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Abstract

Many important concepts of the calculus are dif-
ficult to grasp, and they may appear epistemologi-
cally unjustified. For example, how does a real func-
tion appear in “small” neighborhoods of its points?
How does it appear at infinity? Diagrams allow
us to overcome the difficulty in constructing repre-
sentations of mathematical critical situations and
objects. For example they actually reveal the be-
havior of a real function not “close to” a point (as in
the standard limit theory) but “in” the point. We
are interested in our research in the diagrams which
play an optical role – microscopes and “microscopes
within microscopes”, telescopes, windows, a mirror
role (to externalize rough mental models), and an
unveiling role (to help create new and interesting
mathematical concepts, theories, and structures).
In this paper we describe some examples of optical
diagrams as a particular kind of epistemic media-
tor able to perform the explanatory abductive task
of providing a better understanding of the calculus,
through a non-standard model of analysis. We also
maintain they can be used in many other different
epistemological and cognitive situations.

The Explanatory and Abductive

Function of Mathematical Diagrams

More than a hundred years ago, the great American
philosopher Charles Sanders Peirce used the term
“abduction” to refer to inference that involves the
generation and evaluation of explanatory hypothe-
ses. Peirce says that mathematical and geometri-
cal reasoning “consists in constructing a diagram
according to a general precept1, in observing cer-
tain relations between parts of that diagram not ex-
plicitly required by the precept, showing that these
relations will hold for all such diagrams, and in for-
mulating this conclusion in general terms. All valid
necessary reasoning is in fact thus diagrammatic”
(Peirce, 1958, CP, 1.54). We contend that a consid-
erable part of scientific reasoning is a kind of abduc-
tive reasoning.

What is abduction? Many reasoning conclusions
that do not proceed in a deductive manner are ab-
ductive. For instance, if we see a broken horizontal

1That is a kind of definition that prescribes “what
you are to do in order to gain perceptual acquaintance
with the object of the world” (Peirce, 1958, CP, 2.330).

glass on the floor we might explain this fact by pos-
tulating the effect of wind shortly before: this is cer-
tainly not a deductive consequence of the glass being
broken (a cat may well have been responsible for it).
Hence, abduction (Magnani, 2001) is the process of
inferring certain facts and/or laws and hypotheses
that render some sentences plausible, that explain
or discover some (eventually new) phenomenon or
observation; it is the process of reasoning in which
explanatory hypotheses are formed and evaluated.

Following Nersessian (1995a, 1995b), we use the
term “model-based reasoning” to indicate the con-
struction and manipulation of various kinds of rep-
resentations, not mainly sentential and/or formal,
but mental and/or related to external models. Ob-
vious examples of model-based reasoning are con-
structing and manipulating visual representations,
thought experiment, analogical reasoning, occurring
when models are built at the intersection of some
operational interpretation domain – with its inter-
pretation capabilities – and a new ill-known domain,
for example, in mathematical reasoning.

Peirce gives an interesting example of a simple
model-based abduction related to sense activity: “A
man can distinguish different textures of cloth by
feeling: but not immediately, for he requires to move
fingers over the cloth, which shows that he is obliged
to compare sensations of one instant with those of
another” (Peirce, 1958, CP, 5.221). This idea surely
suggests that abductive movements also have in-
teresting extra-theoretical characteristics and that
there is a role in abductive reasoning for various
kinds of manipulations of external objects. When
manipulative aspects of external models prevail, like
in the case of manipulating diagrams in the black-
board, we face what we call manipulative abduction
(or action-based abduction).

Manipulative abduction happens when we are
thinking through doing and not only, in a pragmatic
sense, about doing. For instance, when we are creat-
ing geometry constructing and manipulating a trian-
gle. In the case of natural sciences the idea of manip-
ulative abduction goes beyond the well-known role
of experiments as capable of forming new scientific
laws by means of the results (nature’s answers to the
investigator’s question) they present, or of merely
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playing a predictive role (in confirmation and in fal-
sification).

It is indeed interesting to note that in mathe-
matics model-based and manipulative abductions
are present. For example, geometrical construc-
tions present situations that are curious and “at the
limit”. These are constitutively dynamic, artificial,
and offer various contingent ways of epistemic act-
ing, like looking from different perspectives, compar-
ing subsequent appearances, discarding, choosing,
re-ordering, and evaluating. Moreover, they present
some of the features indicated below, typical of the
so-called abductive epistemic mediators (Magnani,
2001): simplification of the task and the capacity to
get visual information otherwise unavailable.

