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Abstract 

Latent Problem Solving Analysis (LPSA) is a theory of 
knowledge representation in complex problem solving that 
argues that problem spaces can be represented as 
multidimensional spaces and expertise is the construction of 
those spaces from immense amounts of experience. The 
model was applied using a dataset from a longitudinal 
experiment on control of thermodynamic systems. When the 
system is trained with expert-level amounts of experience (3 
years), it can predict the end of a trial using the first three 
quarters with an accuracy of .9. If the system is prepared to 
mimic a novice (6 months) the prediction accuracy falls to .2. 
If the system is trained with 3 years of practice in an 
environment with no constraints, performance is similar to the 
novice baseline. 

Introduction 
In this paper, we introduce a computational theory of 
representation in experienced problem solving that we call 
Latent Problem Solving Analysis (LPSA). It is specially 
suited to model performance in complex, dynamic tasks 
such as control of dynamic systems. Complex tasks have 
always been thought to involve high level processes, such as 
mental models and reasoning. We would like to show in the 
next sections that, although the conscious, effortful 
reasoning path is certainly available, people can also use a 
similarity-based way of action that can give good results in 
certain situations. LPSA proposes that what people do in 
some situations that have previously been considered 
problem solving can be considered memory retrieval and 
pattern matching. 
 
LPSA is a spatial theory of representation, inheriting the 
assumptions and concepts of Shepard (1987). That is, the 
proximal stimulus is supposed to be represented as a point 
in a multidimensional space, where all other past 
experiences can be represented as well. The space is created 
to capture the similarities between objects. Thus, two 
objects that are similar tend to occupy close areas in the 
mental space.  
 
LPSA is inspired by Latent Semantic Analysis (LSA), a 
theory of representation that explains how semantics can be 
learned from large amounts of experience. LSA has been 
applied to understand language comprehension phenomena, 

and has been used extensively in contemporary cognitive 
science. LPSA needs a corpus of experience, and does not 
propose mechanisms to act when there is no experience. We 
need to assume that there are two modes of reasoning, one 
for situations in which we know very little and another for 
those situations where we already have a knowledge base. 
We will review current approaches to expertise and how 
LPSA relates to them, and present data on how LPSA 
models prediction in the complex thermodynamic task 
DURESS (Vicente, 1991).  

Expertise Theories 

The most popular expertise theories are Long Term 
Working Memory (LTWM), Elementary Perceiver and 
Memorizer (EPAM), and Constraint Attunement Hypothesis 
(CAH). We will briefly describe them in the next sections.  
 
Long Term Working Memory (LTWM). The LTWM 
theory claims that working memory has two different 
components: a short-term working memory (STWM), which 
is available under any condition, but of very limited 
capacity, and a long-term memory (LTWM), that is 
available only on the domain where one is an expert, but 
provides unlimited capacity. STWM accounts for working 
memory in unfamiliar activities but does not appear to 
provide sufficient storage capacity for working memory in 
skilled complex activities. LTWM is acquired in particular 
domains to meet specific demands imposed by a given 
activity on storage and retrieval. LTWM is task specific. 
Intense practice in a domain creates retrieval structures: 
associations between the current context and some parts of 
LTM that can be retrieved almost immediately without 
effort. That is, the retrieval is fast and automatic without 
requiring voluntary resources as in intentional memory 
search: the results ‘pop out’ in memory. The contents of 
working memory act as the center of a focus that activates 
other contexts from LTM that are related to them thanks to 
the retrieval structures.  
 
The concept of retrieval structures is inherited from the 
Skilled Memory Theory (Chase & Ericsson, 1981). A 
retrieval structure is defined as an abstract, hierarchical 
knowledge structure used to organize cues used in the 
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encoding and retrieval of information. LTWM theory 
proposes that LTWM is generated dynamically by the cues 
that are present in short term memory. During text 
comprehension, for example, where the average human 
adult is an expert, retrieval structures retrieve propositions 
from LTM and merge them with the ones derived from text. 
 
The evidence for the existence of LTWM comes from two 
fronts (1) proactive and retroactive interference, and (2) 
interruption and resumption of performance. If the 
representations formed during text comprehension are 
stored in short-term memory, interruption should hinder 
performance, measured as memory for the text (free and 
cued recall) and comprehension measures. However, 
classical experiments (e.g., Glanzer, Dorfman, & Kaplan, 
1981) find no detriment in performance at all. The only 
difference between interrupted and non-interrupted 
conditions was longer reading times. LTWM permits rapid 
and reliable reinstantiation of a context after interruption 
without a decrease in performance. 
 
