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Abstract a study phasean which participants are asked to read

a list of words one at a time, andtast phaseduring

We address an omnipresent and pervasive form of hu-
man learning-skill refinementthe improvement in per-
formance of a cognitive or motor skill with practice. A
simple and well studied example of skill refinement is the
psychological phenomenon lwfng-term repetition prim-

ing: Participants asked to identify briefly presented words
are more accurate if they recently viewed the word. We
simulate various phenomena of repetition priming using
a probabilistic model that characterizes the time course of
information transmission through processing pathways.
The model suggests two distinct mechanisms of adapta-
tion with experience, one that updates prior probabilities
of pathway outputs, and one that increases the instanta-
neous probability of information transmission through a
pathway. These two mechanisms loosely correspond to
bias and sensitivity effects that have been observed in ex-
perimental studies of priming. The mechanisms are ex-
tremely sensible from a rational perspective, and can also
explain phenomena of skill learning, such as the power
law of practice. Although other models have been pro-
posed of these phenomena, we argue for the probabilistic
pathway model on grounds of parsimony and the elegant
computational perspective it offers.

Acquisition of a cognitive or motor skill occurs in sev-

which they must respond to a series of brief, masked tar-
get words. Repetition priming occurs when a word from
the study phase influences performance during the test
phase. These experiments often varyfiaeh duration

the time between target and mask onsets, and also utilize
a variety of response paradigms, including speaking the
target identity aloudriaming and forced choice identifi-
cation between two alternativeaAFC).

Priming is an implicit memory phenomenon: partici-
pants are not told the study and test phases are related,
and they do not try to recall study words during the test
phase as a deliberate strategy for performing the task.
Thus, priming is incidental to the test phase of the ex-
periment; it comes about as a result of experience and is
thus a form of skill refinement, where the “skill” here is
perceptual processing of a letter string.

A key question concerning repetition priming is
whether priming is due to increasdihs or increased
sensitivity Although the terminology is borrowed from
signal detection theory, the meaning of these terms in the
context of priming is somewhat different. Bias means

eral stages. First, an individual must learn the concepthat participants are more likely to report studied items
tual structures required for the task, including the basigegardless of what word is presented for identification.
knowledge necessary to perform the task. Then, over &ensitivity means that participants become better at per-
long period of practice, the skill is refined, leading to ceptual discrimination of the studied items. In a word
more fluent, efficient, and robust performance. Skill re-naming task, improved performance following priming
finement is an omnipresent and pervasive form of learngould be due either to increased bias or increased sensi-
ing. Although skill refinement is sometimes deliberate, tivity. Consequently, experimental paradigms have been
e.g., rehearsing a musical piece, it is often implicit, e.g..designed to unconfound these possibilities. The basic
when typing, driving, reading, playing video games, etc.result found in the long-term repetition priming litera-
Understanding skill refinement is fundamentally abOUtture is that pr|m|ng reflects both increased bias and in-
discovering the mechanisms by which one trial or per-creased sensitivity, although the sensitivity increase is ro-
formance of the skill leads to improvements on the next.pust only for low-frequency words or novel items.
. . The goal of this paper is to introduce a model of per-
Long-term repetition priming formance and refinement of simple cognitive skills, such
Perhaps the most direct and easily studied manifestaas word reading. The model has two distinct learning
tion of skill refinement in the psychological literature is mechanisms which contribute to skill improvement with
the phenomenon dbng-term repetition primingln the  practice. The model explains various data from psycho-
priming paradigm, participants engage in a series of exfogical studies of long-term repetition priming. In this
perimental trials, and experience with a stimulus or re-paper, we model two experiments isolating bias and sen-
sponse on one trial results in more efficient processingitivity components to priming, and show a rough cor-
on subsequent trials. Efficiency is characterized in termsespondence between our two learning mechanisms and
of faster response times, lower error rates, or both. Atypthese two effects. We compare our model to existing
ical long-term perceptual priming experiment consists ofmodels in the literature; our model shares aspects of ex-
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Figure 1: (a) lllustration of a perceptual pathway when the visual woed is presented. The three curves show the
probabilities of alternative pathway outputs as a function of processing time. In this example, the pathway asymptotes
to the correct output with probability 1. (b) An HMM implementation of a pathway

isting models, but has an elegant and concise formulationow corresponds to a conditional probability distribution

that makes it preferable on grounds of parsimony. specifying the relationship between two dependent vari-
. . o ables. For the reader unfamiliar with graphical models,
Modeling long-term repetition priming one should not be concerned with the direction of the

