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Abstract

Quinn and Eimas (1998) reported that young infants
include non-human animals (i.e., cats, horses, and fish)
in their category representation for humans. To account
for this surprising result, it was proposed that the
representation of humans by infants functions as an
attractor for non-human animals and is based on infants’
previous experience with humans. We report three
simulations that provide a computational basis for this
proposal. These simulations show that a “dual-network”
connectionist model that incorporates both bottom-up
(i.e., short-term memory) and top-down (i.e., long-term
memory) processing is sufficient to account for the
empirical results obtained with the infants.

Introduction

During the last decade, an increasing amount of
computational research, in particular, connectionist
modeling, has been devoted to the basic mechanisms
underlying human categorization (e.g., Anderson &
Fincham, 1996; Kruschke, 1992). Our own research has
focused on developing a computational model of early
infant categorization and testing that model empirically
(French, Mermillod, Quinn, & Mareschal, 2001;
Mareschal, & French, 1997; Mareschal, French, &
Quinn, 2000; Mareschal, Quinn, & French, 2002).

Quinn, Eimas, and Rosenkrantz (1993) observed a
surprising categorization asymmetry in young infants
between 3 and 4 months of age. After being exposed to
a series of photos of cats, the infants showed greater
interest in an image of a novel dog compared to a novel
cat. However, after exposure to a series of dogs, infants
of the same age showed no significantly different
interest in either a new dog or a new cat.

We hypothesized that this categorization
asymmetry was due to the greater perceptual variability
of dogs and to the fact that the ranges of perceptual
features of cats were largely included in those of dogs.
In short, when familiarized on dogs, a new cat was
perceived as something very much like what had
already been seen. But, when familiarized on cats, a
new dog was generally outside of what the infants had
been familiarized on (i.e., cats). The explanation
required that very young infant categorization of these
animals be essentially a bottom-up process.

For reasons that are given in detail elsewhere (see,
Mareschal & French, 1997; Mareschal et al., 2000) we
used a three-layer, non-linear autoencoder to model this
categorization asymmetry. The model predicted a
reversal of this categorization asymmetry when the
original variances and inclusion relationship between
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the two sets of stimuli was reversed by selecting a
highly varied set of cats and a set of dogs with low
variability. This prediction was subsequently verified
experimentally with young infants (French et al., 2001).
The model also predicted a disappearance of this
categorization asymmetry when the inclusion
relationship was removed by careful selection of cat and
dog breeds for the stimuli. Again, we were able to
empirically verify that the asymmetry did, in fact,
disappear (French, Mareschal, Mermillod, & Quinn,
2003). This work strongly supports the view that
categorization by young infants of certain types of
objects (cats, dogs, horses, cars, etc.) is almost
exclusively a bottom-up, statistically driven process
with no contribution from prior conceptual knowledge.

“Perceptual attractors’

Recently, however, Quinn and Eimas (1998) reported a
very interesting effect that suggests that this picture has
to be modified when human perceptual features are
involved. The essence of their experiment is as follows.
Using an experimental design identical to that used in
Quinn et al. (1993), they showed 3- and 4-month-old
infants images of a series of pairs of horses, followed by
a pair of test images consisting of a novel horse and a
human (or a fish or a car). As expected, the infants
looked longer at the novel category (humans, fish, and
cars) than the new exemplar from the familiarization
category (horse). However, when the infants were
familiarized on twelve images of humans, and then were
presented with an image of a novel human or a horse (or
a fish or a car), there was no significant increase in
looking time for the exemplar from the novel animal
categories, although there was a significant increase in
looking time for the car.

In other words, infants do not seem to be able to
recognize an animal exemplar from a novel category
after being familiarized with humans. The result was
initially attributed to a lack of power of the experiment.
However, two replications were done with a large
number of subjects and the effect remained. Further,
control experiments show that there is no discrimination
bias among the exemplars used in the experiments and
no spontaneous preference for exemplars of humans
over instances of non-human animals. It was also
suggested that the possibility of broader variance of the
human category, combined with overlapping
distributions of various perceptual features of the
images, might have produced categorization
asymmetries similar to those in Quinn et al. (1993) and



French et al. (2001). However, these hypotheses did not
stand up to closer scrutiny. By testing the typicality of
the pictures of humans, horses, and fish by naive
observers, Quinn and Eimas (1998) found that the
human category actually seems to be the least variable
of the three. (This was subsequently verified by an
analysis of the Gabor filtered images.)