LTWM has been applied to several domains such as 
memory for dinner orders, digit recall, chess, and text 
comprehension, but to date there is no explicit explanations 
of complex, dynamic tasks. The most promising 
computational implementations of LTWM retrieval 
structures have used LSA (see Kintsch, 1998; Kintsch, 
Patel, & Ericsson, 1999).  
 
EPAM and the chunking theories. EPAM (e.g., Richman, 
Staszewski, & Simon, 1995) has three main components: an 
STM, a LTM, and a discrimination net, which allows nodes 
in LTM to be accessed. Short term memory includes 
specialized auditory and visual subcomponents, whereas 
long term memory is divided into declarative and procedural 
systems. EPAM is the natural evolution of the chunking 
theory (Chase & Simon, 1973). In EPAM, chunks are 
extended into templates. Templates are a large chunk, which 
contains slots (which are variables) that can be filled with 
concrete values for the current situation that the expert 
experiences or recreates. The slots might have default values 
that can reflect the statistically most frequent item that 
appear in the situation described by the template. Slots are 
fundamental concepts in EPAM. Within EPAM there are 
two types of slotted structures: schemas with all slots 
(generic retrieval structures) and schemas with only a few 
slots and mostly fixed values, called templates. 
 
The concept of template is intimately bound to the nature of 
the discrimination net that is assumed as the representational 
format in EPAM. Slots are created as a function of the 
number of tests below a node in the discrimination net (e.g., 
Gobet, 1998). Like the chunking theory, the template theory 
proposes that expertise is due to ‘(a) a lager database of 
chunks indexed by a discrimination net. (b) a large 
knowledge base, encoded as production and schemas; and 
(c) a coupling of the (perceptual) chunks in the index to the 
knowledge base’ (Gobet, 1998, p. 127). Like LPSA, EPAM 

creates the representations (classification networks) starting 
from empirical information of similar proportions to what 
humans accumulate in their experience with the tasks. For 
example, to mimic DD’s (a digit memory expert) behavior, 
Richman et al. trained the system with exactly the same 
information the expert had used to reach his expertise level. 
However, there are no models of continuous, dynamic 
processes like the one we present in this paper. The main 
difference is in the representations proposed. LPSA uses a 
comparatively simple spatial model, whereas EPAM uses 
discrimination nets, which are elaborated structured 
representations. The symbolic approach of the 
discrimination net makes it difficult to apply it to represent 
domains where variables change continuously, whereas 
LPSA does not show this problem. 

Constraint Attunement Hypothesis (CAH). The LTWM 
and EPAM theories of expertise are process theories, that is, 
they try to specify the psychological mechanisms that 
explain the observable effects. That is, they are theories of 
‘how’. An alternative view would be to create a product 
(i.e., input-output) theory of expertise, where the question to 
answer is ‘what’ conditions are needed to observe expertise 
effects. This is the role of the Constrain Attunement 
Hypothesis (CAH) theory by Vicente and Wang (1998). 
Contrary to what process theories maintain, CAH does not 
commit to a particular psychological mechanism to explain 
the phenomenon of expertise. As a product theory, it aims to 
address three related issues: ‘(1) How should one represent 
the constrains that the environment (i.e., the problem 
domain) places on expertise? (2) Under what conditions will 
there be an expertise advantage? (3) What factors determine 
how large the advantage can be?’ (Vicente & Wang, 1998, 
p. 35). 
 
The CAH theory proposes an important distinction between 
intrinsic and contrived tasks. Intrinsic tasks are those that 
are definitive features of the domain of expertise, for 
example, blindfolded chess, memorizing dinner orders, and 
memorizing digits. A contrived task is one that is not part of 
the domain of expertise, but designed to fulfill some 
experimental purposes. For example, chess players just play 
chess, and remembering chess configurations is not part of 
the task. This distinction is important because (1) in the 
expertise literature, contrived tasks abound and (2) for some 
theories such as LTWM the proposed retrieval structures are 
obtained through a deliberate effort and then will be only 
relevant on the explanation of intrinsic tasks, that is, tasks 
that are needed to be an expert in the domain, such as 
memory enhancement in the waiter case. Vicente and Wang 
consider that most of the tasks used in the literature that 
studies memory expertise are contrived, not intrinsic, and in 
this sense LTWM and other process theories cannot explain 
them. 
CAH is an ecological theory of expertise in memory recall, 
inheriting some of the basic ideas from Gibson’s (1979) 
ecological theories of perception. In CAH, the experimenter 
is after a definition of the goal-relevant constraints in a 
domain. For example, the concept of affordance (what can 
be done in a particular environment) is reused indirectly and 
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extrapolated to the domain of memory recall and expertise. 
However, affordances are defined to describe properties of 
objects, events, and places, and what Vicente and Wang 
(1998) propose is a description of the whole domain of 
expertise, so they fall short. Vicente and Wang (1998) 
proposal needs a mechanism to identify and describe 
relations between the high numbers of components that 
make up a domain of expertise instead of the components 
themselves. The solution proposed to study goal-oriented 
constrains in the environment is the Abstraction Hierarchy 
(AH). The AH is a hierarchical description of the constrains 
of the problem domain, but a particular kind of hierarchy. 
Possible hierarchical descriptions to describe environments 
are part-whole relations, is-a relations, ‘obeys’ relations, and 
mean-ends relations. The definitive characteristic of the AH 
is that it describes the environment as mean-ends relations, 
connecting objects within and between levels. Thus, the AH 
is explicitly goal oriented.   
 
