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Abstract

How well do you know your favorite computational
model of cognition? Most likely your knowledge
of its behavior has accrued from tests of its ability
to mimic human data, what we call local analy-
ses because performance is assessed in a speciÞc
testing situation. Global model analysis by land-
scaping is an approach that �sketches� out the per-
formance of a model at all of its parameter val-
ues, creating a landscape of how the relative per-
formance abilities of the model and a competing
model. We demonstrate the usefulness of landscap-
ing by comparing two models of information inte-
gration (Fuzzy Logic Model of Perception and the
Linear Integration Model). The results show that
model distinguishability is akin to power, and may
be improved by increasing the sample size, using
better statistics, or redesigning the experiment. We
show how landscaping can be used to measure this
improvement.

Introduction

The development and testing of theories is one of the
most important aspects of scientiÞc inquiry. Theo-
ries provide us with the tools we need to understand
the world (Kuhn, 1962), and frequently spark new
and exciting experimental work (Estes, 2002). When
we develop a mathematical or computational model
of a cognitive process, it is generally an instanti-
ation of a few fundamental properties of a verbal
theory. This translation process requires some de-
grees of freedom because data sets can vary in many
ways, and still be consistent with the qualitative
ideas in the model. For instance, while forgetting
curves generally look like decreasing exponential or
power functions (e.g., Rubin & Wenzel, 1996), some
people remember items more easily than others. We
capture this idea by proposing models that have a
number of free parameters which may be Þne-tuned
to Þt the data. This idea has been widely adopted,
and has led to successful models of a wide variety of
cognitive phenomena.
One potential drawback with this approach is

that, as the models we propose become more elabo-
rate, the task of understanding the model itself be-
comes increasingly difficult. When assessing the per-
formance of a model in light of some observed data,

we generally try to Þnd a single set of parameters
which allow the model to Þt the data best. Maxi-
mum likelihood estimation and least sum of squares
methods are examples of this approach. Because a
model is evaluated by identifying the single, best-
Þtting parameter set, these methods are examples
of local model analysis. Like an iceberg, the vast
majority of the model is hidden beneath the waves:
only those few parameter sets that provide best Þts
ever allow the model to come to the surface and show
us how it behaves. As a result, our experience of the
model is limited to a few, possibly unrepresentative
cases.
As modelers, we want to learn something about

how our models behave in general, not just at the
few speciÞc points that come to light when we use lo-
cal methods such as Þtting data sets generated in an
experiment. The limitations of such methods leave a
number of interesting and important questions unan-
swered. We may be concerned that our model makes
so many predictions that it could provide a good Þt
to almost any data (model complexity), that many
different models make essentially the same predic-
tions (model distinguishability), or that the predic-
tions do not conform to the original qualitative the-
ory (model faithfulness). Questions such as these
can be referred to as issues of global model analysis.
Global model analysis, as we conceive it, refers to
the task of discovering what a model can and can-
not do, particularly in light of empirical data and
other models. In this paper, we introduce a simple
global analysis method that we call landscaping.

Sketching a Landscape
The idea underlying landscaping is remarkably sim-
ple. Find all the things that a model can do, com-
pare it to the things that other models can do, and
see how these things relate to empirical data. In one
sense it is the very opposite of parameter optimiza-
tion (i.e., Þnding the best Þt): rather than look for
a single set of parameters (and a single prediction),
we look at them all. When we do this, we obtain the
full range of predictions made by the model, which
we call the landscape.
Landscaping is a modeling tool, not a statistic,

and can be adapted to answer many questions. In
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this paper we are concerned primarily with model
distinguishability and the relationship to experimen-
tal design.