Epistemic mediators exhibit very interesting fea-
tures (for example, we can find the first three in
geometrical constructions): 1. action elaborates a
simplification of the reasoning task and a redistri-
bution of effort across time (Hutchins, 1995), when
we need to manipulate concrete things in order to
understand structures which are otherwise too ab-
stract, or when we are in the presence of redundant
and unmanageable information; 2. action can be
useful in the presence of incomplete or inconsistent
information – not only from the “perceptual” point
of view – or of a diminished capacity to act upon
the world: it is used to get more data to restore co-
herence and to improve deficient knowledge; 3. ac-
tion enables us to build external artifactual models
of task mechanisms instead of the corresponding in-
ternal ones, that are adequate to adapt the envi-
ronment to agent’s needs. 4. action as a control of
sense data illustrates how we can change the posi-
tion of our body (and/or of the external objects) and
how to exploit various kinds of prostheses (Galileo’s
telescope, technological instruments and interfaces)
to get various new kinds of stimulation: action pro-
vides some tactile and visual information (e.g. in
surgery), otherwise unavailable.

Diagrams serve an important role in abduction
because they can be manipulated. In mathematics
diagrams play various roles in a typical abductive
way. Two of them are central:

• they provide an intuitive and mathematical expla-
nation able to help the understanding of concepts
difficult to grasp or that appear obscure and/or
epistemologically unjustified. We will present in
the following sections some new diagrams (mi-
croscopes within microscopes), which provide new
mental representations of the concept of tangent
line at the infinitesimally small regions.

• they help create new previously unknown con-
cepts, as illustrated in the case of the discovery of
the non-Euclidean geometry in (Magnani, 2002).

Mirror, Unveiling, and Optical

Diagrams as External Representations

Certainly a big portion of the complex environment
of a thinking agent is internal, and consists of the
proper software composed of the knowledge base and
of the inferential expertise of that individual. Nev-
ertheless, any cognitive system consists of a “dis-
tributed cognition” among people and “external”
technical artifacts (Hutchins, 1995, Norman, 1993).

In the case of the construction and examination
of diagrams in mathematics (for example in geom-
etry), specific experiments serve as states and the
implied operators are the manipulations and obser-
vations that transform one state into another. The
mathematical outcome is dependent upon practices
and specific sensory-motor activities performed on a
non-symbolic object, which acts as a dedicated ex-
ternal representational medium supporting the var-
ious operators at work. There is a kind of an epis-
temic negotiation between the sensory framework of
the mathematician and the external reality of the
diagram. This process involves an external represen-
tation consisting of written symbols and figures that
are manipulated “by hand”. The cognitive system is
not merely the mind-brain of the person performing
the mathematical task, but the system consisting of
the whole body (cognition is embodied) of the per-
son plus the external physical representation. For
example, in geometrical discovery the whole activity
of cognition is located in the system consisting of a
human together with diagrams.

An external representation can modify the kind
of computation that a human agent uses to reason
about a problem: the Roman numeration system
eliminates, by means of the external signs, some of
the hardest parts of the addition, whereas the Arabic
system does the same in the case of the difficult com-
putations in multiplication (Zhang, 1997). The ca-
pacity for inner reasoning and thought results from
the internalization of the originally external forms
of representation. In the case of the external repre-
sentations we can have various objectified knowledge
and structure (like physical symbols – e.g. written
symbols, and objects – e.g. three-dimensional mod-
els, shapes and dimensions), but also external rules,
relations, and constraints incorporated in physical
situations (spatial relations of written digits, phys-
ical constraints in geometrical diagrams and aba-
cuses) (Zhang, 1997). The external representations
are contrasted to the internal representations that
consist of the knowledge and the structure in mem-
ory, as propositions, productions, schemas, neural
networks, models, prototypes, images.

The external representations are not merely mem-
ory aids: they can give people access to knowledge
and skills that are unavailable to internal representa-
tions, help researchers to easily identify aspects and
to make further inferences, they constrain the range
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of possible cognitive outcomes in a way that some
actions are allowed and other forbidden. The mind
is limited because of the restricted range of informa-
tion processing, the limited power of working mem-
ory and attention, the limited speed of some learning
and reasoning operations; on the other hand the en-
vironment is intricate, because of the huge amount
of data, real time requirement, uncertainty factors.
Consequently, we have to consider the whole system,
consisting of both internal and external representa-
tions, and their role in optimizing the whole cogni-
tive performance of the distribution of the various
sub-tasks (Trafton et al., 2002). It is well-known
that in the history of geometry many researchers
used internal mental imagery and mental represen-
tations of diagrams, but also self-generated diagrams
(external) to help their thinking.

