
Mechanisms of long-term repetition priming and skill refinement:
A probabilistic pathway model

Michael C. Mozer+∗, Michael D. Colagrosso+∗, David E. Huber#∗
+ Department of Computer Science

# Department of Psychology
∗ Institute of Cognitive Science

University of Colorado, Boulder, CO 80309
{mozer,colagrom,dhuber }@colorado.edu

Abstract

We address an omnipresent and pervasive form of hu-
man learning—skill refinement, the improvement in per-
formance of a cognitive or motor skill with practice. A
simple and well studied example of skill refinement is the
psychological phenomenon oflong-term repetition prim-
ing: Participants asked to identify briefly presented words
are more accurate if they recently viewed the word. We
simulate various phenomena of repetition priming using
a probabilistic model that characterizes the time course of
information transmission through processing pathways.
The model suggests two distinct mechanisms of adapta-
tion with experience, one that updates prior probabilities
of pathway outputs, and one that increases the instanta-
neous probability of information transmission through a
pathway. These two mechanisms loosely correspond to
bias and sensitivity effects that have been observed in ex-
perimental studies of priming. The mechanisms are ex-
tremely sensible from a rational perspective, and can also
explain phenomena of skill learning, such as the power
law of practice. Although other models have been pro-
posed of these phenomena, we argue for the probabilistic
pathway model on grounds of parsimony and the elegant
computational perspective it offers.

Acquisition of a cognitive or motor skill occurs in sev-
eral stages. First, an individual must learn the concep-
tual structures required for the task, including the basic
knowledge necessary to perform the task. Then, over a
long period of practice, the skill is refined, leading to
more fluent, efficient, and robust performance. Skill re-
finement is an omnipresent and pervasive form of learn-
ing. Although skill refinement is sometimes deliberate,
e.g., rehearsing a musical piece, it is often implicit, e.g.,
when typing, driving, reading, playing video games, etc.
Understanding skill refinement is fundamentally about
discovering the mechanisms by which one trial or per-
formance of the skill leads to improvements on the next.

Long-term repetition priming
Perhaps the most direct and easily studied manifesta-
tion of skill refinement in the psychological literature is
the phenomenon oflong-term repetition priming. In the
priming paradigm, participants engage in a series of ex-
perimental trials, and experience with a stimulus or re-
sponse on one trial results in more efficient processing
on subsequent trials. Efficiency is characterized in terms
of faster response times, lower error rates, or both. A typ-
ical long-term perceptual priming experiment consists of

a study phasein which participants are asked to read
a list of words one at a time, and atest phase, during
which they must respond to a series of brief, masked tar-
get words. Repetition priming occurs when a word from
the study phase influences performance during the test
phase. These experiments often vary theflash duration,
the time between target and mask onsets, and also utilize
a variety of response paradigms, including speaking the
target identity aloud (naming) and forced choice identifi-
cation between two alternatives (2AFC).

Priming is an implicit memory phenomenon: partici-
pants are not told the study and test phases are related,
and they do not try to recall study words during the test
phase as a deliberate strategy for performing the task.
Thus, priming is incidental to the test phase of the ex-
periment; it comes about as a result of experience and is
thus a form of skill refinement, where the “skill” here is
perceptual processing of a letter string.

A key question concerning repetition priming is
whether priming is due to increasedbias or increased
sensitivity. Although the terminology is borrowed from
signal detection theory, the meaning of these terms in the
context of priming is somewhat different. Bias means
that participants are more likely to report studied items
regardless of what word is presented for identification.
Sensitivity means that participants become better at per-
ceptual discrimination of the studied items. In a word
naming task, improved performance following priming
could be due either to increased bias or increased sensi-
tivity. Consequently, experimental paradigms have been
designed to unconfound these possibilities. The basic
result found in the long-term repetition priming litera-
ture is that priming reflects both increased bias and in-
creased sensitivity, although the sensitivity increase is ro-
bust only for low-frequency words or novel items.

The goal of this paper is to introduce a model of per-
formance and refinement of simple cognitive skills, such
as word reading. The model has two distinct learning
mechanisms which contribute to skill improvement with
practice. The model explains various data from psycho-
logical studies of long-term repetition priming. In this
paper, we model two experiments isolating bias and sen-
sitivity components to priming, and show a rough cor-
respondence between our two learning mechanisms and
these two effects. We compare our model to existing
models in the literature; our model shares aspects of ex-
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Figure 1: (a) Illustration of a perceptual pathway when the visual wordDIED is presented. The three curves show the
probabilities of alternative pathway outputs as a function of processing time. In this example, the pathway asymptotes
to the correct output with probability 1. (b) An HMM implementation of a pathway

isting models, but has an elegant and concise formulation
that makes it preferable on grounds of parsimony.