The Domain of Application

Models of information integration are concerned pri-
marily with stimulus identiÞcation. Given some
potentially ambiguous information from multiple
sources regarding a stimulus, what is the stimulus
most likely to be? The classic example is phone-
mic identiÞcation, in which visual and auditory cues
are combined in order to make a decision (e.g. was
it /ba/ or /da/?). In this study we compared the
landscapes of two models of information integration:
Oden and Massaro�s (1978) Fuzzy Logic Model of
Perception (FLMP) and Anderson�s (1981) Linear
Integration Model (LIM).

To brießy summarize an extensive literature:
FLMP provides a remarkably good account of a wide
range of phenomena, including some that look rather
LIM-like and many that do not. There are a num-
ber of local analyses of both these models. It would
be useful to unify them in some way to understand
better how their performance is related. Landscap-
ing does just this. In the process it provides answers
to related questions. For instance, are there large
numbers of FLMP patterns that are never observed
in experimental data? Are there LIM patterns that
FLMP cannot mimic, or is FLMP ßexible enough
to Þt all LIM-like patterns? Is experimental design
important? In short, we want to Þnd out what lies
beneath the surface of all these local analyses.

Furthermore, we want to answer these questions
with respect to the kind of small sample sizes that
characterize real experiments. With that in mind,
we approach the comparison as experimentalists.
We have in mind a particular experiment that we
wish to conduct, and have a number of questions
about the relationships between FLMP, LIM, and
experimental data. For example, what kinds of data
sets are consistent with each of the two models? Are
there some kinds of data that are consistent with
both models? How successfully can our experiment
tell the two models apart? What statistics will we
need to do so? These questions can be very difficult
to answer using local methods, but readily fall out
of a landscaping analysis.

Experiment One

The experiment that we have in mind is a two-choice
identiÞcation task (i.e. choose A or B) with a 2£ 8
design. In other words, there are two different lev-
els of one source (e.g., visual) , i 2 (i1, i2), and
eight different levels of the other source (e.g., audi-
tory) j 2 (j1, . . . , j8). In total, there are 16 stimuli
that may be produced by combining the two evi-

dence sources1. Furthermore, we anticipate a sam-
ple size of N = 24 (not unusual in psychological
experiments). Letting pij denote the probability of
responding �A� when presented with the i-th level
of one source and the j-th level of the other, FLMP
is characterized by the equation,

pij =
θiλj

θiλj + (1¡ θi)(1¡ λj) ,

whereas LIM predicts that

pij =
θi + λj
2

.

In both cases we assume that θi · θi+1 and λj ·
λj+1 for all i and j.

The Landscape of Model Fits

Our landscaping analysis consists of generating a
large number �experimental� data sets from each
model: that is, the kind of data the we would expect
to observe if FLMP (or LIM) were the true model of
human performance. The comparison between the
models is then based on how well each model Þts
all of these data sets. The results reveal the distin-
guishability of the models and their similarities and
differences.
Generating hypothetical experimental data is sim-

ple. In a two-choice task, both FLMP and LIM
assume that the sampling error follows a binomial
distribution (with N = 24 in this case). To sketch
a landscape of FLMP data, we randomly generated
a large number of FLMP parameter sets (10,000 in
this case), found the pij values, and added sampling
error2. This was then repeated using LIM.
Because each of these data sets represents the po-

tential outcome of an information integration experi-
ment, by Þtting both FLMP and LIM to them (using
maximum likelihood estimation) we can determine
how effectively an experiment of this kind will dis-
criminate between the two models. Intuitively, one
expects the generating model to Þt its own data bet-
ter than the competing model, but due to the joint

1It is well known that FLMP is non-identiÞable for
this experimental design, but that we may Þx one
parameter value (say, θ1) without loss of generality
(Crowther, Batchelder & Hu 1995). Although this tech-
nique does not work for LIM, LIM may be reparame-
trized as the identiÞable model, pij = αi + βj + c,
where αmin = βmin = 0, αi ∈ [0, 12 ], βj ∈ [0, 12 ], and
c ∈ [0, 1− αmax − βmax].