To explain the asymmetrical categorization of
humans and non-human animals, Quinn and Eimas
(1998) suggested that the early exposure of the infants
to human visual stimuli might generate a global
category that included other animals. The human visual
stimuli might act as a powerful “perceptual attractor”
for stimuli sharing even a small number of common
perceptual attributes with humans.

The simple autoencoder model of Mareschal and
French (1997), Mareschal et al. (2001), and French et
al. (2001), cannot model the categorization asymmetry
observed by Quinn and Eimas (1998). We hypothesize
the need for a shift from the purely bottom-up
perceptual categorization paradigm of the simple
autoencoder to a model that includes a long-term
memory capacity that is able to influence purely
bottom-up categorization.

The remainder of this paper is organized as
follows. We first show that the standard autoencoder
model fails on the Quinn and Eimas (1998) data and
discuss why this occurred. We then present a dual-
network memory system (Ans & Rousset, 1997, 2000;
French, 1997) that involves a continual interaction
between two networks — one designed to process new
input, which we might loosely designate as the STM
network, the other designed for long-term storage,
which we call the LTM network. We first code the
images in terms of neurobiologically plausible spatial-
frequencies (Archambault, Gosselin, & Schyns, 2000;
French, Mermillod, Mareschal & Quinn, 2002). We
then show that, if this dual-network system has
previously stored in its LTM network prior perceptual
information about human images, and if this
information is re-introduced into STM when it is
processing new input, the STM network reproduces the
asymmetric categorization results of Quinn and Eimas
(1998). Finally, we examine the hypothesis that,
because the effect could be due to a simple enlargement
of the “human image” attractor basin, it might be
possible to obtain the same effect by simply enlarging
this basin by adding noise to the input when training the
network on perceptual images of humans. Our initial
investigation of this issue shows that the addition of
noise is not sufficient, implying that this process really
does require the co-mingling with the new data to be
learned by the network of previously-stored information
of the perceptual images of humans.

Contribution of LTM in young infants
Our hypothesis raises the question of early long-term
memory storage and consolidation of perceptual stimuli.
Previous research has shown evidence of early long-
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term memory storage under certain circumstances.
Rovee-Collier, Evancio, and Earley (1995) found that
3-month-old infants are capable of long-term storage as
long as the stimulus is “refreshed” within a certain time
window. They reported long-term retention for
reinforcement learning if the infants had a reminder
within 2 to 3 days after initial learning. In related
research, Merriman, Rovee-Collier, and Wilk (1997)
showed that long-term retention could influence a
categorization task by 3-month-old infants. They
showed that infants exposed to the stimuli during 3
daily sessions are capable of some degree of long-term
retention. In our study, we assume that young infants are
exposed to humans sufficiently often to allow
consolidation in long-term memory of this particularly
important perceptual stimulus class.

Dual-network memory systems

Near the end of the 1980’s a serious problem with many
connectionist models came to light — namely, the
problem of catastrophic forgetting (McCloskey &
Cohen, 1989), where new learning completely destroys
previously  learned  information. = McClelland,
McNaughton, and O’Reilly (1995) suggested that the
brain’s way of avoiding this problem was the
development of two complementary learning systems,
the hippocampus and the neocortex. New information
was learned in the hippocampus and old information
was stored out of harm’s way in the neocortex. At about
the same time, French (1997) and Ans & Rousset (1997,
2000)  suggested  dual-network  connectionist
architectures to overcome this problem. These were
coupled networks, continually exchanging information
by means of pseudopatterns (Robins, 1995). One
network served as a long-term storage network (LTM);
the other (STM) was used to learn new information.
When new information was to be learned by the STM, a
number of LTM pseudopatterns (each of which
reflected the contents of LTM) were produced by
sending noise through the LTM network and associating
this noise with its output. A series of LTM input/output
patterns generated in this way were then mixed with the
new patterns to be learned by the STM network.
Catastrophic ~ forgetting of previously learned
information was thereby effectively overcome.

Results show that for some categories young infants
do form (and presumably use) long-term memory traces.
This makes particularly appropriate the use of this dual-
network architecture to simulate the asymmetric
categorization results of Quinn and Eimas (1998). We
will see that this type of dual-network connectionist
model does, indeed, reproduce these results.

