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Abstract nen, 1999), or foregoing parse structures altogether in order
_ to concentrate on more tractable subproblems such as clause
Subsymbolic systems have been successfully used to model jdentification (Hammertori, 2001) and grammaticality judge-

several aspects of human language processing. Subsymbolic yants (Lawrence et al., 2000; Alien and Seidenberg, 1999:
parsers are appealing because they allow combining syntactic, ! . = ’

semantic, and thematic constraints in sentence interpretation Christiansen and Chater, 1999). However, a promising new
and revising that interpretation as each word is read in. These approach scales up a detailed artificial grammar to reflect fre-
parsers are also cognitively plausible: processing is robust and quency of structures from the Penn Treebznk (Marcus et al.,

multiple interpretations are simultaneously activated when the ' 1993) to account for a wide variety of psycholinguistic phe-
input is ambiguous. Yet, it has been very difficult to scale them nomena (Rohde, 2002).

up to realistic language. They have limited memory capacity,
training takes a long time, and itis difficult to represent linguis- Why is subsymbolic parsing a desirable goal? The main
tic structure. In this study, we propose to scale up the subsym- promise for both cognitive modeling and engineering is that

bolic approach by utilizing semantic self-organization. The e ~
resulting architecture, INSOMET, was trained on seman- it accurately accounts for the holistic nature and nonmono

tic representations of the newly-releasedi GO Redwoods tonicity of natural language processing. Over the course of
HPSG Treebank of annotated sentences from the VerbMobil the parse, the network maintains a holistic parse representa-
project. The results show that INSOMN is able to accu- tion at the output. Words processed later in a sentence can

rately represent the semantic dependencies while demonstrat- change the developing representation so that the network can
ing expectations and defaults, coactivation of multiple inter-

pretations, and robust parsing of noisy input. recover from incorrect earlier decisions. This way, the net-
work can more effectively resolve lexical ambiguities, attach-
Introduction ments, and anaphoric references during the course of pars-

A number of researchers utilize neural network (i.e., subsym'—ng' In_de_ed, m'.“"t'ple Interpretations are malntalned_ n pa_ral-
bolic) models to gain insight into human language processint_:}éaltunttII dlsan}b|guz%t|ng w:jfosrm.atloh 'iggg?&mesd 'niéhf‘t ml_
Such systems develop distributed representations automalgg_s)_r;amsc ‘ ic?lle’r;l?? Tr\]/\'/ln.rlev,'d. o ac hona etal,
cally, giving rise to a variety of interesting cognitive phenom- 2.[MacDonald, 1993). This is evidently how humans pro-
ena. For example, neural networks have been used to modgfSS Natural language, what good parsers should do, and what
how syntactic, semantic, and thematic constraints are searﬁ-leSyrnbOIIC parsers promise to dellv'er.
lessly integrated to interpret linguistic data, lexical errors re- The purpose of the present study is to show that deep se-
sulting from memory interference and overloading, aphasignantic parsing of sentences from real-world dialogues is pos-
and dyslexic impairments resulting from physical damage, biSible using neural networks: a subsymbolic system can be
ases, defaults and expectations that emerge from training hi§@ined to read a sentence with complex grammatical structure
tory, as well as robust and graceful degradation with noisy anénto & holistic representation of the semantic features and de-
incomplete or conflicting input (Allen and Seidenberg, 1999;Pendencies of the sentence. This research breaks new ground
McCielland and Kawamoto. 1986; Miikkuiainen, 199/, 1993; in two important respects. First, the model described in this
Piaut and Shaiiice, 1993; St. John and McClieiland, 1990). Paper, the Incremental Nonmonotonic Self-Organization of
Yet, despite their many attractive characteristics, neuraMeaning Network (INSOMMT), is the first subsymbolic
networks have proven very difficult to scale up to parsing re-System to be applied to deep semantic representations derived
alistic language. Training takes a long time, fixed-size vecfrom a hand-annotated treebank of real-world sentences. Sec-
tors make learning long-distance dependencies difficult, an@"d, whereas almost all previous work has focused on the
the linguistic formalism used can impose architectural confepresentation and learning of syntactic tree structures (such
straints, such as binary parse trees that are very deep and fore@ those in the Penn Treebank), the semantic representations
more information to be compressed in higher nodes, therebtken up in this study are actually dependency graphs. The
making the sentence constituents harder to recover. Progre&8allenge of developing a subsymbolic scheme for handling
has been made by introducing a number of shortcuts such &aph structures led to self-organizing the case-role frames
concentrating on small artificial corpora with straightforward that serve as the graph nodes. This semantic self-organization
linguistic characteristics (Berg, 1992; Ho and Chan, 2001in turn results in a nu_mbe_r of interesting cognitive behaviors
Sharkey and Sharkey, 1992), building in crucial linguistic that will be analyzed in this paper.
heuristics such as Minimal Attachment and Right Associa- The INSOMNET parser combines a standard Simple Re-
tion (Lane and Henderson, 2001; Mayberry and Miikkulai- current Network (SRN; Eimari, 1990) with a map of input
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| have got timein the morning . MRS in detail. Instead, we illustrate how MRS is used in IN-