Modeling long-term repetition priming
The model we present is distilled from a broader theory
of cortical information transmission (Colagrosso, 2002).
The theory posits that cortical computation is performed
by a set of functionally specializedpathways. Each path-
way performs a primitive cognitive operation, e.g., vi-
sual word-form recognition, identification of semantic
features of visual objects, computation of spatial rela-
tionships, or construction of motor plans. To model the
effects of long-term repetition priming, we propose a
model with two pathways in cascade: aperceptualpath-
way that maps visual features to word identities, and a
responsepathway that takes the output of the perceptual
pathway and maps it to a task-appropriate response. We
assume the pathways communicate continuously during
processing and that communication is unidirectional.

Pathway as a dynamic belief network
We present a probabilistic model of a pathway, which
characterizes the time course of information processing
in a single stimulus presentation.

The inputs and outputs of a pathway are represented as
probability distributions over distinct alternatives. For-
mally, the input and output states of a pathway at a par-
ticular timet, denotedXt andYt, respectively, are dis-
crete random variables. Each variable can take on one
of a finite set of values selected from a multinomial dis-
tribution, with set sizeNX andNY for Xt andYt, re-
spectively. We wish to model the temporal dynamics of a
pathway, i.e., howXt andYt−1 combine to determineYt.
To link this notation to the repetition priming paradigm,
consider a perceptual pathway. To model the process-
ing of some wordx for a brief durationd, we would set
X1 = X2 = . . . = Xd = x (i.e., assigning the random
variables a particular valuex); to model the masking of
the word,Xt for t > d is reset to a uniform distribution
over alternatives. Given this input sequence correspond-
ing to a single trial, we can then observe the temporal
evolution of the pathway output (Figure 1a).

The relationship among the input and output vari-
ables is specified by the graphical model in Figure 1b,
known as adynamic belief network(Dean & Kanazawa,
1989; Kanazawa, Koller, & Russell, 1995). Each ar-

row corresponds to a conditional probability distribution
specifying the relationship between two dependent vari-
ables. For the reader unfamiliar with graphical models,
one should not be concerned with the direction of the
arrows. Casting the model as a generative process—
where the arrows flow from outputs to inputs in Fig-
ure 1b—has certain benefits. Nonetheless, inference can
be carried out in either direction: the graphical model al-
lows us to infer the probability distribution overYt given
X1, X2, . . . , Xt, denoted P(Yt|X1, X2, . . . , Xt). This
computation is performed via iterative Bayesian belief
revision. Figure 1b is simply a hidden Markov model
(HMM), used in a novel way. In typical usage, an HMM
is presented with a sequence of distinct inputs, whereas
we maintain the same input for many successive time
steps. Further, in typical usage, an HMM transitions
through a sequence of distinct hidden states, whereas we
attempt to converge with increasing confidence on a sin-
gle state.

In Figure 1b, the set of arrows fromXt to Yt cor-
responds to P(Xt|Yt), the instantaneous transmission
probability betweenXt and Yt. The set of arrows
from Yt−1 to Yt corresponds to P(Yt|Yt−1), and can
be thought of as ashort-term memoryin the pathway
output. In dynamic belief networks, it is typical to as-
sume temporal invariance of the conditional distribu-
tions, i.e., P(Xt|Yt) = P(X|Y ) and P(Yt|Yt−1) =
P(Y |Yprev) for all t. This assumption is equivalent to stat-
ing that the parameters of these distributions arehomo-
geneous—the relationship between pathway inputs and
outputs does not change on the brief time scale of in-
formation processing modeled. The two distributions,
P(X|Y ) and P(Y |Yprev), embody the knowledge in a
pathway. In the following two sections, we discuss these
forms of knowledge, which constitute the central claims
of the model.

Instantaneous transmission probabilities The in-
stantaneous transmission probability between someX =
i (the random variableX taking valuei) and someY = j
is formulated as P(X = i|Y = j) ∼ 1 + αij whereαij
denotes theassociation frequency, and is assumed to be
related to the number of previous experiences with the
association betweenX = i andY = j. (The probability
must be normalized; hence the definition is formulated
in terms of a proportionality instead of an equality. The
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constant 1 prevents renormalization by zero.) Increas-
ing αij increases the instantaneous probability of infor-
mation, and thus increases the rate at which information
aboutX is communicated toY .

