Distributed Cognition and Joint Activity in Collaborative Problem Solving

Paul P. Maglio (pmaglio@almaden.ibm.com)
Eser Kandogan (eser @almaden.ibm.com)

Eben Haber (ehaber @almaden.ibm.com)
IBM Almaden Research Center, 650 Harry Road
San Jose, CA 95120 USA

Abstract

Troubleshooting large software systems is often highly
collaborative. Because these systems consist of complex
infrastructures with many interdependent components,
expertise is spread across different people and organizations.
Those who administer such systems are faced with cognitive
and social challenges, including the establishment of common
ground and coordination of attention, as they troubleshoot in
collaboration with peers, technical support, and software
application developers. We take a distributed cognition
approach to interpreting a specific instance of problem-
solving in administering a web-based system, examining the
movement of representational state across media in a single
system administrator's environment. We also apply the idea
of language use as joint activity to understand how discourse
attributes affect what is accomplished collaboratively. Our
analysis focuses on information flow among participants and
other sources, and how these affect what information is
attended to, transmitted, and used.

Introduction

Millions of users of online services such as banking and
shopping rely on instant transactions, round-the-clock
access, and foolproof record keeping. The computer system
infrastructures needed to support such applications consist
of diverse components, such as database management
systems, web servers, and application servers, all of which
work together in complex ways to deliver fault tolerant,
scalable, secure applications. Yet with such systems
growing ever larger and ever more complex, manageability
is fast becoming an obstacle to system administration:
Administrators who install, configure, maintain, and support
such systems must handle ever larger and ever more
complex tasks (Anderson, 2002; Woods, 1988).

Large-scale systems contain many interdependent
components that are not always designed to work together.
Expertise and responsibility for different components is
typically spread across people and organizations.
Administrators are faced with daunting cognitive and social
challenges. Complexity and scale are such that
administering a complete system is usually beyond the
abilities of a single person, making collaboration among
team members and outside experts crucial to completing
many tasks, especially time-critical tasks such as
troubleshooting. Administrators have developed many
heuristics for problem-solving and practices for
collaborating with others to do their jobs effectively.

758

Collaborative troubleshooting involves coordinating activity
and information from people and other sources. In this
paper, we take a distributed cognition approach (Hutchins,

1995) to understand problem-solving in system
administration, focusing on issues of trust and its
relationship to the management of attention. Distributed

cognition treats certain arrangements of people and artifacts
as cognitive systems, effectively computing functions by
transmitting representations (e.g., language, computer
commands) across media (e.g., air, computer screens). The
idea is that the cognitive computation can be (partially)
understood by tracking propagation of representations.

We combine distributed cognition with the joint activity
theory of language use (Clark, 1996) to interpret the way
discourse attributes affect problem-solving in system
administration. On the joint activity view, people use
language to create and complete projects together, such as
the project of coming to a mutual understanding (e.g.,
agreeing on a problem and its solution) or the project of
accomplishing some other task (e.g., detecting a problem
and determining a solution). By seeing language use as
joint activity, we can discover why people interact the way
they do (see also Fairburn, Wright, & Fields, 1999).

In what follows, we examine the process of solving a
single problem that occurred during normal maintenance of
a web-based system. This episode lasted three hours and
involved nine people using many different collaboration
tools. By tracking the movement of representational state
across media in one administrator's environment, and by
analyzing how joint projects are established, we examine
how discourse attributes and information flows affect what
information is attended to, transmitted, and used.

Study

Our data come from field studies conducted to develop
knowledge of software system administrators’ culture,
organization, collaboration, work styles, problems,
strategies, and tool use. Our overall goal is to improve
products, practices, and processes of administration. For the
data reported here, we observed administrators in a
computer services group that hosts customer web
applications. We used several techniques to gather data,
including surveys, observations, video recording, formal
and informal interviews, and material (hardcopy and online)
collection.