(ho: prop) SOMNET by example. The MRS dependency graph for the
SA sentencéhave got time in the morningis shown in figure|1.
A1 This representation consists of 12 frames connected with arcs
(30 FRI)}+=={hL: have] in} whose labels indicate the type of semantic dependency.
B 1X \AO \\\\\\A3 The MRS graph in figure 1 can be rendered as a set
hodet T EV\ NN BY of frames to serve as targets for INSOMN (figure 2).
RE ‘oY) (X2 FRI==—{(né:. the Each frame has the forri Handle | Semantic-Relation
) Az I RE Subcategorization-TypeArgument-List ] For example, the
By A0 = : graph node labelell in the middle of figure 1 is given as the
X - morning frame[ h1 | have| AL/A3/EV | x0 x1 €0 Jin figure 2. The first
(h4: udef }-m==(h5: time) in | element,hl, is theHandle (node label) of the frame: other

Figure 1: MRS Dependency Graph. This graph represents the frames can include this handle in their slots, representing a
sentencéhave got time in the morning. The top node in the graph, dependency to this frame. For instanbé,fills the state-of-
labelednO, has valueprop, which tells us that this is a declarative affairs (SA) slot in the topmost nodd\0 prop, as indicated
sentence. Théave node is the main predication of the sentence, by the labeled arc in figure 1 (also shown in detaiiin 2). The

and so serves as tistate-of-affairs(the SA arc) for theprop. The : . -
subject &rgl in MRS; hereAl) of have s afull referential index ~ S€cond elemenhave gives theSemantic-Relatio(the node

(FRI, with features such as gender, number, and person not showflue) that this frame represents. The thitd/A3/EV, rep-

in the figure). It is also thénstance(IX) of the | node, and the resents theSubcategorization-Typand is shorthand for the
bogni_vgflalﬁ:'e((jBt;/)tﬁf thte_dgtermlneRnéc)ef g@dﬁy trattr?O\éQmStt“g arguments that the semantic-relation takes. In this case, it in-
node (indicate gestrictionarc, RE). Similarly, the direct ob- ; ; " : X
ject (hereA3), of h)r:lveis also aFRI, the instance gf théme node. dlca}tes thaha\_/e Is a ransitive verb with three arguments:
Third, have has aneventarc EV that refers to arEV node (with ~ SUbjectAl, objectA3, and evenEV. The arc labels them-
features, such as aspect, mood, and tense not shown in the figuréglves are abbreviations for MRS argument names (&1g.,
There is one final set of nodesnorning, governed by the deter- isargl, EV is evenf BV is bound variablg. The rest of the
miner the, also has an instance that is an object of the prepositiogramexQ x1 eOlists the handles (fillers) for thegeguments

in. This sentence is ambiguous: in one interpretation the prepositio -
attaches to the vetiave(it is “in the morning” when I have time ), these handles refer to the other nodes in the MRS graph.