Simulation of the perceptual system
In order to simulate infant learning, we need a
neurobiologically plausible means of encoding
perceptual information from the visual environment. We
chose an encoding scheme that mimics the neural
processes from the retina to the V1 visual pathway



when in the presence of an image. This scheme involves
decomposing each image into a spatial frequency map
(Acerra, Burnod, & de Schonen, 2002; Archambault et
al., 2000; French et al., 2002). The neurobiological
plausibility of this encoding derives from the fact that
different columns in V1 are sensitive to different ranges
of spatial frequencies (De Valois & De Valois, 1988;
Tootell, Silverman, & De Valois, 1981). We were able
to characterize each image as a unique vector of 26 real
numbers each of which corresponded to an “energy”
value for a Gabor filter, simulating the activity of V1
complex cells (Sakai & Tanaka, 1999). Space
constraints do not allow us to present the details of this
encoding here; they can be found in French et al.
(2002).

Overview of thethree smulations

We present three simulations. The first shows that the
autoencoder model originally used by Mareschal and
French (1997) and Mareschal et al. (2000),
implementing the infant habituation theories of Sokolov
(1963), cannot simulate the empirical data in Quinn and
Eimas (1998). In Simulation 2, we show that the dual-
network model described above in which the LTM
network has stored encodings of visual images of
humans does correctly simulate the data in Quinn and
Eimas (1998). Finally, in Simulation 3, if the LTM
network has no prior learning of human images, the
dual-network model does not reproduce the results of
Quinn and Eimas (1998).

Simulation 1: Failure of the autoencoder
mode to simulate Quinn & Eimas (1998)

As discussed in the Introduction, the bottom-up
autoencoder model of Mareschal and French (1997) and
Mareschal et al. (2000) has been remarkably successful
in simulating (and predicting) categorization
performance for certain types of categories in young
infants. Autoencoders are connectionist networks that
learn to produce on output what is presented on input.
The original model used measurements of explicit
features to encode the images seen by the infants. This
encoding was made more neurobiologically plausible by
using spatial-frequency data to characterize the inputs
(French et al., 2002). This suggests that, at least for the
categories used (dog, cat, fish, horses, etc.), young
infant categorization was a bottom-up process driven by
the statistical distributions of the perceptual features of
the stimuli.

However, Quinn and Eimas (1998) used this
procedure with humans and horses (and cats and fish, as
well). To reiterate, they found that when familiarized on
horses, infants show, as expected, a significantly higher
interest thereafter when shown the image of a human
compared to that of a novel horse. However, when
exposed first to images of humans, there is subsequently
no significantly higher interest in horses (or the other
nonhuman animal species)!

In the following “dual-network™ simulations, we
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consider the LTM network to be the “top-down,
knowledge-based” network. This addition contrasts with
the purely “bottom-up” statistical learning of the
patterns in the environment by the simple autoencoder
without a LTM network.

Network

We used a standard 26-20-26 feedforward
backpropagation autoencoder network (learning rate:
0.1, momentum: 0.9). We chose a 26-20-26 architecture
to resemble, in terms of the input-hidden unit
compression, the architecture used in previous
simulations on perceptual categorization (French et al.,
2002; Mareschal & French, 1997; Mareschal et al.,
2000).

Stimuli

Using a spatial frequency encoding of the stimuli
(French et al., 2002), we simulated the visual acuity of
the 3- to 4-month-old infants (4 cycles/degree) for the
data used in Quinn and Eimas (1998). The vectors were
normalized between 0 and 1, filter by filter, across all of
the 36 items comprising the stimuli. For each run of the
program, the network was trained on 12 stimuli from
one category (either Horses or Humans), and then tested
on the 6 remaining stimuli from the training category
and 6 randomly chosen stimuli from the 18 stimuli in
the remaining category.

Procedure

As in the original simulations (French et al., 2002;
Mareschal & French, 1997; Mareschal et al., 2000), the
autoencoder was trained on 12 randomly selected
stimuli from one of the two categories (each category
had 18 stimuli total). The stimuli were presented to the
network in pairs (to simulate presenting the infants with
pairs of images) for a fixed duration of 250 epochs
(corresponding to the 15-second presentation for each
pair of images shown to the infants).