2Clearly, the data sets depend on the distribution
from which one samples. In this case we sampled from
Jeffreys� distribution (see Robert 2001, for instance), cor-
responding to the assumption of maximum uncertainty
about the data. However, Jeffreys� distribution is dif-
Þcult to sample from in many situations, and one may
wish to specify a different distribution. Another prin-
cipled choice is the uniform distribution, which corre-
sponds to maximum uncertainty about the parameters,
and is trivial to sample from.
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Figure 1: Scatterplots of the (logarithm of) maximum likelihood estimates for 10,000 data sets generated
by FLMP (left panel) and LIM (right panel). Values on the x-axis denote the Þt of FLMP to the data, and
y-values denote LIM Þt. Data come from a 2 £ 8 experimental design with N = 24. The inset panels (a)
through (h) display typical data sets sampled from different regions. The solid line depicts the ML decision
threshold, and the broken line is the MDL threshold.

effects of sampling error and differences between the
models, this is not always the case.

The Lay of the Land

Figure 1 displays the 10,000 data sets generated by
FLMP (left panel) and LIM (right panel), plotted
as a function of the maximum likelihood estimate
for each model. The solid line marks the decision
boundary for the maximum likelihood (ML) crite-
rion: LIM provides a better Þt to all data sets that
lie above the solid line, whereas FLMP provides the
better Þt to the points below. The inset panels dis-
play pij values (on the y-axis) as a function of the 8
levels of j (on the x-axis). The two lines correspond
to the two levels of i (the upper line represents i2).
These plots are remarkably informative because

the the relative performance (i.e., Þts) of the two
models across then entire range of data patterns for
each model is visible. Inspection of the left panel
reveals that data generated by FLMP are almost
always better Þt by FLMP than by LIM. In fact,
there are only 6 points (of 10,000) above the solid
line. In other words, if we used ML as a method
to guess which model generated the data, we would

only be incorrect in a tiny proportion of cases. Not
only that, the vast majority of FLMP patterns are
nowhere near the solid line, indicating that in most
cases, the decision is clear-cut: FLMP provides the
better Þt. Interestingly, we note that the scatterplot
tapers in the lower righthand area: when the LIM
Þt is exceptionally poor, the FLMP Þt is especially
good. In short, FLMP will almost never be confused
for LIM.

On another note, it appears that the variability
in this scatterplot is interpretable in terms of hu-
man performance. Even a cursory examination of
the types of response patterns that fall in different
regions of the FLMP landscape is informative. Inset
(d) in Figure 1 shows a sample data set drawn from
the lower tail of FLMP distribution, which displays
a pattern that is typical of those observed in such ex-
periments. The sigmoidal curves in (c), and to some
extent (b), are not atypical of human data, though
the step-function curves in (a) are not characteristic
of human performance.

The right panel tells a different tale, in which LIM
data sets tend to cluster in a tight region near the
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decision boundary. In fact, a total of 3,130 of the
10,000 data sets fall on the wrong side of it, meaning
that FLMP can Þt LIM data better than LIM itself
almost one third of the time. Worse yet, the LIM
data sets cluster in a direction parallel to the deci-
sion boundaries. This means that when LIM Þts the
data well, so does FLMP, even though the data sets
came from LIM. In fact, since the data sets rarely fall
far away from the solid line, it is clear that FLMP is
capable of mimicking LIM all the way across LIM�s
parameter space. The models are highly confusable.
A cursory sweep through the LIM data is consis-

tent with these Þndings. Since LIM is such a simple
model, most response patterns look alike (parallel
lines), and the major source of variation is sampling
error. When both models Þt well, as in inset (h), the
data tend to look like parallel lines. Both models Þt
poorly when the noise heavily distorts the response
pattern as in (f). Occasionally, as in (e), sampling
error is more damaging to the FLMP Þt than the
LIM Þt. On the other hand, as in (g), it sometimes
allows FLMP to Þt better than LIM.
The major implication of the landscape analysis

is this: if FLMP is the correct model, then it should
be easy to perform 2 £ 8 design experiments that
support it over LIM. However, if LIM is the cor-
rect model, such an experiment will not be very
effective in distinguishing it from FLMP, and an-
other test will need to be devised in order to do so.
Looked at another way, the inability to distinguish
between two models is an issue of power, of deter-
mining how effective an experiment can possibly be.
This insight makes it clear that power is asymmetric
in the current experiment: It is easy to distinguish
FLMP from LIM, but difficult to distinguish LIM
from FLMP.