and another it attaches to the preceding rime (it is “time in the It is important to point out two main properties of handles.
morning” that | have ). The two senses are illustrated in the figure First, a given handle does not uniquely identify a case-role
by literally attaching a node witim to thehavenode and to théme frame (node) in the MRS graph. Rather, it can be used to

node. Upon disambiguation, one or the other of these interpretatio ; : _
would be selected, but both remain coactivated until then. The dig.-%fer to several frames. This convention allows represent

tinction is made in MRS by node-sharing (attachment) and bjnthe INg linguistic relations that are optional (in both where and
node’sA0 arc, which points to th&V node in the verb-attachment whether they may occur), or that may occur more than once
case, or to théme node’s instancERI in the noun-attachment case. and therefore may require more than one frame to represent,
such as adjuncts (as in the example above), modifiers (such as
adjectives and relative clauses), or verb-particle constructions
e.g., ‘work somethingout’). Internally, we do use a unique
esignator called a subhandle (which is not part of the MRS
ormalism) to refer to each frame uniquely.

words (SARDNET; Mayberry and Miikkuiainen, 1999) and

a novel self-organized output representation for semantic d
pendency graphs. The parser was trained on the Minim
Recursion Semantics (MRS; Copestake et/al., 2001) reprg

sentations of sentences from theN\lGO Redwoods Head- ; ; ;
. The second property illustrates an important difference be-
driven Phrase Structure Grammar (HPSG) Treeb®®e(  yyeen symbolic and subsymbolic representations. In the orig-

et al., 2002) under development at the Center for the Study, .| MRS ification. the handl bit desianat
of Language and Information (CSLI) at Stanford Univer-rﬁa spectication, the nandies are arofrary cesignators

X h . ) V=" (e.g., the labehl has no meaning in itself). However, in
sity. This treebank incorporates deep semantic descriptiong,q approach taken in this study, the handles are represented

of sentences taken from the recently completed VerbMobil,s patterns of activation. These patterns are learned during
project (Wanister, 2000). We report the performance of g qining so that the handles actually come to encode semantic
network on the MRS dependency graphs, and illustrate it ctyre. In our example, for instance, the hamdiactually
cognitive plausiblity on prepositional phrase attachment, eX;afers to the two frameg Have| A1/A3/EV | X0 x1 €0 Jand
pectations and defaults, and robustness to dysfluencies apg}, | AO/A3 | e0x2] Thé pattern corresponding to the han-
grammatical errors in the input. The results demonstrate thafie p1 js obtained as the average of the subhandles of these
subsymbolic systems can achieve incremental, nonmonotoni@, frames. The subhandle representations are in turn formed
semantic parsing of sentences of realistic complexity. by Recursive Auto-Associative Memory (RAAM: Poiiack,
. 1990) of the dependency graph. Starting from the semantic

Sentence Representation featu)res atthe Iepaves, thiys %rogess aIIowsgthe subhandles to be
In order to process a sentence from the Redwoods Tregenerated recursively for each node in the graph. This encod-
bank into its proper semantic representation, we need to bigg process results in subsymbolic handles that are similar for
able to represent semantic dependency graphs. These &fignilar structures which allows the system to generalize well
acyclic graphs that represent the Minimal Recursion Semano new sentences.
tics (MRS;|Copestake etjal., 2001) interpretation of the sen-
tence. MRS is a flat representation scheme where nodes rep- Network Architecture

resent case-role frames and arcs represent dependencies gz |NSOMNET sentence parsing architecture (figure 2)
tween them. Unfortunately space does not permit reviewingsists of four components:
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"1 have got timein themorning ."
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Figure 2: The INSOMNET Architecture. This snapshot shows the network at the end of reading the seritéase got time in the

morning, together with three of the decoded MRS frames corresponding to the Wwavdstime and the topmogprop. The shaded units

represent unit activations between 0.0 and 1.0. The SRN component reads in the sentence one word at a time. The representation for the
current input wordnorning is shown at the top left. A unit corresponding to the current input word is activated on the SARIDPUt map