Internal Server Firewall External Server

Internal Server Firewall External Server Internal Server Firewall External Server
III rule | = III Fule | = III III rule | = -1
maestro 7234 ot maestro 72340ut [defanlt maestro 7234 aut
7234
listens ot T2 7234
T35 RES ES
rule 1l = rulell = rule Il =
T35 i ;
" Q config 7135 in Q new 7135 in Q new
= —
le: Il i | 3T T2
Fule lil = 0y rule ll = rule il =
7238w 72360 723600t
PROTECTED |1/ - F;BUC | NX i
. ('.NE rule = rule =
ZONE 71Fin 7137 in 37 in D
a) Initial State b) First Attempt c) Fix

Figure 1. (a) Initial state of the system. Note that as part of preparations for the operation, two new rules were added to
the firewall; (b) System state after the first attempt to add a new player instance. The maestro could not contact the new
player instance, however, as the new player was configured to accept messages on port 7137 whereas there was no
firewall rule to allow messages from internal to external server on port 7137 (only vice-versa); (c) System state after the
fix. The player was configured to accept messages from the maestro on port 7236, which the firewall allowed.

We detail a specific problem-solving episode, analyzing
how access to information and how aspects of discourse
influence administrators’ collaboration practices and
problem-solving effectiveness. The descriptions of agents,
representations, and representational activities that follow
are restricted to only this single episode. We first describe
(a) some technical details of the task; (b) the people,
computers, and information sources involved; and (c) the
kinds of representations that were used.

Task

A customer installation included a certain software product
for managing the flow of data between the public internet
and the customer’s protected internal network. This
software had two parts, a player instance running on a
server in the public zone and a maestro instance running on
a server in the protected zone. Connections between player
and maestro were regulated by a firewall (Figure 1a). The
customer requested that a second player be added in the
public zone.

The task involved creating a second player instance,
configuring the maestro to allow the new instance to access
certain resources, and configuring the firewall to permit
communication between the maestro and the new player
instance. Communication between systems is done through
ports (represented by integer port numbers). The firewall
regulates communication using a set of rules that define
allowed port numbers and communication direction.

People and Computers

Many individuals from many groups were involved in the
problem-solving episode. Primary actors included our main
administrator (hereafter, Admin), the project architect
(Archi), technical support for the product (Tech), and
Admin’s colleague who had access the same systems

759

(Colle). Less important contributors included Admin’s
officemate, the customer relationship manager, the project
executive, Archi’s friend who was the product developer,
and Colle’s manager.

Systems that received, processed, and transmitted
information during the episode included an internal server
machine that ran the maestro application in the protected
zone of the network, an external server machine that ran the
player instances outside the protected zone, a firewall that
regulated messages between internal and external servers,
the maestro process that orchestrated message passing, the
default player process that processed incoming messages,
and the new player process that the customer wanted added
on the external server.

Representations and Actions

As Admin and collaborators worked on the problem of
adding a new player instance to the external server, they
used various methods of communication and tools for
interacting with systems. Their communication involved
verbal exchanges face-to-face or over the phone, and textual
exchanges through email and instant messages.'

When interacting with computer systems, administrators
relied mainly on commands typed directly into the system’s
command line, a general human-computer interface that
requires the user to know precisely the names and
parameters of specific commands for the computer to
execute. Command line wusers are typically very
experienced. = Commands can control processes and
machines, and can display state and configuration
information.

! Email and instant-messages are often used simultaneously; email
is more persistent, yet must be explicitly received and read by a
recipient whereas instant messages instantaneously “pop up” in a
special window on the recipient’s screen.

Information representations included configuration files,
log files, online and paper instruction manuals, and port
listings. There were separate configuration files for each
server process, which included settings that allow
administrators to change port numbers. Likewise, each
process had its own log files that report errors and warnings
that occur while the process is running.

We now turn to the details of the problem-solving episode
in which Admin worked with many others and consulted
many information sources to add a new player instance to
the external server. All observations were taken from
Admin’s perspective.

Observations

We begin with an overview of the three-hour problem-
solving episode. =~ We then focus on several specific
interactions that illustrate how constraints on propagation of
representational state and how discourse attributes affect
what information is attended to, transmitted, and used.

Overview

Initially, Admin received an email message describing the
steps required to add a new player instance to the external
server. Admin began by requesting the firewall team open
two ports: port 7137 from external server to internal server,
and port 7236 from internal server to external server (see
Figure la). After the firewall team completed the job,
Admin began to follow the email instructions.