Remedying the Asymmetry
There are at least three ways of increasing the power
of the experiment to overcome the asymmetry and
make the comparison a more balanced test of the two
models. The standard remedy is also the simplest:
increase the sample size. By increasing the sam-
ple size, we decrease the amount of sampling error,
and should therefore be better able to discriminate
between the two. However, this approach can suf-
fer from pragmatic and theoretical difficulties. The
pragmatic problem is that it may not be feasible to
increase the sample size, as in clinical studies for in-
stance, where one may have limited opportunities
to collect data. From a theoretical point of view, it
is possible that increasing the sample size will yield
limited returns. If FLMP can produce response pat-
terns that look LIM-like even without sampling error
(i.e. as N ! 1), then reducing the error may not
help.
The second solution is to use more powerful sta-

tistics. Athough ML is useful for measuring Þts to
data, it is outperformed in small samples by a great

many other statistics. One of the more accurate
of these is Rissanen�s (1996) Minimum Description
Length (MDL) criterion, which has recently been
employed with some success in psychological model-
ing (e.g., Lee 2002; Navarro & Lee 2002), and is more
effective at discriminating between FLMP and LIM
(Pitt, Kim & Myung, in press). ML and MDL dif-
fer only by a constant �geometric complexity� (GC)
term (Pitt, Myung & Zhang 2002):

MDL = ¡ ln(ML) + GC.
In this case, the geometric complexity of FLMP is
greater than that of LIM by only 1.9, which can
seem like a small difference in view of the variability
in Figure 1. Nevertheless, when the MDL criterion
is applied (shown by the broken lines) instead of ML,
the asymmetry greatly diminishes. By introducing
a complexity penalty, MDL makes a few more mis-
classiÞcations for FLMP data, incorrectly choosing
LIM 28 times out of 10,000. However, the major dif-
ference occurs for the LIM data, in which the error
rate falls ten-fold, from 3,130 to 356 out of 10,000.
Because the LIM data sets cluster in such a tight
region in the scatterplot, this small correction pro-
duces a massive improvement in classiÞcation: the
overall error rate across the 20,000 data sets drops
from 15.7% to 2.3%. On the basis of these results,
it is tempting to simply recommend the use of MDL
over ML, since it is the better statistic in general (see
Grünwald 2000). However, the GC term in the MDL
criterion can be very difficult to evaluate even for
simple models due to an often-intractable integral
term. For nonlinear models with many parameters,
it can be nearly impossible.
The third remedy relies on Lord Rutherford�s as-

sertion to the effect that �if your experiment needs
statistics, you should have done a better experi-
ment�. It might be that, with only minor alter-
ations, we could perform an experiment that would
be more likely to distinguish between the models
without requiring elaborate statistical inference or
enormous sample sizes. Of course, inventing new
experimental designs requires the kind of insight on
behalf of experimenters for which no methodology
can substitute. On the other hand, once we have
thought of a new experimental setup, it is simple
enough to use landscaping to see if the new design
is likely to be more sucessful than the Þrst. It is this
possibility that we now examine.