(at top center) at a value of 1.0 and the rest of the map is decayed by a factor of 0.9. The three output frames shown in the figure are actually
decodings of the patterns (the multi-shaded squares) iRrimae Map(bottom center). The other patterns in the Frame Map correspond to

the other nodes in the full MRS dependency graph shown in figure 1; their decodings are not shown to save space. Processing in the network
proceeds as follows: as each word is read into the input buffer, it is both mapped onto the input map and propagated to the hidden layer. A
copy of the hidden layer is then saved (asphevious hidden lay@ro be used during the next time step. The hidden layer is propagated to

the Frame Map, which is 86 x 16 map ofFrame Nodeseach consisting of 100 units (shown her&as3 patterns). The units in each Frame

Node are connected through a set of shared weights that comprisethe Node Decoddp an output layer representing a case-role frame.

In this way, the Frame Map can be seen as a second hidden layer. Thus, for example, the Frame Node in the top right of the map decodes into
the case-role framghl | have | AL/A3/EV | x0 x1 e0 ] The Frame Map is self-organized with the subhandles representing these case-role
frame representations. Note that the argument slots and their fillers are bound together by virtue of the shared handle representation (such as
h1 betweerhaveand theSA slot of prop).

1. A SRN trained with BPTT to read in the input sequence. occurs more than once, the next closest available unit is ac-

2. A SARDNET map that retains an exponentially decayingtivated. Together With_ the current input and pre_vious hidden
activation of the input sequence. layer, the SARDMT is used as input to the hidden layer.

3. A Self-Organized Frame Map that encodes the MRS delhe SARDNET identifies each input token exactly, informa-
tion that would otherwise be lost in a long sequence of SRN

perdency graph. iterations (Mayberry and Miikkulainen, 1599
4. A Frame Node Decoder that generates the output frame. & ons (May grry and VKU am_"n’ = )_' ) )
representations. The self-organized Frame Map is the main innovation of

INSOMNET. Each node in the map itself consists of a hum-

The Simple Recurrent Network (SRN; Eiman, 1990) is theber of units. As a result of processing the input sequence,
standard neural network architecture for sequence process-number of these nodes will be activated, that is, a par-
ing, and it forms the basis for the INSOMY architecture ticular pattern of activation appears over the units of these
as well. The SRN reads a sequence of distributed word reglodes. Through the weights in the Frame Node Decoder,
resentations as input and forms the MRS dependency graghese patterns are decoded into the corresponding MRS case-
of the sentence at the output. At each time step, a copy of th@le frames. The same weights are used for each node in
hidden layer is saved and used as input during the next stef}e map. This weight-sharing enforces generalization among
together with the next word. In this way, each new word is in-cOmmon elements across the many frames in any given MRS
terpreted in the context of the entire sequence read so far, aft¢pendency graph.
the final parse result is gradually formed at the output. A par- The Frame Map is self-organized based on the subhandle
ticularly effective variant of the SRN uses backpropagationtepresentations. This process serves to identify which nodes
through-time (BPTT; Wiliiams and Zipser, 1989; Lawrence in the Frame Map correspond to which case-role frames in the
etail., 2000) to improve the network’s ability to process longerMRS structure. Because the subhandles are distributed repre-
sequences. With BPTT, the SRN is effectively trained as if itsentations of case-role frames, similar frames will cluster to-
were a multi-layer feedforward network, with the constraintgether on the map. Determiners will tend to occupy one sec-
that the weights between each layer are shared. tion of the map, the various types of verbs another, nouns yet