The model we present is distilled from a broader theory2"oOWs. Casting the model as a generative process—
of cortical information transmission (Colagrosso, 2002).Where the arrows flow from outputs to inputs in Fig-
The theory posits that cortical computation is performedU’® 10—has certain benefits. Nonetheless, inference can
by a set of functionally specializaghthways Each path- be carried outin either d|re.qt|on.: th_e g(aphlcal m_odel al-
way performs a primitive cognitive operation, €.g., Vi- lows us to infer the probability distribution ov&f given

sual word-form recognition, identification of semantic X1: X2, - -, Xs, denoted BY;[X;, X5,..., X;). This
features of visual objects, computation of spatial rela-COMputation is performed via iterative Bayesian belief
tionships, or construction of motor plans. To model the€Vision. Figure 1b is simply a hidden Markov model
effects of long-term repetition priming, we propose a(HMM), used in a novel way. In typical usage, an HMM
model with two pathways in cascadeperceptuapath- 1S presgntgd with a sequence of distinct inputs, yvhereas
way that maps visual features to word identities, and /¢ Maintain the same input for many successive time
responsepathway that takes the output of the perceptualSt€Ps- Further, in typical usage, an HMM transitions

pathway and maps it to a task-appropriate response. rough a sequence of distinct hidden states, whereas we

assume the pathways communicate continuously duringttempt to converge with increasing confidence on a sin-

processing and that communication is unidirectional. ~ 9!€ State.
In Figure 1b, the set of arrows fronY, to Y; cor-
Pathway as a dynamic belief network responds to PX;|Y;), the instantaneous transmission

We present a probabilistic model of a pathway, whichpmbab'“ty between.X; and ¥;. The set of arrows

characterizes the time course of information processingggThé/a*htt%fyéscgrr:grst‘_)&?%s &%ﬁ%lﬁ*ﬁ?’e ag?hvcvzn
in a single stimulus presentation. ) m p y

The inputs and outputs of a pathway are represented Qutput. In dynamic belief networks, it is typical to as-

probability distributions over distinct alternatives. For- tignmse iteempol{)g\} ir;/v ? nincF()a( )?{;;]eaﬁg nFc(j;t/IT;al ():hsinbu-
mally, the input and output states of a pathway at a parp(yﬁ, . ).,for alltt 'f'his_ assumptionis e ui:/alte_nlt to;tat-
ticular timet, denotedX; andY;, respectively, are dis- prev : P d

crete random variables. Each variable can take on Ong]gntehoal}st—h[?\;?é?z;]igiﬁi Ofbtgtev\?eeeﬂlStg:)hli/sgnsirimgt]:_an d
of a finite set of values selected from a multinomial dis—g P P y Inp

oo . ; outputs does not change on the brief time scale of in-
tribution, with set sizeVx and Ny for X; andY;, re- ; ; o s
spectively. We wish to model the temporal dynamics of all‘:?(r)r(ng}l)o r;npdroltz:{(i/s's}l/ng )mz(::é%%' -trhhee ;‘r’]\’gw?ézmg uitr'logs’
pathway, i.e., howX; andY;_; combine to determing;. prev/s Y edg

pathway. In the following two sections, we discuss these

To link this notation to the repetition priming paradigm, 2 . .
consider a perceptual pathway. To model the Iorocessf_orms of knowledge, which constitute the central claims

ing of some wordr for a brief durationd, we would set of the model.