In the construction of mathematical concepts
many external representations are exploited, both in
terms of diagrams and of symbols. We are interested
in our research in diagrams which play an optical
role – microscopes (that look at the infinitesimally
small details), telescopes (that look at infinity), win-
dows (that look at a particular situation), a mirror
role (to externalize rough mental models), and an
unveiling role (to help create new and interesting
mathematical concepts, theories, and structures).2

Optical diagrams play a fundamental explanatory
(and didactic) role in removing obstacles and ob-
scurities and in enhancing mathematical knowledge
of critical situations. They facilitate new inter-
nal representations and new symbolic-propositional
achievements. In the example studied in the fol-
lowing section in the area of the calculus, the ex-
traordinary role of the optical diagrams in the inter-
play standard/non-standard analysis is emphasized.
Some of them could also play an unveiling role, pro-
viding new light on mathematical structures: it can
be hypothesized that these diagrams can lead to fur-
ther interesting creative results. The optical and un-
veiling diagrammatic representation of mathemati-
cal structures activates direct perceptual operations
(for example identifying how a real function appears
in its points and/or to infinity; how to really reach
its limits).

We stated that in mathematics diagrams play var-
ious roles in a typical abductive way (cf. the previ-
ous section). Now we can add that:

• they are epistemic mediators able to perform var-
ious abductive tasks in so far as

• they are external representations which, in the
cases we will present in the following sections,
are devoted to providing explanatory abductive
results.

2The epistemic and cognitive role of mirror and un-
veiling diagrams in the discovery of non-Euclidean ge-
ometry is illustrated in (Magnani, 2002).

Perceiving the Infinite and the

Infinitesimal World in Calculus

The concept of tangent line of a real function is nor-
mally based on the standard ε, δ concept of limit,
which is intrinsically difficult to represent and not
immediately assimilable, for example, by students
(see (Sullivan, 1976)). We can avoid this trouble by
introducing a pictorial device that allows a better
understanding by the visualization of small details
in the graph of a curve y = f(x). This method
was invented by Stroyan (1972) and improved by
Tall (1982, 2001): our intention is to continue and
improve Tall’s work by applying it to many other
different situations. We will work on the hyperreal
number system R

∗ and will assume the non-standard
analysis given by Abraham Robinson (1966).3

In the present and in the following section we will
explain the method and the classification proposed
by Tall. In the last two sections we will introduce
new types of diagrams called microscopes “within”
microscopes. Then, we will provide an example to
show how difficulties can be avoided through this
type of diagram.

By visualizing the difference between the numbers
a and a+ε (where a ∈ R and ε is a positive infinites-
imal), we can introduce the map µ : R

∗ → R
∗ given

by

µ(x) =
x − a

ε
.

Thus µ(a) = 0 and µ(a + ε) = 1, that is, µ maps a
and a+ε, two infinitely close points, onto clearly dis-
tinct points 0 and 1. We may also identify, through
µ, a point a with its corresponding µ(a).

a − ε

a

a + ε

µ

a − ε a a + ε

Figure 1: The hyperreal line and the map µ.

In general, for all α, δ ∈ R
∗, the function µ : R

∗ →
R

∗ given by

µ(x) =
x − α

δ
(δ 6= 0)

is called δ-lens pointed at α. But what can we see
through a lens? What kind of details can it reveal?
We define field of view of µ the set of x ∈ R

∗ such
that µ(x) is finite. Given two infinitesimals ε, δ, we
say that ε is of higher order than δ, same order as δ,

3For an easy introduction to non-standard calculus
see (Keisler, 1976a, 1976b).
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or lower order than δ if ε/δ is, respectively, infinitesi-
mal, finite but not infinitesimal or infinite. It follows
from this definition that, if ε is of higher order than
δ, ε is an infinitesimal “smaller” than δ.

Given a δ-lens µ, proceeding by taking the stan-
dard part of µ, we obtain a function from the field of
view in R, called the optical δ-lens pointed in α. The
optical lenses are actually what we need to visualize
infinitesimal quantities. In fact, our eyes are able to
distinguish clearly only images on the real plane R

2.
As such, the optical δ-lens translate on the R

2 plane,
in favor of our eyes, everything that differs from α
in the same order as δ. Higher order details are “too
small” to see and lower order details are “too far” to
capture within the field of view. Two points in the
field of view that differ by a quantity of higher order
than δ appear the same through the optical δ-lens.