The SARDNET is included to solve the long-term mem- another, and so on. However, although each node becomes
ory problem of the SRN. SARDAIT is a self-organized map tuned to particular kinds of frames, no particular Frame Node
of word representations (James and Miikkuiainen, 1995). Ass dedicated to any given frame. Rather, through different ac-
each word from the input sequence is read in, its correspondivation patterns over their units, the nodes are flexible enough
ing unit in the map is activated at a value of 1.0, and the resto represent different frames, depending on what is needed
of the assembly decayed by a factor of 0.9. If an input wordo represent the input sequence. For example in figure 2, the
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Frame Map node toward the upper right corner decodes to the:
[h1 | have| AL/A3/EV | x0 x1 e0 ]case-role frame for this .|
particular sentence. In another sentence, it could represent a
different verb with a slightly different subcategorization type. °®[| 7«
This feature of the architecture makes the Frame Map able te; ||~ -
represent semantic dependency graphs dynamically, enhanc-
ing generalization. e T o
During training of the SRN, the Frame Node serves as as| ¢, o
second hidden layer and the case-role frames as the outpyt |+~ A
layer. The appropriate frames are presented as targets for the
Frame Node layer, and the resulting error signals are backe: fj: ]
propagated through the Frame Node Decoder weights to the,
Frame Node layer and on up to the first hidden layer. '
At the same time, a RAAM network is trained to form °*
the subhandle representations, and the current representay. ‘ ‘ ‘ ‘ ‘
tions are used to organize the Frame Map. The input word ° 20 e o0 oo 1000 1200
representations are developed as part of the SRN traininlgigure 3: Sentence Processing PerformanceThe average pro-

i i innRortion of frame constituents in the test set that were correctly pro-
using the FGREP method (Forming Global Representatlonguced by INSOMNet over four splits of the data during the course

with Extended Backpropagation; Miikkuiainen, 1993) and uf yrajning are shown here, broken down by the constituent type.
the SARDNET map is self-organized with the current repre- The easiest for the network to learn were the arguments that had
sentations. Eventually all these representations converge, and fillers (“N”), subcategorization types (“T"), and features (“F"),

the networks learns to generate the correct MRS dependenﬁg clustered near the top of the graph. The network also had lit-

; _ ; trouble generalizing the handles (“H"). More difficult were the
graph and the corresponding case-role frames as its OUtput'fiIIed arguments (“A"), and the most troublesome were the semantic

. . (“S”) representations, presumably due to their sparsity in the data.
Input Data, Training, and Experiments The “X” curve (black squares) gives the average of all these com-

. . onents. After 1200 epochs, the average performance was just over
The subsymbolic word representations developed by FGRER3q;, The performance on the training set was 95%, indicating that

capture how the words are used in the sentences, anfle network indeed generalizes very well.
therefore serve as semantic representations in themselves.
For this reason, the FGREP representations for the inpusubcategorization-Typ&eatures andArgumentsas well as
words were used also as the fillers for semantic-relation®ull fillers for those arguments that are not realized in the
in the MRS frames. For instance in our running exam-case-role frame. The main result is that the network is able
ple, the original semantic relatiohaverel, time_massrel,  to generate detailed MRS representations in its output. It
_def_-morning_rel, and_in_temp_rel were replaced by the in- performs very well on all components except semantic rela-
put wordshave, time, morning, andin, respectively. These tions, which is not surprising since the data was more sparse
changes reduced the lexicon from over 1100 tokens to jusvith respect to semantic relations than the other components.
over 600. All other tokens, such as the semantic relations thadverall, 93% of the target MRS tokens were correctly gener-
do not correspond to an input word (e.grpp anddef), as  ated, suggesting that the network had indeed learned to parse
well as the 40 subcategorization types (eAf)/A3/EV) and  sentences into MRS dependency graphs.
the basic semantic features that occurred in the corpus, were The most interesting behavior of INSOMN, however,
given random representations. All the representations (bottakes place on top of generating the correct output in the end.
FGREP and random) were 40-dimensional vectors between Qis these behaviors that make INSOMMNa potentially use-
and 1. ful cognitive model.
_ Allmorphemes were represented as separate tokens in thegirst, the parsing process is incremental and nonmono-
input sequence. For example, in the sentahb®ok -s like  tonic. As words are read in, the patterns in the Frame Map
i am go -ing to be pretty busy, the morphemessand-ing  fluctuate according to the network’s current interpretation as
are processed in separate steps. Such preprocessing is R|| as its expectation of how the sentence will continue. In
strictly necessary, but it allows focusing the study on semantigarticular, the network can revise its interpretation as it reads
processing without confounding it with morphology. more of a sentence in, sometimes to the point of deactivating
A total of 4000 sentences from the Redwoods corpus wergome frames and activating others.
used: 3200 for training, and the remaining 800 for testing. - gecong, INSOMMNT represents ambiguities explicitly,
The shortest sentences had five frames in their MRS repreyih is apparently also how humans do it in the absence