Experiment Two
One of the difficulties with the original 2 £ 8 de-
sign is that the experiment does not directly mea-
sure θi and λj . In other words, it does not ask
how would people respond if only one source of ev-
idence (auditory or visual) were provided. FLMP
and LIM make different predictions in this regard:
LIM predicts pi = θi, whereas FLMP predicts that
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Figure 2: Scatterplots of FLMP Þt versus LIM Þt (again on a logarithmic scale) for the expanded 2 £ 8
experimental design with unimodal conditions and N = 24. As before, the solid line represents equal Þt, the
broken line represents equal MDL values, and the inset panels display sample data sets.

pi = θi/(1¡ θi). This suggests an elegant alteration
to the original design, by including the 10 extra �uni-
modal� stimuli as additional conditions in the de-
sign. This redesign accomplishes three objectives.
Firstly, the non-identiÞability problem that we al-
luded to in footnote 1 vanishes. Secondly, the recov-
ered parameter values are more easily interpreted
as measurements of the evidence provided by each
source. Thirdly, the power of the experiment is in-
creased, as we show below.

Performing the same landscaping analysis with
10,000 data sets on our new 2 £ 8 (plus unimodal)
design shows the effect of adding these conditions,
displayed in Figure 2. Given that the shapes of the
scatterplots are quite similar to those in Figure 1,
it seems likely that there are no substantial quali-
tative differences between the models across experi-
ments. Rather, the change in design has constrained
their behavior (i.e., data-Þtting ability) to regions in
the landscape in which LIM is distinguishable from
FLMP and vice versa.

As before, the FLMP data sets are generally quite
distant from the decision thresholds, and both ML
and MDL are very successful in selecting FLMP as
the correct model: ML makes no misclassiÞcations

at all, whereas MDL makes only 18 errors. An in-
formal scan across the scatterplot supports our in-
tuition that the qualitative features of FLMP are
unchanged. The lower tail of the FLMP distribu-
tion still contains the classic FLMP-like data sets,
illustrated in panels (c) and (d), whereas the pat-
terns closest to the decision boundaries, as in (b),
are much more linear. It is not clear, however, if
the pattern in (a) represents a difference from its
counterpart in Figure 1.

Inspection of the panel on the right reveals that
the expanded design has allowed the LIM data to
distinguish itself from FLMP. Although the distri-
bution of data sets is still parallel to the decision
thresholds, indicating that FLMP can still mimic
LIM, they are shifted away from the decision crite-
ria, indicating that the extent of the mimickability
has been substantially reduced. In this experimental
design, ML makes far fewer mistakes, only 100, and
MDL makes only a single misclassiÞciation. That
is, by adopting this expanded design, the ML error
rate drops from 15.7% to 0.5%, and the MDL error
rate drops from 2.3% to 0.1%. Again, a brief survey
of the landscape shows that the patterns illustrated
by (e), (f) and (g) match their counterparts in Fig-
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ure 1. However, since LIM has developed a long tail,
we display two patterns (h) and (i), both of which
display a resemblance to panel (h) in Figure 1.

General Discussion
Landscaping is a simple and powerful tool for model
evaluation and comparison. It is a method for view-
ing the relationship between two models across the
space of all possible data patterns that the models
can generate within a particular experimental de-
sign. FLMP encompasses a larger range of data sets
than LIM, a range that includes patterns produced
by participants. Furthermore, these patterns fall in
the main body of the FLMP scatterplot, and appear
to be as representative of FLMP as they are unrep-
resentative of LIM.
Secondly, by plotting the LIM data sets, we be-

came aware of the potential difficulty of distinguish-
ing between FLMP and LIM. To do so required the
use of very powerful statistical methods (MDL) or
an expanded experimental design.
Thirdly, despite the change in experimental de-

sign, the shape and composition of the model land-
scapes seem to be more or less invariant. We specu-
late that, although data Þts and model distinguisha-
bility vary substantially across experimental designs,
the qualitative ßavor of the landscape is constant.
Among the strengths of landscaping is its adapt-