Error
0.5 O New humans

B New hor ses

0.2

0.1

Human Hor se
Training category
Figure 1. Network error produced by the autoencoder
after training on Human and Horse -categories.
Exemplars of the non-training category produce
significant increases in error compared to novel
exemplars from the training category.

Upon completion of the training phase, the 6
remaining test vectors from the training category were
presented to the network, along with the 6 randomly
chosen vectors from the other category. The observed
output of the network was compared to the original



input in order to give an error value that measured how
well the network was able to autoassociate each of the
test patterns. All results were averaged over 50 runs.

Results

The autoencoder produced a significant increase in
error when trained on images from the Human category
and tested on novel humans compared to horse
exemplars (E(1, 98) = 337.2, p<.001). When the
network was trained on the category Horse, it also
produced a significant increase in error (E(1, 98) =
111.74, p<.001). (Figure 1).

Discussion

The model’s largely symmetric increase in error
was not observed by Quinn and Eimas (1998). They
found that when familiarized with images of humans,
the preference scores for horses and novel humans were
not significantly different from chance, whereas when
familiarized with images of horses and tested on
humans, the preference scores for humans were
significantly above chance.

Simulation 2: LTM storage of human images

Overview of the simulation

In order to examine the influence of prior learning
and storage in LTM of the human category, we used the
dual-network memory model proposed by French
(1997), consisting of a long-term storage network (LTM
network), where previously learned information is
stored, and a short-term storage network (STM
network), where new information is learned. We first
trained the LTM network on 18 exemplars of humans in
different postures and positions. Once this was
completed, we then compared the categorization
performance of the STM network in two situations. In
the first, we trained it on 12 images of humans
(randomly selected from a second set of 18 and not the
same images as those used to train the LTM network) as
in Simulation 1. During learning of the human images,
the STM network also received input from the LTM
network. After the completion of this familiarization
phase on human images, the STM network was tested
on the 6 remaining images from the human image set
and 6 randomly selected images from the horse image
set. The network’s categorization performance on these
two sets of test images was compared.

We hypothesized that the influence of the
representations of humans in LTM on learning in the
STM network would produce the categorization
asymmetry observed in Quinn and Eimas (1998).

Material

The dual-network memory model is composed of
two neural networks (Figure 2) called the STM network
and LTM network. Although this is not a requirement of
the model, in this simulation each of these networks is a
26-20-26 feedforward backpropagation autoencoder
network identical to the one used in Simulation 1. The
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LTM network was first trained on a set of images of
humans. Then the STM network was simultaneously
trained on the new stimuli from the environment and
pseudopatterns generated by the LTM network. All
parameters of the STM network were identical to those
of the LTM network (learning rate of 0.1, momentum of
0.9, and a Fahlman offset of 0.1).

Error rate

Pseudopatte

Trained on 18
exemplars of humans =

Training on the experimental categories +

pseudopatterns from LTM memory
Figure 2. The dual-network memory model.

Stimuli

The human-image stimuli used to train the LTM
network were 18 pictures of different humans in various
positions as might be seen by a 3-month-old infant in
different situations. Each of these images was uniquely
encoded as a 26-element vector, each of whose values
represented the energy value of a particular Gabor filter.

Procedure

We first created a Human category representation
in the LTM network based on the learning of 18
exemplars of humans taken from real-life settings. Each
stimulus was filtered with an average acuity of 2 cycles
per degree for the category learned by the LTM network
(to simulate the visual acuity of infants before 3 to 4
months of age when, presumably, they would have
acquired this category). In the test phase (simulating 3-
to 4-month-old infants) this visual acuity was increased
to 4 cycles per degree. The number of training epochs
for the LTM network was set at 1000 in order to create
a reasonably reliable representation of the Human
category in this network.

We then tested the influence of that LTM
representation on category learning in the STM
network. Each time a set of patterns (in the present
simulation each set contains two patterns) was presented
to the STM network, 4 new pseudopatterns were
generated by the LTM memory. Feedforward-
backpropagation weight changes were then made for
patterns to be learned, as well as for each of the four
pseudopatterns. For each learning epoch, 4 new LTM
pseudopatterns were generated. In this way, a reflection
of the contents of LTM is learned by the STM network,
along with the new patterns. The maximum number of
training epochs was raised from 250 to 2000 epochs in



order to allow the STM network to develop reliable
internal representations of the new patterns from the
environment combined with the contents from LTM
memory. The ratio of pseudopatterns to real patterns is
2:1 in order to ensure the STM network is provided
with a relatively good reflection of the contents of
LTM.