The AH provides a different language for each level of 
analysis, providing the faculty of abstracting in an out (as in 
zooming) from the deeper significance of the system goals 
to the lowest physical levels of description (what physical 
changes need to be made in order to implement those goals). 
 
The descriptions produced by experimenters using the AH 
approach are a-posteriori, and there is no guarantee that two 
experimenters would come up with the same AH when 
trying to describe the exact same task. AHs have been 
proposed for complex, dynamic tasks such as DURESS by 
Vicente. However, our proposal with LPSA is to create a 
similarity-based set of operations that define the 
representation of the environment in such a way that the 
similarity measures can be derived automatically for any 
task. That is, the definition of similarity is bound to 
experience in the particular environment, so the input for the 
theory will be the exact same information that humans use 
when they solve the tasks for the same period of time in 
which the human was exposed to the environment. 
 
Comparing the theories 
Comparing these theories has proven to be a difficult task. 
Even though some part from the same concepts (for 
example, EPAM and LTWM share the concept of retrieval 
structures), and in some cases the same phenomena have 
been targeted (for example, chess memory), the theories are 
not well compared in the literature. The reviews that do 
compare them normally attribute the advantage to the theory 
that the author of the review proposed (e.g., Gobet, 1998) 
and that normally originated a retaliation in related articles 
where the authors of the alternative theories try to amend 
the criticisms. 
 
In the case of CAH vs. the process theories (LTWM and 
EPAM) the comparisons are even more difficult because the 
phenomena of interest are different for the different theories.  
 
The ongoing discussion maintained by Gobet (2000) and 
Ericsson and Kintsch (2000) seems to be concentrated in 
two main points: (1) the necessity for slotted schemas. 

Eriksson and Kintsch (1995; 2000) predicate that they are 
not needed, whereas Gobet (1998; 2000) cannot conceive 
EPAM without them. (2) LTWM proposes a gradual speed-
up of encoding in LTWM, but EPAM proposes that there 
are fixed times for storage, and they are estimated. These 
two points are not addressed directly in LPSA and will not 
be commented further. Where LPSA does have a 
contribution to make is on the definition of retrieval 
structures, which has been criticized as vague in LTWM, 
and on the effects of amount of practice on expertise. The 
CAH assertions about the amount of structure of the 
environment are explained as well under a computational 
framework in LPSA. 
 
LTWM claims that the magnitude of expertise effects is 
related to the level of attained skill and to the amount of 
relevant prior experience. CAH argues that this claim is 
incomplete. Expertise effects in memory recall are also 
determined by the amount of structure in the domain (and 
by active attunement to that structure).: CAH ‘predict[s] … 
a memory expertise advantage in cases in which experts are 
attuned to the goal-relevant constraints in the material to be 
recalled and that the more constraints available, the greater 
the expertise advantage can be’ (Vicente & Wang, 1998, p. 
33). A theory that could explain both these assertions 
(amount of experience and structure of the environment) 
would be welcomed. LPSA is sensitive both to ‘relevant 
previous practice’ and to ‘amount of structure in the 
domain’, as we will show in the next sections. 