ability. It is a tool that can and should be modiÞed
to suit the circumstances. For instance, in this pa-
per we sampled parameter values (with some pain)
from a Jeffreys� distribution. In many cases a sim-
ple uniform distribution is appropriate, particularly
if the parameters are assumed to correspond to real
psychological variables. Similarly, few modeling sit-
uations require 10,000 data sets. If the aim is only
to estimate the power of an experimental design, a
few hundred would likely suffice, since the Þne detail
of the landscape is irrelevant. If we are interested in
looking at the types of response patterns predicted
by the models (rather than the data sets that we
would expect to observe), there is no need to add
sampling error.
In general, we suspect that landscaping analyses

on the scale that we have undertaken here will rarely
be required, and smaller, simpler evaluations will
suffice. Even a little landscaping may go a long way.
If model indistinguishability is unavoidable, we are
alerted to the necessity of tools such as MDL. On
the other hand, high distinguishability suggests that
smaller samples, simpler designs, or more convenient
statistics will be adequate.
If local analyses such as maximum likelihood show

us the tip of the iceberg, then global methods such
as landscaping allow us to look beneath the sur-
face to the model below. We hope that in doing
so, global methods may actually simplify the work
required to distinguish models. Landscaping allows
one to quickly �sketch out� all the possible outcomes

of an experiment that we are thinking about con-
ducting. Should it reveal a problem such as indis-
tinguishable models, landscaping can be used to es-
timate the effectiveness of a proposed solution to in-
crease the power of the experiment. Every remedy
requires something extra to be added, be it statisti-
cal machinery, participants, or experimental condi-
tions. Perhaps this is unavoidable. Even so, while
there may be no free lunches in model evaluation
and testing, we can often choose a preferred method
of payment.

Acknowledgments
This research was supported by research grant R01

MH57472 from the National Institute of Mental Health.

We thank Nancy Briggs, Michael Lee and Yong Su for

many helpful comments and discussions, and an anony-

mous reviewer for suggesting some interesting avenues

for further development.

References
Anderson, N. H. (1981). Foundations of Information In-
tegration Theory. New York: Academic Press

Crowther, C. S., Batchelder, W. H., and Hu, X. (1995).
A measurement-theoretic analysis of the fuzzy logic
model of perception. Psychological Review. 1995, 102,
396-408.

Estes, W. K. (2002). Traps in the route to models of
memory and decision. Psychonomic Bulletin & Re-
view, 9, 3-25.

Grünwald, P. (2000). Model selection based on minimum
description length. Journal of Mathematical Psychol-
ogy, 44, 133-152.

Kuhn, T. S. (1962). The Structure of ScientiÞc Revolu-
tions. Chicago: University of Chicago Press.

Lee, M. D. (2002). Generating additive clustering mod-
els with limited stochastic complexity. Journal of
ClassiÞcation, 19(1), 69-85.

Navarro, D. J. & Lee, M. D. (2002). Commonalities
and distinctions in featural stimulus representations.
In: W. G. Gray, and C. D. Schunn (Eds.) Proceed-
ings of the 24th Annual Conference of the Cognitive
Science Society, pp. 685-690, Mahwah, NJ: Lawrence
Erlbaum.

Oden, G. C., & Massaro, D. W. (1978). Integration of
Featural Information in Speech Perception. Psycho-
logical Review, 85, 172-191.

Pitt, M. A., Kim, W. and Myung, I. J. (in press). Flex-
ibility versus generalizability in model selection. Psy-
chonomic Bulletin and Review.

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward
a method of selecting among computational models of
cognition. Psychological Review, 109, 472-491.

Rissanen, J. (1996). Fisher information and stochastic
complexity. IEEE Transactions on Information The-
ory, 42, 40-47.

Robert, C. P. (2001). The Bayesian Choice (2nd ed.).
New York: Springer.

Rubin, D. C. &Wenzel, A. E. (1996). One hundred years
of forgetting: A quantitative description of retention.
Psychological Review, 103, 734-760.

856