X1 =Xo = ... = X4 = z (i.e., assigning the random Instantaneous transmission probabilities The in-

variables a particular value); to model the masking of stantaneous transmission probability between s¥me

the word, X, for ¢t > d is reset to a uniform distribution ; (the random variablé& taking value;) and som&™ =

over alternatives. Given this input sequence corresponds formulated as X = i[Y = j) ~ 1 + «;; whereq;;

ing to a single trial, we can then observe the temporabenotes thassociation frequengyand is assumed to be

evolution of the pathway output (Figure 1a). related to the number of previous experiences with the
The relationship among the input and output vari-association betweeR = i andY = j. (The probability

ables is specified by the graphical model in Figure 1bmust be normalized; hence the definition is formulated

known as adynamic belief networkDean & Kanazawa, in terms of a proportionality instead of an equality. The

1989; Kanazawa, Koller, & Russell, 1995). Each ar-

829



1

constant 1 prevents renormalization by zero.) Increas-
ing «;; increases the instantaneous probability of infor-  °*
mation, and thus increases the rate at which information
aboutX is communicated td". 0s

Although the input representation is localist, in that
there is one value ok for each possible input, one can ‘
achieve the similarity structure inherent in a distributed @ (b)
representation using explicit termgy,, that specify the
similarity between input stateésandk:

P(Y)

02

Figure 2: Change in the time course of activation of a
pathway resulting from (a) an adjustment to the instan-
PX =iy =j)~1+ Z Vik lhj taneous transmission probabilities and (b) an adjustment

A to the priors

Short-term memory We assume that the transition

probability matrix fromYpre,to Y acts as amemory with  How does experience affect parameters of the model?
diffusion. That is, with probability3, Y is reset to its  Based on the parameter definitions, two sets of parame-
initial state and with probability1 — /), Y remains in  ters might logically be adapted: the association frequen-

the same state a$rev: cies and the priors. By definitiony;; reflects the fre-
] ] ) quency that an association has been experienced. Conse-
P(Y = i|[Yprev = j) = (1 — 8)di; + BP(Y =) quently, it should increase with each experience. Also by

where3 is the diffusion constant, (%) is theprior dis- definition, the output priors,(®") should reflect statistics

tribution (the output of the pathway in the absence of an)ﬁiéh:hgz\lgr%gn;eg;té% %ﬁ?ﬁfg’%ﬂ%ﬂgIr}fmhﬁégtztiﬁ.
input), ands;; is the Kroniker deltad;; = 1if ¢ = j or P

0 otherwise). If3 = 0, the transition matrix acts as a stationary and “’FkT‘OW” environments. .
perfect memory. qu the.assoc.lat.lon frequencies, we chose the simple
rule in whicha;; is incremented by the constatiix fol-
Processing dynamics The distribution overY; given  lowing a trial in which input leads to activation of out-
the input sequenceX; = {X;,X,,...,X;}, can be putj. To form an analogous rule for the prior, we define
derived from Bayes'’ theorem, based on the informatiornthe prior RY = j) in terms of secondary parameters,
transmission probabilities,(R'|Y), the pathway output P(Y = j) ~ 1 + p;, and update; by the constant\p.

transition probabilities, & |Yprev), and the prior distri- These two adaptation mechanisms cause the transmis-
bution RY = k) = P(Yy = k|Xo): sion of signals to become more efficient with experience,
i.e., pathway accuracy increases given a fixed amount

Nx of processing time, or pathway response time decreases

P(Y; = k|X,) ~ Z P(X; = j)P(X; = j|Y; = k) to achieve a desired level of accuracy. Efficiency is re-

flected in a leftward shift of the curve relating process-
ing time to output probability. The association-frequency
update results in a more rapid integration of the output
probability (Figure 2a); the prior update raises the initial

j=1

Ny
D P(Yier = i[X)P(Y; = k[Yi1 = i)

i=1 probability of the response (Figure 2b).
To model two pathways in cascade, such as the percep- Simulati
tual and response pathways, the output of the percep- Imulations

tual pathway is provided as input to the response pathWe explain data from two key studies of long-term rep-
way. Although the two pathways could be coupled intoetition priming. The purpose of presenting these simu-
a single graphical model, inference in this model is in-lations is establish the plausibility of the model. Other
tractable. Consequently, we approximate inference bynodels have been developed to explain the same phe-
assuming that at each time step the perceptual pathwayomena, although our model can explain a broader range
output is copied to the response pathway input. This deef data (not presented in this paper). We we will con-
coupling corresponds to the assumption of limited com-clude by discussing reasons to prefer our model.

munication between pathways. Our simulations utilized two pathways which were
. . identical, except for the diffusion rates in the perceptual
Learning mechanisms and response pathway$? = 0.05 and 3" = 0.01, re-