Although the input representation is localist, in that
there is one value ofX for each possible input, one can
achieve the similarity structure inherent in a distributed
representation using explicit terms,γik, that specify the
similarity between input statesi andk:

P(X = i|Y = j) ∼ 1 +
∑
k

γikαkj

Short-term memory We assume that the transition
probability matrix fromYprev toY acts as a memory with
diffusion. That is, with probabilityβ, Y is reset to its
initial state and with probability(1 − β), Y remains in
the same state asYprev:

P(Y = i|Yprev = j) = (1− β)δij + βP(Y = i)

whereβ is the diffusion constant, P(Y ) is theprior dis-
tribution (the output of the pathway in the absence of any
input), andδij is the Kroniker delta (δij = 1 if i = j or
0 otherwise). Ifβ = 0, the transition matrix acts as a
perfect memory.

Processing dynamics The distribution overYt given
the input sequence,Xt ≡ {X1, X2, . . . , Xt}, can be
derived from Bayes’ theorem, based on the information
transmission probabilities, P(X|Y ), the pathway output
transition probabilities, P(Y |Yprev), and the prior distri-
bution P(Y = k) ≡ P(Y0 = k|X0):

P(Yt = k|Xt) ∼

NX∑
j=1

P(Xt = j)P(Xt = j|Yt = k)


[
NY∑
i=1

P(Yt−1 = i|Xt)P(Yt = k|Yt−1 = i)

]
To model two pathways in cascade, such as the percep-
tual and response pathways, the output of the percep-
tual pathway is provided as input to the response path-
way. Although the two pathways could be coupled into
a single graphical model, inference in this model is in-
tractable. Consequently, we approximate inference by
assuming that at each time step the perceptual pathway
output is copied to the response pathway input. This de-
coupling corresponds to the assumption of limited com-
munication between pathways.

Learning mechanisms
Our simulations assume that the model has already ac-
quired the basic knowledge necessary to perform a task.
Thus, theαij are initialized such that the model produces
the correct association asymptotically. Because theαij
are presumed to reflect the frequency with which an asso-
ciation has been exercised in the past, we initialize high-
frequency associations to have larger values.
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Figure 2: Change in the time course of activation of a
pathway resulting from (a) an adjustment to the instan-
taneous transmission probabilities and (b) an adjustment
to the priors

How does experience affect parameters of the model?
Based on the parameter definitions, two sets of parame-
ters might logically be adapted: the association frequen-
cies and the priors. By definition,αij reflects the fre-
quency that an association has been experienced. Conse-
quently, it should increase with each experience. Also by
definition, the output priors, P(Y ) should reflect statistics
of the environment. In a normative model, these statis-
tics should be updated over trials to accommodate non-
stationary and unknown environments.

For the association frequencies, we chose the simple
rule in whichαij is incremented by the constant∆α fol-
lowing a trial in which inputi leads to activation of out-
put j. To form an analogous rule for the prior, we define
the prior P(Y = j) in terms of secondary parameters,
P(Y = j) ∼ 1 + ρj , and updateρj by the constant∆ρ.

These two adaptation mechanisms cause the transmis-
sion of signals to become more efficient with experience,
i.e., pathway accuracy increases given a fixed amount
of processing time, or pathway response time decreases
to achieve a desired level of accuracy. Efficiency is re-
flected in a leftward shift of the curve relating process-
ing time to output probability. The association-frequency
update results in a more rapid integration of the output
probability (Figure 2a); the prior update raises the initial
probability of the response (Figure 2b).

Simulations
We explain data from two key studies of long-term rep-
etition priming. The purpose of presenting these simu-
lations is establish the plausibility of the model. Other
models have been developed to explain the same phe-
nomena, although our model can explain a broader range
of data (not presented in this paper). We we will con-
clude by discussing reasons to prefer our model.

Our simulations utilized two pathways which were
identical, except for the diffusion rates in the perceptual
and response pathways,βp = 0.05 andβr = 0.01, re-
spectively. The pathways were designed to produce 1-1
mappings, withNX = NY = 20 input and output states
for each pathway. We assume a similarity structure in
which each input state is reciprocally similar to two oth-
ers with a uniform similarity coefficientγ = 0.8. Rather
than assuming independentαij parameters for each as-
sociation, we used two values, one for high-frequency
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Figure 3: Accuracy of response for congruent, incon-
gruent, and neutral conditions of the Ratcliff & McK-
oon (1997, Experiment 3) study of bias effects in prim-
ing. The points are results from human subjects, and the
curves are produced by our model.

words,αhigh = 7.5, and one for low-frequency words,
αlow = 1.25, with ∆α = .625. Finally, the prior up-
date rule has one free parameter,∆ρ = 3.3. In total, the
model had seven independent parameters, although the
model’s behavior was insensitive to the exact parameter
values. One additional constraint was that we chose pa-
rameters such that one simulation time step corresponds
to one millisecond in the experimental studies.