sentation, the longest had 25. Four separate random splits gf ~ontextual clues. Several PR :
' . . psycholinguistic studies suggest
the data were used to test the INSOMRS performance, as ot muyltiple interpretations can be coactivated in parallel in

will be described in the next section. the face of various types of ambiguity (Onifer and Swinney,
1981; MacDonaid et al/, 1992; MacDonald, 1993). Indeed,
Results there is evidence that prepositional phrases may modify sev-
Figure |3 shows the average performance on the test setal words at the same timz (Sthke, 1997). Our recurring
over the four splits measured as the proportion of fillersexample,l have got time in the morning can be used to
generated correctly. Separate plots are shown for the difillustrate this behavior in INSOMNT as well. Regardless
ferent MRS components, i.edandles Semantic-Relations of whether this sentence is new to INSOMN (as it was

,,,,,,,
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"I have got timein themorning ."

]

| =]
morning

Frame Map decoded frames
=] B
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Figure 4: Representing Ambiguity. The sentencé have got time in the morning is an example of an ambiguous prepositional phrase
attachment as was shown in figure 1. Both interpretations (i.e., the prepasitaitached either to the vetiave or to the nourtime)

are actually present in the Redwoods corpus, although in separate sentences. The network learns to exhibit both possibilities. The more
likely attachment (i.e., to the verb), yields a preposition frameith the same handlel as the verb frameaveto which it attaches. The

other possibility is also activated: in this case the preposition frame shares a h&mdlh the noun frameaime. Allowing such multiple
representations to be explicitly activated is one of the main advantages of the Frame Map component of ISSOMN

in two of the splits), or INSOMMNT was trained to inter- it will substitute a more frequent analogue. Both expecta-
pret it in only one way (i.e., as a noun-attachment or a verbtions and semantic illusions are common in human natural
attachment, as in the other two splits), it processes the sefanguage understanding and arise automatically in the IN-
tence the same way: both possible attachments are activat&DMNET model.

in the map (figure 4). Because some sentences in the Red-

woods corpus have noun-attached prepositional phrases while Discussion and Future Work