This method also works in two coordinates (and,
in general, in n coordinates) by the application of a
lens to every coordinate. The map

µ : R
∗2 → R

∗2, µ(x, y) =

(

x − α

δ
,
y − β

ρ

)

is called (δ, ρ)-lens pointed in (α, β). If δ 6= ρ, we
say that the lens is astigmatic. If δ = ρ, we can
talk about δ-lens in two dimensions. By considering
the standard parts of every coordinate, we obtain
an optical δ-lens in two dimensions, defined from
the field of view of µ in R

2.
However, δ may not be infinitesimal. Depending

on its nature, there are different kinds of lenses: if δ
is infinitesimal, then the lens is called a microscope;
if δ is finite but not infinitesimal, then the lens is a
window; if δ is infinite, the lens is a macroscope. A
window pointed at a point with at least one infinite
coordinate is called a telescope.

Microscopes reveal infinitesimal details and tele-
scopes allow us to visualize a structure at infinity.
For example, through an optical microscope, a dif-
ferentiable function looks like a straight line and
through an optical telescope two asymptotic curves
look identical.

Microscopes and Differentiable
Functions

Now we can easily generalize Tall’s example about
the role of microscopes (Tall, 1982, 2001). An in-
finitesimal increment ∆x of a differentiable function
f from its point x can be written as follows

f(x + ∆x) = f ′(x)∆x + f(x) + ε∆x

where ε is infinitesimal. Thus, we can fix (a, f(a))
on the graph and point on it an optical ∆x-lens to
magnify infinitesimal details that are too small to
see to the naked eye. We have

µ(x, y) =

(

x − a

∆x
,
y − f(a)

∆x

)

.

An infinitely close point (a + λ, f(a + λ)), when
viewed through µ, becomes

µ(a + λ, f(a + λ)) =

(

λ

∆x
,
f ′(a)λ + λε

∆x

)

.

Suppose that λ is of the same order as ∆x, i.e. λ/∆x
is finite. This means that λε/∆x is infinitesimal. By
taking the standard parts, we have

(

st

(

λ

∆x

)

, st

(

f ′(a)λ

∆x
+

λε

∆x

))

=

=

(

st

(

λ

∆x

)

, f ′(a) st

(

λ

∆x

))

.

If a is fixed, putting st(λ/∆x) = t, we see that the
points on the graph in the field of view are mapped
in the straight line (t, f ′(a)t), where t varies (see Fig-
ure 2). Note that the slope of the line is, in effect,
the derivative of f in the point a and the function
is really indistinguishable from its tangent in an in-
finitesimal neighborhood of a.

�
�
�
�

��

��

����������

(a, f(a))

(a + ∆x, f(a + ∆x))

∆x

(a, f(a)) ∆y

Figure 2: A graph of a differentiable function
through an optical ∆x-lens.

In the following sections we will describe some in-
teresting new mathematical situations in which such
lenses can be used to construct a suitable mental
representation.

Microscopes “within” Microscopes

This type of diagram was originally suggested and
used by Keisler (1976a, 1976b), but not formalized
by constructing optical lenses.

Let f be a real function with continuous second
derivative (f ∈ C2). If we magnify an infinitesi-
mal neighborhood by a more powerful tool than an
optical ∆x-lens, we can see other interesting proper-
ties of the curve. This is what we call a microscope
“within” a microscope pointed in (a + ∆x, f(a +
∆x)) in the non-optical ∆x-lens (because the op-
tical lenses lose every infinitesimal details). By an
optical ∆x-lens pointed in (a, f(a)), both the curve
y = f(x) and the tangent y = f ′(a)(x−a)+f(a) are
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mapped in the line (t, f ′(a)t), where t = st(λ/∆x)
and λ is an infinitesimal of the same order as ∆x.
Now we can put λ = ∆x and point a ∆x2-lens in
(a + ∆x, f(a + ∆x)). In order to visualize more de-
tails, we need to have more information about the
function: our idea is to use the non-standard Tay-
lor’s second order formula for f (see (Stroyan and
Luxemburg, 1976)), i.e.

f(a + ∆x) = f(a) + f ′(a)∆x +
1

2
f ′′(a)∆x2 + ε1∆x2

where ε1 is infinitesimal.
Thus the ∆x2-lens maps as follows

(x, y) 7→

(

x − (a + ∆x)

∆x2
,
y − f(a + ∆x)

∆x2

)

and the point (a + ∆x, f(a + ∆x)) is mapped onto
(0, 0). Let λ be an infinitesimal of the same order as
∆x2. The Taylor’s second order formula gives

f(a + ∆x + λ) = f(a) + f ′(a)(∆x + λ)

+
1

2
f ′′(a)(∆x + λ)2 + ε2(∆x + λ)2.