The LPSA proposal for an expertise theory 
One of our interests is to show that the abstraction 
hierarchy, the main innovation and contribution in Vicente 
and Wang theory (Vicente, 2000 ; Vicente & Wang, 1998) 
falls short in meeting the requirements for a theory of the 
environment in its actual form. A good theory that attempts 
to model the environment should be consistent and effective 
in different domains. The units and operators proposed 
should be the same for different environments, even though 
the basic structures can be very different.  We agree with 
Vicente that it is important that a single theory can model 
different environments without changes in its basic 
assumptions. However, when CAH is used for modeling 
different environments “the details of such models usually 
differ tremendously from one domain to the next because 
the relevant cues and their ecological validities can change 
dramatically (…)” (Vicente & Wang, 1998, p. 603)  
 
LSA is based on the idea of portraying environments as 
complex networks of coocurrences, that, given a big enough 
scale, can be mapped onto a multidimensional space of 
much lower dimensionality. Thus, it provides the means for 
modeling different domains in a comparable manner. At the 
moment of this writing, LSA has been applied to a variety 
of domains including the followings: understanding of 
source code (Maletic & Marcus, 2000a), text comprehension 
(e.g., Kintsch, 1998; Kintsch, 2001), categorization (Laham, 
1997), metaphor understanding (Kintsch, 2000) and 
vocabulary acquisition and semantic priming (Landauer & 
Dumais, 1997). LPSA has been applied to model human 
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similarity judgments in problem solving tasks (Quesada, 
Kintsch, & Gomez, 2002), practice effects (Gonzalez & 
Quesada, submitted), and expert evaluations of landing 
technique (Quesada, Kintsch, & Gomez, submitted). 
 
A complex, dynamic task: DURESS II. Manipulating 
previous knowledge by eliminating it has been a dominant 
in cognitive science, due in part to the need for random 
assignment of participants to groups that is an exigency of 
the experimental method. An alternative and very popular 
take is the expert-novice approach (e.g., Chase & Simon, 
1973), that is, to manipulate previous knowledge by pre - 
selecting participants, forgetting about random assignment 
of participants to groups. In a wide and diverse range of 
contexts, from academic disciplines through to games and 
sports, comparisons of the performance of novices and 
experts have established consistent relations between 
knowledge, task performance and level of expertise. 
 
However, not many researchers have the possibility of 
manipulating the environment for the time necessary to 
make a person an expert in a domain. Most of the studies in 
expertise and skill acquisition have to content themselves 
with analyzing diaries and interviews (i.e., Ericsson, 
Krampe, & Tesch-Römer, 1993) to estimate a posteriori the 
amount of deliberate practice that their participants invested. 
 
Important exceptions to the problem posited above are 
single-subject designs such as Richman, Staszewski and 
Simon (1995), but it is only possible in very simple 
environments like digit recall tasks. In that case, the 
experimenter controls the environment (i.e. the sequence of 
digits that the memonist is to learn) completely and can 
manipulate it. The basic idea in this research paradigm is to 
move complexity to the lab, and manipulate previous 
knowledge by giving exactly the same amount of practice, 
enough to show expertise levels of skill, to all participants. 
To simulate expertise environments in labs, we need tasks 
more complex than the standard ones: more representative, 
with a long learning curve, and interesting enough to keep 
the motivation for a long period of time. An example of this 
kind of tasks is DURESS (DUal REServoir System). 
DURESS is a thermal-hydraulic process control simulation 
that was designed to be representative of Industrial process 
control systems.  It consists of two redundant feedwater 
streams that can be configured to supply either, both or 
neither of the two reservoirs. The goals of the game is to 
keep each of the reservoir temperatures (T1 and T2) at a 
prescribed level (e.g., 40 C and 20 C, respectively), and to 
satisfy the current mass (water) output demand (5 liters per 
second and 7 liters per second, respectively). Thanks to the 
seminar work of Vicente and collaborators (Christoffersen, 
Hunter, & Vicente, 1996, 1997, 1998), the equivalent of 
three years of experience with the system DURESS II is 
available and we used it in our LPSA simulations.  
 
Method. Complex experimental tasks normally keep a log 
file containing all the actions and states that every 
participant has experienced. Since the number of variables is 

very high and their relations can be intricate, the analysis are 
usually beyond the scope of most statistical methods 
normally employed in experimental psychology, particularly 
when system states are not in interval scale. As a result, the 
richness of these log files is underused. However, a clear 
analogy can be drawn between this particular problem and 
representational theories of semantics such as LSA: like 
words, states and actions appear in particular contexts but 
not in others. Some states and actions are interchangeable, 
being ‘functional synonyms’. Given the right algorithms and 
sufficient amounts of logged trials, a problem space can be 
derived in a similar way as semantic spaces are. The 
underlying idea is that the aggregate of all the action 
contexts in which a given state does and does not appear 
provides a set of mutual constraints that largely determines 
the similarity of meaning of states and sets of states to each 
other.  

 

 

 
Figure 1: Prediction method employed to estimate the next 
states in the task in LPSA. Each rectangle represents a trial 
in DURESS II. (a) The nearest neighbors of the predicting 
part are retrieved; (b) a composite using the ends of these 
neighbors serves to predict the target trial’s final states. 
 