Simulation 1: bias effect
One explanation for the facilitatory effect of repetition
priming is that study of the prime introduces a response
bias that increases the probability of reporting the prime
in the future. Ratcliff and McKoon (1997, Experiment
3) explored the bias account of priming in a 2AFC
paradigm. During the test phase, masked target words
were briefly presented, followed by a two alternative
forced choice between the target and a distractor alter-
native. The target and distractor were orthographically
similar, making the discrimination more difficult.

Three experimental conditions were contrasted: In the
congruentcondition, the target was presented during the
study phase. In anincongruentcondition, the distractor
was presented during the study phase. In a neutral con-
dition, neither was previously studied. For example, if
DIED was studied, then targetDIED with distractorLIED
would be a congruent trial; targetLIED with distractor
DIED would be an incongruent trial; and targetKICK with
distractorSICK would be a neutral trial. The experiment
also manipulated theflash duration, the asynchrony be-
tween target and mask onset.

Human performance in the experiment is indicated by
the points and error bars in Figure 3 for flash durations
of 15, 25, 35, and 45 msec. Across flash durations, the
accuracy benefit on congruent trials relative to neutral tri-
als is matched by an accuracy cost on incongruent trials,
diagnostic of a bias effect.

Our model produces an excellent fit to the data, as
shown by the curves in Figure 3. The stimulus presen-

tation durations are modeled by setting the perceptual
pathway input distribution such that P(Xt = i) = 1
for stimulusi over the flash duration, and following that
time, resetting the pathway input to the state of no infor-
mation, the uniform distribution. Figure 4a illustrates the
operation of a perceptual pathway for the stimulusDIED
with a flash duration of 25 msec. Following the removal
of the stimulus, the perceptual pathway decays back to its
prior distribution at a rate proportional toβp. In this ex-
ample,DIED has been previously studied, as indicated by
the fact thatDIED has a higher probability att = 0 than
any other word. The response pathway, shown in Figure
4b, accumulates evidence from the perceptual pathway,
reaching an asymptote as the perceptual pathway decays.
To produce a 2AFC response, we adopt the normative as-
sumption that the 2AFC response is computed from the
response pathway output, conditional on the output being
one of the two response alternatives.

Although two mechanisms of adaptation are built into
the model, the prior update rule is almost entirely re-
sponsible for the differences in performance among con-
ditions. Setting the association-frequency adjustment,
∆α, to zero has little impact on the simulation results.
Thus, the prior update rule roughly corresponds to the
notion of bias. Indeed, one can see this bias manifested
at t = 0 in Figure 4a. However, with increased flash
duration, the probability of correct identification of the
target approaches asymptote, the differences among con-
ditions diminish, and the bias disappears. A simple rule
that adjusted response probabilities independent of flash
duration could not account for the data; the temporal dy-
namics of the model are essential to explaining the phe-
nomenon.

Simulation 2: sensitivity effect
As a complement to the bias effect, the sensitivity ef-
fect is an improvement in perceptual discrimination of an
item as a result of previous study. To determine if a sensi-
tivity effect contributes to priming, several studies (Bow-
ers, 1999; McKoon and Ratcliff, 2001, Experiment 2;
Wagenmakers, Zeelenberg, and Raaijmakers, 2000) ex-
plored a 2AFC task in which a comparison is performed
between a condition in which both response alternatives
are primed and a condition in which neither response
alternative is primed (both andneither primed, respec-
tively). Any difference between these conditions could
not be attributed to a bias effect, because—by the simple
notion of bias—the bias effect should cancel when both
alternatives are primed. A reliable benefit in the both-
primed condition relative to the neither-primed condition
is therefore diagnostic of a sensitivity effect. We model
the study of (McKoon & Ratcliff, 2001), which included
a word frequency manipulation.

The human data shows a reliable benefit of study
for low-frequency words (e.g.,WOMB, TWIG), but not
for high-frequency words (BEEN, THAN), as shown in
Figure 5a. (The difference between both and neither
conditions for high frequency words is nonsignificant.)
Thus, priming can improve the discriminability of low-
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Figure 4: Output of the perceptual and response pathways (left and right panels) for a 25 msec presentation of the
targetDIED on a congruent trial
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Figure 5: 2AFC accuracy for both- and neither-primed conditions, for low- and high-frequency words. (a) human data
from McKoon and Ratcliff (2001); (b) simulation results from our model.

frequency words.