First, Admin copied the command to create a new player
instance from the message and pasted it onto the command
line of the external server:

m_web create {instance} -m {internal-port}

113

He then proceeded to substitute “new” for instance and
“7137” for internal-port by directly editing the text on
the command line, resulting in

m_web create new -m 7137
This was typical of Admin’s style—whether the command
was copied and pasted from email or from other sources—
he would substitute directly into the command.

Admin executed the command, resulting in the
configuration shown in Figure 1b. He then copied from the
email message a command to configure the maestro server
to permit the new player access to certain resources. When
he filled in the parameters and executed this command, the
following error appeared on his screen:

Cannot reach server: Error 1231A

Note the ambiguity in the text: Which server cannot be
reached, the maestro server or the player server? To try to
understand the error, Admin engaged in phone, email, and
instant-message conversations with Archi, the application
architect, and Tech, the technical support person. As time
passed and the problem remained unresolved, Admin’s
office-mate, colleague (Colle), and a developer friend of
Archi’s all joined the conversation. At several points, the
customer relationship manager and the project executive

760

requested updates from Admin on the state of problem
resolution.

The pattern of interaction among Admin, Archi, and Tech
had Admin in control of the systems, with Archi and Tech
asking him to run commands or transmit to them aspects of
configuration and system state. By contrast, Colle could
access the system so his work on the problem was more
independent, reporting back to Admin his findings and
suggestions for a solution.

In these conversations, various representations of system
state, including error numbers, configuration file entries,
and portions of log files, were exchanged over the
telephone, instant messages, and email. As information was
transferred, it was typically transformed from abstract
descriptions, such as internal-port, to specific names and
numbers, such as 7137, and vice versa.

The problem was resolved after nearly three hours by
Admin and Colle. The problem turned out to be a
misunderstanding of the meaning of internal-port, as
specified when creating the new player instance. The
internal-port is used for communication from maestro to
player instance—rather than the other way around, which
was what Admin had originally believed. Thus, using
another port, in this case 7236 rather than 7137, solved the
problem (see Figure 1c).

Communication from all player instances to maestro was
handled on a standard or default port (7135), which was
specified in the configuration file as master-port. This
specification was overlooked by Admin. At the center of
the problem were specific transformations carried out by
people and computers on various representations of system
state. The time taken to resolve the issue was affected by
these transformations during attempts by participants to
reach a common understanding of the semantics and syntax
of system components and their representations.

We now turn to three particular interactions in more
detail. These relate to problem diagnosis and problem
resolution, illustrating how attributes of communication
between participants influence how information flows
through the system.

Do you have the manual?

Nearly two hours into the session, Tech, technical support,
and Admin exchanged instant messages [1:46:00]:>

Tech: Can you verify listen port 7234 or

7237 is listening?’

Tech asked the right question to find the source of the
problem. 7234 was the listen port for the default instance,
and 7137 was the listen port for the new instance (although
Tech wrote “7237” he likely meant “7137”). Admin
determined the listen ports using the command line, which

% Timestamps in brackets indicate elapsed time from the beginning
of the episode; in this case, 1 hour, 46 minutes, and 0 seconds in.

> Transcripts displayed in a fixed width font indicate
communication via instant messages; ifalics indicate voice.

showed ports 7137 and 7234 among others. To himself,

Admin muttered [1:46:35]:

Admin: 7137 and 7234. This is the problem! Huh. Oh,
no wait! Hmm, that should be fine.

Admin might have realized that 7137 should not be a listen
port, but he focused instead only on 7234 and filtered other
information from the port list when reporting to Tech
[1:47:10]:

Admin: It is listening 7234..is it ok that
it listens on the same port as the
default instance?

Tech responded negatively, which might have led Admin
directly to the solution [1:48:15]:

Tech: Don’t think so.
Tech: Do you have the manual?
Tech: I'm trying to find it... working

from home today.
But on seeing these messages, Admin spoke with Archi by
phone [1:49:20]:
Admin: You got to be kidding me! Oh God, this
support guy is asking me for the manual.

Archi told Admin that he knew someone else who could
help, and eventually brought a developer into the discussion.