Our simulations assume that the model has already acpectively. The pathways were designed to produce 1-1
quired the basic knowledge necessary to perform a tasknappings, withVx = Ny = 20 input and output states
Thus, then;; are initialized such that the model producesfor each pathway. We assume a similarity structure in
the correct association asymptotically. Becausecthje which each input state is reciprocally similar to two oth-
are presumed to reflect the frequency with which an assocers with a uniform similarity coefficient = 0.8. Rather
ciation has been exercised in the past, we initialize highthan assuming independemny; parameters for each as-
frequency associations to have larger values. sociation, we used two values, one for high-frequency
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tation durations are modeled by setting the perceptual
pathway input distribution such tha{®, = i) = 1
for stimulusi over the flash duration, and following that
time, resetting the pathway input to the state of no infor-
mation, the uniform distribution. Figure 4a illustrates the
operation of a perceptual pathway for the stimubusD
with a flash duration of 25 msec. Following the removal
of the stimulus, the perceptual pathway decays back to its
prior distribution at a rate proportional 12F. In this ex-
ample,DIED has been previously studied, as indicated by
the fact thaDIED has a higher probability at= 0 than
any other word. The response pathway, shown in Figure
Fi 3 A f f - 4b, ac;cumulates evidence from the perceptual pathway,
lgure 5. Accuracy of response for congruent, INCON-qo5ching an asymptote as the perceptual pathway decays.
gruent, and neutral conditions of the Ratcliff & McK- 14 produce a 2AFC response, we adopt the normative as-
oon (1997, Experiment 3) study of bias effects in prim- symption that the 2AFC response is computed from the
ing. The points are results from human subjects, and theesponse pathway output, conditional on the output being
curves are produced by our model. one of the two response alternatives.

Although two mechanisms of adaptation are built into
the model, the prior update rule is almost entirely re-
sponsible for the differences in performance among con-
aigw = 1.25, with Aa = .625. Finally, the prior up-  ditions. Setting the association-frequency adjustment,
date rule has one free paramet&p = 3.3. In total, the ~ Aq, to zero has little impact on the simulation results.
model had seven independent parameters, although thghus, the prior update rule roughly corresponds to the
model’s behavior was insensitive to the exact parametenotion of bias. Indeed, one can see this bias manifested
values. One additional constraint was that we chose paatt¢ = 0 in Figure 4a. However, with increased flash
rameters such that one simulation time step correspondguration, the probability of correct identification of the
to one millisecond in the experimental studies. target approaches asymptote, the differences among con-

. . . ditions diminish, and the bias disappears. A simple rule
Simulation 1: bias effect that adjusted response probabilities independent of flash
One explanation for the facilitatory effect of repetition duration could not account for the data; the temporal dy-
priming is that study of the prime introduces a responsenamics of the model are essential to explaining the phe-
bias that increases the probability of reporting the primenomenon.
in the future. Ratcliff and McKoon (1997, Experiment _, ) o
3) explored the bias account of priming in a 2AFC Simulation 2: sensitivity effect
paradigm. During the test phase, masked target wordds a complement to the bias effect, the sensitivity ef-
were briefly presented, followed by a two alternative fect is an improvement in perceptual discrimination of an
forced choice between the target and a distractor altelitem as a result of previous study. To determine if a sensi-
native. The target and distractor were orthographicallytivity effect contributes to priming, several studies (Bow-
similar, making the discrimination more difficult. ers, 1999; McKoon and Ratcliff, 2001, Experiment 2;

Three experimental conditions were contrasted: In thaVagenmakers, Zeelenberg, and Raaijmakers, 2000) ex-
congruentcondition, the target was presented during theplored a 2AFC task in which a comparison is performed
study phase. In amcongruentcondition, the distractor between a condition in which both response alternatives
was presented during the study phase. In a neutral corare primed and a condition in which neither response
dition, neither was previously studied. For example, if alternative is primedkoth and neither primed respec-

P(Correct Response)

0.4 Congruent ----e--— q

Neutral —a—
__Incongruent =

20 30 40
Flash Duration (msec)

0.3

10 50

words, anigh = 7.5, and one for low-frequency words,

DIED was studied, then targeteD with distractorLIED
would be a congruent trial; targetep with distractor
DIED would be an incongruent trial; and targetk with
distractorsick would be a neutral trial. The experiment
also manipulated th#tash duration the asynchrony be-
tween target and mask onset.