Our model produces the same qualitative pattern as the
experimental data. The benefit of study diminishes with
word frequency, as reflected in the convergence of the
two curves in Figure 5b. This result is due to the ad-
justment of association frequencies: if the adjustment of
priors is turned off by setting∆ρ = 0, the qualitative
pattern of results in Figure 5b is unaffected.

Because of the assumption thatα is proportional to
frequency, each experience with an item must result
in a fixed increment toα. However, the fixed incre-
ment has a greater effect on performance for smallα
than largeα, due to the normalization of the conditional
transmission probabilities: for the correct association,
P(X|Y ) = α/(α + NX). The derivative of this ex-
pression,∂P(X|Y )/∂α = NX/(α + NX)2, specifies
the boost in transmission probability with a fixed incre-
ment inα. The derivative drops quadratically withα,
but the effect on performance is even greater because
this transmission probability influences the model’s out-
put on each of hundreds of time steps. A simple simu-
lation shows the frequency effect more clearly. Figure 6
simulates the accuracy for a fixed stimulus presentation
duration as a function ofα. For equal increments inα,
the accuracy gain is greater for a low frequency word
than for a high frequency word. Figure 6b is a log-log
plot of accuracy versusα. The straight line indicates a
power law of practice emerging from the model. (A plot

of response time versusα yields the same result.)

Discussion
We described a probabilistic model that offers a compact,
formal language for characterizing the time course of in-
formation transmission, and the changes in information
transmission due to long-term repetition priming. The
model explains key phenomena in the long-term repe-
tition priming literature, including: the bias and sensi-
tivity effects, the dependence of the sensitivity effect on
word frequency, and the time course of priming within
a trial. We (Colagrosso, 2002; Mozer, Colagrosso, &
Huber, 2002) have used this model to address other prim-
ing phenomena, including: the effects of target-distractor
similarity, the decay of bias effects over time, alterna-
tive response paradigms including naming and matching,
and response priming effects. The elegance of the model
stems in part from the Bayesian framework, which dic-
tates the mechanisms of inference within a pathway, and
in part from parameters that correspond directly to quan-
tities of psychological interest, such as interitem similar-
ity (γ) and degree of experience (α).

Other models have been proposed to explain the data
addressed in in this paper, most notably REM (Schooler,
Shiffrin, & Raaijmakers, 2001) and the counter model
(McKoon & Ratcliff, 2001; Ratcliff & McKoon, 1997).
Our model has some similarities with these models: we
share the assumption with REM that perceptual and
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Figure 6: (a) The accuracy of the model as a function of association frequency,α, for a fixed flash duration. (b) A
log-log plot of accuracy versus association frequency.

memory systems adapt to achieve optimal performance
over evolution and development; and we share the as-
sumption with the counter model of gradual accumula-
tion of decision-making evidence over time. However,
the existing models have some serious weaknesses. REM
makes the unparsimonious assumption that an item’s lex-
ical trace is augmented with context, which allows the
model to behave as if it is taking into account prior prob-
abilities, whereas we model the priors directly. Further,
although REM is based on a probabilistic framework, it
gets much less leverage from the framework than does
our model. The counter model operates in a currency
of counts, and the rules for accruing counts are some-
what arbitrary, e.g., the stealing of counts by a studied
item from visually similar neighbors. Neither model of-
fers a natural explanation for increased sensitivity to low-
frequency words. And most importantly, neither model
has intrinsic temporal dynamics that lead to strong pre-
dictions concerning performance as a function of stimu-
lus exposure duration.

Our model has two virtues. First, despite its parsi-
mony, it offers a broad conceptual framework, not re-
stricted to a particular experimental paradigm or task.
Second, the two distinct mechanisms that explain bias
and sensitivity effects were introduced not simply to ex-
plain the data, but are motivated on logical grounds, in
contrast to the existing models. The mechanisms—one
that adjusts the pathway output prior probabilities and
the other that adjusts transmission probabilities within
a pathway—are extremely sensible mechanisms for an
adaptive system. The priors can be viewed as a simple
model of the environment, and updating this model is
appropriate if encountering an object in one’s environ-
ment implies that one is more likely to encounter the
object in the future. The transmission probabilities can
be viewed as a limited-capacity resource, and allocating
this resource to recently performed cognitive operations
is judicious assuming that they are likely to be required
again. These primitive mechanisms subserve not only
long-term priming, but also offer insight into the more
general phenomenon of skill refinement. One example of
this claim is the power law of practice the model exhibits,
ubiquitous in human performance. Another example is

the prediction of the model that associative strengthen-
ing due to priming should be longlasting and association
specific. These properties appear to be robust character-
istics of skill learning (Healy & Bourne, 1995).
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