others have verb attachments, the network properly generafne yitimate goal of this research is to develop a subsymbolic
izes to represent both possibilities. This way, INSOMN  parser that can handle realistic language without sacrificing
explicitly activates multiple interpretations for an ambiguoustnose characteristics of neural networks that make them pow-
input. This behavior is cognitively valid, but has been diffi- grfy| cognitive models. The described method of representat-
cult to capture in artificial parsing systems in general. ing MRS dependency graphs permits the network to gradually
A third significant cognitive feature of INSOM&T is its  refine its output to accommodate changes as new information
robustness. A new filler, “um”, not in the original lexicon and comes in. In this paper, we have shown that this behavior
assigned a random representation, was added to all senteneg be preserved while scaling up to the realistic linguistic
in both the training and test sets at random locations. Onetructures present in thallGO Redwoods Treebank.
of the networks trained on the Redwoods corpus discussed Our future work focuses on three further important devel-
above was then tested on both these new, dysfluent sets, aggments of INSOMNT. First, we will augment the model
performed virtually the same despite this modified input: allwith a gating mechanism that modulates the activations of the
of the MRS case-role frames were properly generated at therame Node patterns. Preliminary experiments show that this
output, although their activation levels were somewhat demechanism dramatically enhances the nonmonotonic behav-
graded in some cases. Additionally, besides the grammaticadr of INSOMNET. In particular, gating suppresses the acti-
errors already present in a very few sentences in the Redrations of Frame Nodes that should not be a part of the MRS
woods corpus (e.g., the sentence “here is some clues”), we'vependency graph while at the same time providing a soft
run some preliminary studies wherein we've replaced an inthreshold for relevant nodes. These experiments also indicate
put word with an ungrammatical variant differing in an agree-that gating also accentuates coactivation of multiple interpre-
ment feature such as number or person, as well as deleted ra@tions, as well as expectations and defaults, which will allow
dom articles like “a” and “the”. Early results also show that a more quantitative assessment of these behaviors.
the network is scarcely affected by these errors because they Second, we will replace the tokens in the input with either
occur so infrequently compared to its training history. Theseorthographic or phonological representations. The strong ten-
results suggest that INSOMIN can tolerate noisy, dysflu- dency of INSOMNET to create expectations and its general
ent, and ungrammatical input much like people do. robustness should then allow it to process unknown words
Fourth, the network demonstrates expectations and desystematically. At the same time, the network should also
faults which have become a hallmark of subsymbolic sysiearn to identify morphological components in its input rep-
tems. Because the network is trained to output the full representations and map them onto their proper semantic targets,
resentation of the MRS semantic dependency graph, it learmemoving the need for preprocessing the input data.
to anticipate certain frames before they have been licensed by Third, we plan to test INSOMBT as a robust system
the input. Similarly, the network exhibits defaults and evenfor parsing spoken language. They system will be trained
semantic illusions: when it misses a component in a framewith the actual transcripts in the VerbMobil corpus, which in-
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clude dysfluencies of everyday spoken language, such as falséacDonald, M. C., Just, M. A., and Carpenter, P. A. (1992).

starts, repairs, hesitations, and fillers. We expect the system Working memory constraints on the processing of syntactic

to learn their structure, and to learn to compensate for them ambiguity. Cognitive Psychology24:56—98.

in the sentence interpretation. If so, INSOMNcould serve  Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.

as a significant step towards scaling up semantics parsing to (1993). Building a large annotated corpus of English: The

the real world. Penn treebankComputational Linguistigsl9:313—-330.
Mayberry, Ill, M. R. and Miikkulainen, R. (1999). Using a

Conclusion sequential SOM to parse long-term dependencie®rin

: ; _ ceedings of the 21st Annual Conference of the Cognitive
In this paper, we presented a subsymbolic parser, INSOM Science Societypages 367—372. Hillsdale, NJ: Erlbaum.

NET, that is able to parse a real-world corpus of sentence :
into semantic representations. A crucial innovation was to USS(ICCIeIIand, J. L. and Kawamoto, A. H. (1986). Mechanisms
an MRS dependency graph as the sentence representation, enc_)f sentence processing: Assigning roles to constituents. In
coded in a self-organized Frame Map. As is typical of holistic '\D/léglgﬂ?:g;mte?gg Rug(ellg?gt’io[r)ﬁEiH fhdétoﬁ:gggluc_
parsers, the parse result is developed nonmonotonically in the I g: .p . . .

ture of Cognition, Volume 2: Psychological and Biological

course of incrementally reading in the input words, thereby X
demonstrating several cognitive behaviors such as coactiv _'I'\I/I(Edlel's pages ZZ%E%ZSISME Prebsslz Cﬁmtb”dlgﬁ' MA.
tion, expectations and defaults, and robustness. These pro%l—'l'3 vlainen, )N (I 1 ).t (lill\iy:jn |° :CCS a L:raL a_nguaged
erties make INSOMMT a promising foundation for under- rocessing: An Integrated Viodel ot Scripts, Lexicon, an

: g Memory MIT Press, Cambridge, MA.
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pairments in a self-organizing feature map model of the
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