It seems clear that Admin lost faith in Tech. Yet just
before asking the question about the manual, Tech had
asked a question that would have quickly led to resolving
the problem (about which port was listening where).
Although Admin continued to discuss the problem with
Tech for a while longer, Admin showed his disinterest in
communicating with him. In fact, Tech later pointed out
where to change the listening port for the new instance, and
Admin responded verbally (to no one) [1:58:25],

Admin: This guy is totally useless.

From this point on, Admin ignored Tech completely. The
instant message windows that contained the exchange with
Tech became covered over. Tech’s last message arrived
after a long period of no communication [2:13:00],

Tech:

Analysis. All system state information flowed through
Admin. For Tech to help solve the problem, he had to get
Admin to discover and report information about the state of
the system. The flow of information between the new
player instance and Tech was filtered by Admin’s
understanding of the system: what was reported was not the
same as the results displayed on Admin’s screen. Yet just
as Tech started to extract critical information from Admin,
Tech asked for the manual. From Tech’s perspective, this
can be seen as initiating a joint project with Admin to
discover whether the new instance ought to be set up to
listen on the same port as the old instance. From Admin’s
perspective, this appeared to be an inappropriate joint
project, as he seemed to believe that Tech should simply
know the answer without needing to refer to the
documentation. Thus, Admin did not take up the project.

What is happening?

761

What are you talking about?

A series of exchanges between Admin and Colle that led to
the resolution of the problem came soon after
communication with Tech broke down. Colle, a close
colleague of Admin’s, was told by the customer relationship
manager to help Admin. In fact, Colle checked with Admin
in person (walking into the office and discussing the issue
with him) about one hour into the session, and stayed in
contact with Admin on and off via instant messages. Colle
worked in the next office, where he had access to the same
servers. Eventually, Colle discovered that the internal
server was trying to communicate with the external server
over port 7137 [2:02:15]:
Colle: We were supposed to use
Unconfigure that instance and ..
Admin: Can’t specify a return port.. you
only specify one port

7236.

Admin’s response indicates that he did not know how to
specify the port connecting internal to external server. Colle
explained how he came to this conclusion (to use 7236
rather than 7137) by pasting into instant messages the
commands he ran to test communication from internal to
external server, attempting to persuade Admin that he was
correct. The exchange became more heated [2:02:20]:

Colle: You specified the wrong port.

Admin: No, I didn’t.

Colle: You did it wrong.
You need to put in 7236.

Admin: we Jjust didn’t tell to go both
ways. The other port has nothing to do
with this.

Colle: Well, all I know is what I see in
the conf file

Admin: we thought that was the return
port. That is not a return port.

Colle: there currently is no listener on
<internal-server> on 7137. So use
7236. DO IT!

Admin then called Colle on the phone [2:03:45]:

Admin: What are you talking about? 72367

Colle: Yeah?

Admin: We thought that it came in on 7137 and went
back on 7236, but we were wrong, that 7236 is like
an ACTPS listener port or something?

Colle: It will still come in on 7135 to talk to maestro
server apparently...

Admin: right?

Colle: What's happening is it's actually trying to
make a request back, um, through the 72... well
actually trying to make it back through the 7137 to
the instance...

Colle: .. and it's not happening.

Admin: I know. I know that. ButI can't tell it to...

Colle: .. just create it with the 7236. Trust me.

Admin: Why? That port's not, that's going the wrong,
that's only one way too.

Colle: Trust me.

Yes, you did.

Admin: It’s only one way. Do you understand what 1
am saying?

Colle: Cause it's the maestro talking back to the
player server instance.

Admin: Yeah, but how does the player instance talk to
maestro to make some kind of request?

Colle: 7135 is the standard port it uses in all cases.
So we had it wrong. QOur assumption on how it
works was incorrect.

Admin: All right, all right.

