trials more
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comparable for Functional purpose and Abstract function
levels. All levels were normalized with respect to scale.

To test the ‘amount of experience hypothesis’, two different
corpora, one with 3 years of practice (expert), and another
with only 6 months (novice), were created, and the quality
of their prediction of future states compared. To test the
‘amount of domain structure hypothesis’, an additional
corpus of 3 years of practice was created, but this time in an
environment where the laws of conservation of mass and
energy do not exist: the states where randomly assigned to
the trials, resulting in a corpus with practically no
constraints. This corpus was compared to the 3-years-expert
with a constrained environment.

Prediction. Prediction plays a very important role in
humans’ interaction with the environment. Some scientists
argue that many features of cognitive the cognitive system
(such as representation, memory, and categorization) can be
conceptualized as tools that help to predict the next states of
an organism’s environment (e.g., Anderson, 1990). The
methodology that we used was to test how good of a
prediction can be generated using the nearest neighbors of a
target slice of performance. For example, in a trial of
DURESS, how much of the end can be predicted using the
information from the beginning? To do this, we needed to
define a cutting point that divided the predicting and
predicted parts. The cutting point we defined is the point
that leaves % of the trial behind. Such a case is depicted in
Figure la. Trials in DURESS are represented as rectangles.
The shaded area is the part of the trial that is used to predict
the remaining part (signaled with a question mark). In
LPSA, any passage is a vector, as well as any sub-passage;
that is, the shaded (predicting) part and the question mark
(predicted) part are both a vector in LSA. Using the
predicting vector, we retrieve the nearest N neighbors,
depicted as rectangles as well in Figure la. In this figure,
N=6, that is 6 nearest neighbors are evoked by the first 3% of
the trial. Then, the last quarter of each retrieved neighbor is
used to create a composite that predicts the end of the target
trial (Figure 1b). The contribution to the composite is
weighted by the cosine between the neighbor and the
predicting part of the target.

Results

The results presented here were calculated using 10
neighbors (striped bars), and the same calculations
performed with 10 random neighbors are used as a control
group (solid bars). A sample of 100 random trials was
selected as target trials, and the results averaged. The
predicting accuracy of this method in the 3-years of
practice, structured environment’ can be observed in Figure
2: the average prediction is .87, which means that our
simulated expert can predict the next states of its
environment very well indeed. Figure 3 shows that, for the
novice simulation, the average prediction is much worse,
which is in line with the ‘amount of experience’ hypothesis.
Figure 4 describes the prediction rate (that does not
outperform the random control) for the ‘3 years expert in the
unconstrained domain’.

Expert (3 years)
0O 10 nearest neighbors
@ 10 random trials

0.9
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0.5
0.4
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Average cosine
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Figure 2: Average cosine between the fourth quarter of a
target trial and the fourth quarter of the 10 nearest
Neighbors when the three first quarters are used to retrieve
the neighbors. The model has been trained with three years
of experience.
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Figure 3: Average cosine between the fourth quarter of a
target trial and the fourth quarter of the 10 nearest
Neighbors when the three first quarters are used to retrieve
the neighbors. The model has been trained with six months
of experience.

3 years in environment with no constraints
0 10 nearest neighbors

@ 10 random trials
0.9
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0.7
0.6
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e

Abstract
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Functional generalized physical

Figure 4: Average cosine between the fourth quarter of a
target trial and the fourth quarter of the 10 nearest
Neighbors when the three first quarters are used to retrieve
the neighbors. Three year of experience in a DURESS
simulation with no constraints (random states).

Conclusions

LTWM argues that the magnitude of expertise effects is
related to the level of attained skill and to the amount of
relevant prior experience. CAH claims that expertise effects
in memory recall are also determined by the amount of
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structure in the domain (and by active attunement to that
structure). LPSA can explain both arguments under the
same framework, and proposes a computational model on
how the constrains of the environment are internalized and
represented. LPSA also extends the area of application of
computational expertise theories to complex, dynamic tasks
such as DURESS. In doing so, LPSA is a new approach to
the expertise and knowledge representation discussions.
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