tively). Any difference between these conditions could
not be attributed to a bias effect, because—by the simple
notion of bias—the bias effect should cancel when both
alternatives are primed. A reliable benefit in the both-
primed condition relative to the neither-primed condition
is therefore diagnostic of a sensitivity effect. We model

Human performance in the experiment is indicated bythe study of (McKoon & Ratcliff, 2001), which included
the points and error bars in Figure 3 for flash durationsa word frequency manipulation.
of 15, 25, 35, and 45 msec. Across flash durations, the The human data shows a reliable benefit of study
accuracy benefit on congruent trials relative to neutral trifor low-frequency words (e.gwoMB, TWIG), but not
als is matched by an accuracy cost on incongruent trialsor high-frequency wordsBEEN, THAN), as shown in

diagnostic of a bias effect.

Figure 5a. (The difference between both and neither

Our model produces an excellent fit to the data, asonditions for high frequency words is nonsignificant.)

shown by the curves in Figure 3. The stimulus presen
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Figure 5: 2AFC accuracy for both- and neither-primed conditions, for low- and high-frequency words. (a) human data
from McKoon and Ratcliff (2001); (b) simulation results from our model.

frequency words. of response time versusyields the same result.)

Our model produces the same qualitative pattern as the . .
experimental data. The benefit of study diminishes with Discussion

word frequency, as reflected in the convergence of theye gescribed a probabilistic model that offers a compact,
two curves in Figure 5b. This result is due to the ad-forma| language for characterizing the time course of in-
justment of association frequencies: if the adjustment oformation transmission, and the changes in information
priors is turned off by settind\p = 0, the qualitative  transmission due to long-term repetition priming. The
pattern of results in Figure 5b is unaffected. model explains key phenomena in the long-term repe-
Because of the assumption thatis proportional to tition priming literature, including: the bias and sensi-
frequency, each experience with an item must resultivity effects, the dependence of the sensitivity effect on
in a fixed increment tax. However, the fixed incre- word frequency, and the time course of priming within
ment has a greater effect on performance for small a trial. We (Colagrosso, 2002; Mozer, Colagrosso, &
than larger, due to the normalization of the conditional Huber, 2002) have used this model to address other prim-
transmission probabilities: for the correct association,ing phenomena, including: the effects of target-distractor
P(X|Y) = a/(a + Nx). The derivative of this ex- similarity, the decay of bias effects over time, alterna-
pression,dP(X|Y)/0a = Nx/(a + Nx)?, specifies tive response paradigms including naming and matching,
the boost in transmission probability with a fixed incre- and response priming effects. The elegance of the model
ment ina. The derivative drops quadratically witl, ~ stems in part from the Bayesian framework, which dic-
but the effect on performance is even greater becaus@tes the mechanisms of inference within a pathway, and
this transmission probability influences the model’s out-in part from parameters that correspond directly to quan-
put on each of hundreds of time steps. A simple simudities of psychological interest, such as interitem similar-
lation shows the frequency effect more clearly. Figure 6ity () and degree of experience)(
simulates the accuracy for a fixed stimulus presentation Other models have been proposed to explain the data
duration as a function of. For equal increments ina,  addressed in in this paper, most notably REM (Schooler,
the accuracy gain is greater for a low frequency wordShiffrin, & Raaijmakers, 2001) and the counter model
than for a high frequency word. Figure 6b is a log-log (McKoon & Ratcliff, 2001; Ratcliff & McKoon, 1997).
plot of accuracy versua. The straight line indicates a Our model has some similarities with these models: we
power law of practice emerging from the model. (A plot share the assumption with REM that perceptual and
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Figure 6: (a) The accuracy of the model as a function of association frequenioy, a fixed flash duration. (b) A
log-log plot of accuracy versus association frequency.

memory systems adapt to achieve optimal performancéhe prediction of the model that associative strengthen-
over evolution and development; and we share the asng due to priming should be longlasting and association
sumption with the counter model of gradual accumula-specific. These properties appear to be robust character-
tion of decision-making evidence over time. However,istics of skill learning (Healy & Bourne, 1995).

the existing models have some serious weaknesses. REM
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