Colle: If it doesn't work you can beat me up after

Admin: I want to right now. (Laughter on both sides)

Analysis. In this case, all system state information did not
flow through Admin. Because Colle had access to the same
systems as Admin, he could examine system state directly
(as Colle said, “al1 I know is what I see in the
conf file”). Communication centered on Colle’s
instructions for solving the problem by configuring the new
player instance to use a different port. When Admin did not
immediately take up the project to fix the port settings,
Colle explained the problem. Colle shared the commands
that showed him which ports were listening. Again, Admin
did not take up the project proposed by Colle. When the
conversation shifted from instant messages to phone, Admin
finally accepted Colle’s project to change the port settings,
but only after Colle stated that their understanding of how
the system worked had been incorrect all along. Because
Admin was upset, Colle made a special effort to appease
him by jokingly agreeing to be physically harmed if his
hypothesis turned out to be wrong. In both admitting prior
misunderstanding and joking, Colle’s discourse was not
about the business at hand, the establishment of common
ground about the state of the system. Rather, Colle’s
statements served a different communicative function:
establishing a different joint project that would enable
Admin to follow Colle’s directions. Colle found that rather
than debugging Admin’s knowledge of the state of the
system (repeatedly explaining what the port settings should
be), he had to debug Admin’s model of the system itself
(explicitly stating “our assumption was wrong” about the
direction of the ports).

I’ve got too many #@ &! people annoying me!

Throughout, Admin maintained multiple channels of
communication (phone, email, instant messages, and face-
to-face) with others. Admin’s information environment was
filled with many demands for his attention. One striking
instance occurred near the end of the session. By this point,
both Colle and Archi’s friend had suggested the same root
cause, and Admin had agreed to the try the solution. Admin
and Colle spoke by phone [2:05:60]:

Colle: Actually, you can create a new one.

Admin: Yeah, that’s what I'm gonna do. (sighs)

Colle: I'm telling you man, this is what's happening.
You can see by the connection it's trying to make.

762

There is no 7137 listener on maestro right now, so
what is it going to try to connect to?

Admin: Yeah, I understand what you’re saying.

Colle: You know sure, we can see this in the logs, but
I think we’re already there where we’ve found out
what the issue is.

Admin: All right, all right.

Colle: It’s trying to make a return port.

Admin: All right!

Colle: I verified in the other player log that the...

Admin: Can you hang on please!

Admin put Colle on hold [2:10:15]:

Admin: I can’t, I can’t think because I've got too
many <expletive> people annoying me... There's
too many people. I hate when there's too many
people involved, and everyone's telling me to do
something different and it's like you can only do
one thing at a time, you know.

After following Colle’s instructions, Admin attempted to
explain the process to Archi by phone [2:20:15]

Admin: All right I think we got it. What we did was,
uh what did we do? The, uh, rather than specifying
the 7137 port, that, cause...What happened was we
had opened a port going to... We were under the
impression for some reason that the port that
player talks to maestro over is 7137 and then
maestro returns on 7236, or 7135 and 7234,
whatever. That was the impression we were under,
so we opened the firewall ports with, um, and we
opened it for 7137 to go from player to maestro
and then 7236 to go maestro to player, so we only
needed to open one port because, uh, and the port
we needed to open was the one that maestro goes
back to player on, so we already had that open, but
it was the 7236 port so we just, I created the new
instance specifying that as the port, so in the -m
option 1 specified 7236 and I created all the
Jjunctions and everything looks cool at this point.

Analysis. Colle coached Admin through the process of
fixing the port settings. But in the end, Admin’s
explanation was confused, suggesting he actually had little
understanding of the details. Again, the movement of
representational state was from Colle’s screen to Colle to
Admin. For his part, Admin put Colle on hold to execute
the plan undisturbed. Admin relied on memory of what
Colle had said, commands Colle had sent via instant
messages, and the manual to execute the command to create
a player instance with the correct port number.

Results and Discussion

Our administrator (Admin) spent nearly three hours
coordinating information from various sources to transform
the initial configuration (Figure 1la) into the final
configuration (Figure 1c). He coordinated information from
many other people, from many configuration files and log
files, from the output of many commands typed on the

command line, and from many online documents including
web pages and email. We have sampled only a few of these
interactions. Nevertheless, the story that emerges is one of
how constraints on movement of representation and how
attributes of communication influence what information is
attended to, transmitted, and used.