0.25 4
O New human
021 B New horse

« 0.15 -
°
w o114

0.05 4

0

Humans Horses

Training category
Figure 3. Neural network error produced by the STM
autoencoder after training on Humans and Horses with
input from the LTM network previously trained on
exemplars from the Human category.

Results

The STM network was trained, as in Simulation 1,
first on images from the Human category (while also
receiving pseudopattern input from the LTM network).
It was then tested on novel images from the Human
category and images from the Horse category. As in
Quinn and Eimas (1998), now there was no significant
increase in error for the test exemplars in the Horse
category compared to novel exemplars from the Human
category (E(1, 98) = .854, p>.358). The STM network
was then re-initialized and trained on images from the
Horse category (again, while receiving pseudopattern
input from the LTM network) and, after this
familiarization phase, was tested on novel images of
horses and images of humans. In this case there was a
significant increase in error for the human images
compared to the novel horse images, as in Quinn and
Eimas (1998) (E(1, 98) = 86.42, p<.001). See Figure 3.

Discussion

These results, using a dual-network model of
memory (French, 1997), support the hypothesis that the
asymmetric categorization observed in Quinn and
Eimas (1998), which we could not simulate with a
simple autoencoder, could be due to the influence on
STM of a representation of the Human category in
LTM.

Simulation 3: Thecontentsof LTM

Overview of the simulation

Our hypothesis is that the dual-network memory
model was able to reproduce the results of Quinn and
Eimas (1998) because the LTM network contained a
representation of Humans that influenced processing in
the STM network. In short, this LTM information was
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increasing the attractor basin of Humans, causing it to
largely include Horses, thereby giving rise to the
asymmetry reported by Quinn and Eimas (1998).
However, it might be possible that the contribution of
pseudopatterns from the LTM network alone, without
this network necessarily having learned anything, could
be enough to increase the Human attractor basin,
thereby giving rise to the observed categorization
asymmetry. This would be equivalent to adding noise to
the patterns to be learned by the STM.

To test this we ran the dual-network model without
the LTM network having first learned the Human
category, but with it nonetheless contributing
pseudopatterns when the STM network was learning
new patterns.

Material and procedure

The dual-network was identical in all respects to
the one run in Simulation 2. The only difference is that
the LTM network was left completely untrained. The
training and testing procedures were identical to those
in Simulation 2.

Results

The results (Figure 4) show that the network
returns to the symmetric categorization situation of
Simulation 1 in which a simple autoencoder was used.
In other words, the content of the LTM network is,
indeed, influencing learning in the STM network as it
learns new patterns.

0.8 mdnew human
0.6 W new horse
2 04
1]
0.2
0
Humans Horses

Training category

Figure 4. When the LTM network is “empty” and
generates pseudopatterns that are simply noise, the
STM categorization performance returns to the
performance of the autoencoder model (see Figure 1).

The autoencoder produced a significant increase in
error when trained on the Human category and tested on
novel humans compared to horse exemplars (F(1, 98) =
142.87, p<.001). When the network was trained on the
Horse category, it also produced a significant increase
in error (E(1, 98) = 43.09, p<.001).

Predictions

There are a number of implications of this work on
the categorization processes of infants as they grow
older and their long-term memory capacity develops.
The most important of these is that we should see the
disappearance, or at least a significant attenuation, of
the purely bottom-up categorization asymmetries
observed in Quinn et al. (1993) and French et al.
(2001).



It is also perhaps reasonable to assume that there is
nothing special about the Human category that was
stored in the LTM network in our model. The prediction
is that any category to which young infants are exposed
repeatedly would also serve as an attractor. Presumably,
this hypothesis could be tested by artificially exposing
young infants repeatedly to a particular category.

Conclusions

This work represents a first step in the study of the
transition from the largely bottom-up processing of
category information by very young infants to the
categorization mechanisms that are integrated with the
long-term memory capacities of the developing infant.
Many questions remain about how this change takes
place, but we have shown the important contribution of
concepts stored in long-term memory to the otherwise
largely bottom-up learning of young infants.
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