Therefore, we have

(a + ∆x + λ, f(a + ∆x + λ)) 7→
(

λ

∆x2
,
f(a + ∆x + λ) − f(a + ∆x)

∆x2

)

=

=

(

λ

∆x2
,
f ′(a)λ + 1

2
f ′′(a)λ2 + f ′′(a)∆xλ

∆x2

+
ε2∆x2 + ε2λ

2 + 2ε2∆xλ − ε1∆x2

∆x2

)

and by taking the standard parts
(

st

(

λ

∆x2

)

, f ′(a) st

(

λ

∆x2

))

as the other terms are all infinitesimals.
The point (a + ∆x + λ, f ′(a)(∆x + λ) + f(a)) on

the graph of the tangent line is mapped in the point

(

λ

∆x2
,
f ′(a)(∆x + λ) − f ′(a)∆x

∆x2

+
− 1

2
f ′′(a)∆x2 − ε1∆x2

∆x2

)

=

=

(

λ

∆x2
,
λf ′(a) − 1

2
f ′′(a)∆x2 − ε1∆x2

∆x2

)

=

=

(

λ

∆x2
, f ′(a)

λ

∆x2
−

1

2
f ′′(a) − ε1

)

and then the optical lens gives
(

st

(

λ

∆x2

)

, f ′(a) st

(

λ

∆x2

)

−
1

2
f ′′(a)

)

.
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∆y

∆y

∆x

dy

Figure 3: A microscope “within” a microscope.

This suggests nice new (and mathematically jus-
tified, of course) mental representations of the con-
cept of tangent line: through the optical ∆x2-lens,
the tangent line can be seen as the line (t, f ′(a)t −
1

2
f ′′(a)) which means that the graph of the func-

tion and the graph of the tangent are distinct,
straight, and parallel lines in a ∆x2-neighborhood
of (a + ∆x, f(a + ∆x)). The fact that one line is ei-
ther below or above the other, depends on the sign of
f ′′(a), in accordance with the standard real theory:
if f ′′(x) is positive (or negative) in a neighborhood,
then f is convex (or concave) here and the tangent
line is below (or above) the graph of the function.

A Cognitive Application of Microscopes
within Microscopes

In this section we will show how a diagram easily
allows the construction of a mathematical concept.

We saw that through a microscope within a mi-
croscope a curve and its tangent are respectively

y(t) = f ′(a)t and y(t) = f ′(a)t −
1

2
f ′′(a).

Then, what happens when f ∈ C2 is such that
f ′′(a) = 0, for example when a is a flex point for f?
In this case the second microscope would still show
the tangent line indistinguishable from the curve (see
Figure 4). What does this mean? We can simply de-
duce that in a flex point a curve that is differentiable
two times has a particular behavior: here it is very
slightly curved and much more similar to a straight
line (its tangent). An expert mathematician would
say that it has a small curvature. In fact, the cur-
vature of a function in a point t of its domain is the
quantity defined by

|f ′′(t)|

(1 + (f ′)2(t))
3/2

and it is a value of how much the curve locally differs
from the tangent line. For example, a straight line
has null curvature and a circle has constant curva-
ture.

In a flex point, a function f ∈ C2 has curvature
equal to 0. In other words, in this point the graph

768



(x, y)

∆x

∆y ∆y = dy

Figure 4: A flex point through a microscope within
microscope.

is much more than simply indistinguishable from its
tangent, it has a more marked “straight local trend”.
In order to discover this property in standard calcu-
lus, the concept of curvature is necessary. On the
contrary, the simpler idea of microscope within mi-
croscope allows to discover the same property imme-
diately, easily and without the concept of curvature.

Conclusion

The optical diagrams we have described provide ex-
planations which allow a better understanding of
calculus. They also improve and complete the non-
standard method given by Abraham Robinson: they
are necessary tools for it, both from the psychologi-
cal (didactic) and the epistemological point of view,
because they propose a good – and mathematically
justified – mental representation of the behavior of
a real function in many “critical” situation (at small
neighborhoods, at infinity, by looking at infinitesi-
mally small details . . . ).

Moreover: i) the role of optical diagrams in a cal-
culus teaching environment seems relevant. We are
preparing experimental research on the calculus stu-
dents at the University of Pavia (mathematics and
engineering curricula) devoted to detecting the de-
tails of the didactic effects and the learning improve-
ments; ii) we are convinced they can be exploited in
other everyday non-mathematical applications (find-
ing routes, road signs, buildings maps, for example),
in connection to various zooming effects of spatial
reasoning; iii) we think the activity of magnification
of optical diagrams can be studied in other areas
of model-based reasoning, such as the ones involv-
ing creative, analogical, and spatial inferences, both
in science and everyday situations so that this can
extend the psychological theory.
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