The AH proposed for DURESS (e.g., Vicente & Wang, 
1998) contains four levels: (1) Functional, that describes the 
purposes: keep the temperature and demand flow rate for 
each reservoir, (2) Abstract, that describes the system as a 
function of the laws of conservation of mass and energy, (3) 
generalized, that uses rates of heat and flow transfer, and (4) 
physical, that describes the physical position and settings of 
the components (valves, pumps, and heaters). 
 
A different LPSA corpus was created for each level of the 
Abstraction Hierarchy. After performing the SVD, the first 
100 dimensions were used. Since the goal values are 
different at each level, the pertinent variables were 
normalized to goal values in order to make trials more 
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comparable for Functional purpose and Abstract function 
levels. All levels were normalized with respect to scale. 
 
To test the ‘amount of experience hypothesis’, two different 
corpora, one with 3 years of practice (expert), and another 
with only 6 months (novice), were created, and the quality 
of their prediction of future states compared. To test the 
‘amount of domain structure hypothesis’, an additional 
corpus of 3 years of practice was created, but this time in an 
environment where the laws of conservation of mass and 
energy do not exist: the states where randomly assigned to 
the trials, resulting in a corpus with practically no 
constraints. This corpus was compared to the 3-years-expert 
with a constrained environment.   
 
Prediction. Prediction plays a very important role in 
humans’ interaction with the environment. Some scientists 
argue that many features of cognitive the cognitive system 
(such as representation, memory, and categorization) can be 
conceptualized as tools that help to predict the next states of 
an organism’s environment (e.g., Anderson, 1990). The 
methodology that we used was to test how good of a 
prediction can be generated using the nearest neighbors of a 
target slice of performance. For example, in a trial of 
DURESS, how much of the end can be predicted using the 
information from the beginning? To do this, we needed to 
define a cutting point that divided the predicting and 
predicted parts. The cutting point we defined is the point 
that leaves ¾ of the trial behind. Such a case is depicted in 
Figure 1a. Trials in DURESS are represented as rectangles. 
The shaded area is the part of the trial that is used to predict 
the remaining part (signaled with a question mark). In 
LPSA, any passage is a vector, as well as any sub-passage; 
that is, the shaded (predicting) part and the question mark 
(predicted) part are both a vector in LSA. Using the 
predicting vector, we retrieve the nearest N neighbors, 
depicted as rectangles as well in Figure 1a. In this figure, 
N=6, that is 6 nearest neighbors are evoked by the first ¾ of 
the trial. Then, the last quarter of each retrieved neighbor is 
used to create a composite that predicts the end of the target 
trial (Figure 1b). The contribution to the composite is 
weighted by the cosine between the neighbor and the 
predicting part of the target. 

Results 
The results presented here were calculated using 10 
neighbors (striped bars), and the same calculations 
performed with 10 random neighbors are used as a control 
group (solid bars). A sample of 100 random trials was 
selected as target trials, and the results averaged. The 
predicting accuracy of this method in the 3-years of 
practice, structured environment’ can be observed in Figure 
2: the average prediction is .87, which means that our 
simulated expert can predict the next states of its 
environment very well indeed. Figure 3 shows that, for the 
novice simulation, the average prediction is much worse, 
which is in line with the ‘amount of experience’ hypothesis. 
Figure 4 describes the prediction rate (that does not 
outperform the random control) for the ‘3 years expert in the 
unconstrained domain’.  
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Figure 2: Average cosine between the fourth quarter of a 
target trial and the fourth quarter of the 10 nearest 
Neighbors when the three first quarters are used to retrieve 
the neighbors. The model has been trained with three years 
of experience. 
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Figure 3: Average cosine between the fourth quarter of a 
target trial and the fourth quarter of the 10 nearest 
Neighbors when the three first quarters are used to retrieve 
the neighbors. The model has been trained with six months 
of experience.  
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Figure 4: Average cosine between the fourth quarter of a 
target trial and the fourth quarter of the 10 nearest 
Neighbors when the three first quarters are used to retrieve 
the neighbors. Three year of experience in a DURESS 
simulation with no constraints (random states). 

Conclusions 
LTWM argues that the magnitude of expertise effects is 
related to the level of attained skill and to the amount of 
relevant prior experience. CAH claims that expertise effects 
in memory recall are also determined by the amount of 

944



structure in the domain (and by active attunement to that 
structure). LPSA can explain both arguments under the 
same framework, and proposes a computational model on 
how the constrains of the environment are internalized and 
represented. LPSA also extends the area of application of 
computational expertise theories to complex, dynamic tasks 
such as DURESS. In doing so, LPSA is a new approach to 
the expertise and knowledge representation discussions.  
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