Consider first the interactions with technical support
(Tech). As described, the support person was in fact on the
right path to the solution when he asked our administrator to
verify the listen ports. For his part, our administrator
executed the commands to verify the ports, but in examining
the propagation of representational state (Hutchins, 1995),
we find that he did not faithfully transmit all state
information back. He focused on 7234, though he saw and
mentioned 7137 as well. It seems that he filtered what he
transmitted according to his incorrect understanding of the
direction in which data flowed through the ports.

According to the theory of language use as joint activity
(Clark, 1996), we can suppose that at the highest level the
administrator and technical support were engaged in a joint
project to find and fix the problem with the new player
instance. Subordinate to this was the project to establish
common understanding of which ports were listening on the
maestro and player servers. Note that only the administrator
could determine which ports were listening because only he
had access to the actual computer systems. Technical
support attempted to draw out the relevant information by
asking about the ports. However, when technical support
initiated the project to obtain information from the manual,
the administrator did not take up the project. Almost all
useful communication between them ended at that point, as
it seems the administrator did not see this as worthwhile.

The administrator’s interactions with technical support
and the architect (Arch) involved joint projects to
determine, understand, and fix the problem; yet the
administrator performed all diagnostic and repair
operations. This contrasts with the administrator’s
interaction with his colleague (Colle), in which the
colleague could access the system independently. As
shown, the colleague was confident of his understanding of
the problem and of the path to solution, but his repeated
pleas for the administrator to simply perform the operations
were ineffective. In this case, it seems as if the
administrator understood the joint project with his colleague
to be similar to those with technical support and the
architect: the establishment of mutual understanding so as to
develop a solution together. It seems the colleague,
however, understood the joint project to be the solution of
the problem itself. Sensing this mismatch, the colleague
resorted to explanations in the form of commands to be run,
his increasing agitation expressed in capital letters and
exclamation points in instant messages. Once the
conversation switched to the phone, further explanation
attempts were made. Here is where the colleague seems to
have realized a further mismatch: rather than a mismatch in
knowledge of the various ports settings, he realized that the
administrator did not have a correct mental model of the

763

system with which to understand the details of the ports. To
debug the administrator’s model of how the system was put
together, the colleague merely stated that their initial
understanding had been wrong. Only at this point did the
administrator begin to engage in the project the colleague
had been proposing all along, changing the port settings.

The joint project of fixing a problem was accomplished
without establishing common understanding about many
technical aspects of the situation. Movement of
representational state about computer system parameters,
whether correctly or incorrectly expressed, flowed among
participants but did not affect the actual computer system
until representations of the entire configuration itself were
conveyed. Solving the problem required participants to
coordinate activity around system model rather than around
system parameters. The telephone (as medium) enabled this
change in coordination whereas text-based messaging did
not. Discourse by telephone had a different character than
discourse by text messaging: telephone resulted in give and
take and shifting of projects, whereas messaging resulted
mainly in opposing positions. That is, the rich interaction
afforded by the telephone enabled participants to coordinate
information not only about the business at hand (setting the
parameters properly) but also about deciding what to do
(debugging the system model).

Conclusion

Support and maintenance of large-scale computer systems is
rarely done by one person working alone. Given the size
and complexity of systems, many people with many
different expertise and skills are required to work together to
keep systems running. Yet the establishment of common
ground among participants in these tasks requires not only
transmission of technical information but also establishment
appropriate coordinated activity (joint projects) and
management of attention. Our analysis suggests that
information flow is moderated by whom or what people pay
attention to, which in turn is moderated by discourse
attributes influencing project initiation and uptake.

References

Anderson, E. (2002). Researching system administration.
Unpublished doctoral dissertation. University of
California, Berkeley.

Clark, H. H. (1996). Using language. Cambridge, England:
Cambridge University Press.

Fairburn C., Wright P. & Fields R., (1999). Air traffic
control as distributed joint activity: Using Clark's theory
of language to understand collaborative working in ATC.
In Proceedings of the European Conference on Cognitive
Science.

Hutchins E. (1995). Cognition in the Wild. Cambridge, MA:
MIT Press.

Woods, D. D. (1988). Coping with complexity: The
psychology of human behavior in complex systems. In H.
B. Goodstein & S. E. Olsen (Eds.) Tasks, errors, and
mental models. London: Taylor & Francis, 128 — 148.

