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Abstract

We present a connectionist model that provides a mechanistic
account of the development of simple relational analogy
completion. Drawing analogies arises as a bi-product of
pattern completion in a network that learns input/output
pairings representing relational information. Analogy is
achieved by an initial example of a relation priming the
network such that the subsequent presentation of an input
produces the correct analogical response. The results show
that the model successfully solves simple A:B::C:D analogies
and that its developmental trajectory closely parallels that of
children. Finally, the model makes two strong empirical
predictions.

Introduction

“Analogy lies at the core of human cognition” (Holyoak,
Gentner & Kokinov, 2001). Analogies underlie creative
thought and problem solving, and as such are implicated in
virtually all aspects of human life, including cognitive
development. Children spontaneously use analogy to extend
their knowledge about the biological and physical world and
to solve problems (Goswami, 1996). Research by Paen and
Wilkening (1997) has suggested that analogies occur
spontaneously with young children to explain physical
problems. This is consistent with the studies of Ingaki and
Hatano (1987) that suggested children spontaneously use
analogies involving humans to explain the behaviour of
other animals but not stones. There is also some evidence
that 10-month-olds infants are able to reason by analogy to
solve problems (Chen, Sanchez & Campbell, 1997).

Given its importance to cognition, it is not surprising that
analogy has been the subject of many highly specified
theories and computational models going back to the early
1960s (French, 2002). However, although there has been a
considerable amount of research into the analogical abilities
of children, there have been no specifically developmental
models of the underlying mechanisms. The existing
developmental accounts have either been adaptations of
existing adult models (e.g. Gentner, 1989) or else under
specified verbal theories (e.g. Goswami, 1996).
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Our work is an attempt to provide a mechanistic account
of the emerging ability to draw analogies. This account
suggests that analogical abilities develop through the
interactions of a simple memory system and the gradual
accumulation of factual knowledge. No special mechanisms
are required to deal with analogy.

The rest of this paper unfolds as follows. First, we
consider current theories of analogical development, and
highlight the key phenomena that a successful
developmental model should capture. Next we present, the
Goswami and Brown (1989) experiment in greater detail
and offer it as a target modelling task. We then present the
model architecture, training, and how it forms analogies.
The results show how the model performs when presented
with analogies and non-analogies. The developmental
profile of the model is described, as are the errors the model
makes. Finally, we discuss two novel empirical predictions
derived from the model.

Theories of Analogical Development

Some of the earliest research into the development of
analogical reasoning was carried out by Piaget (Piaget,
Montangero & Billeter, 1977). He found that children
younger than 7-years-old made many errors on formal
analogical problems. He suggested that it was not until the
onset of adolescence that children consistently and
successfully completed analogies. Piaget saw the age-related
increase in competence as mirroring the development of
other cognitive reasoning skills. The performance of the
older children corresponded to his postulated formal
operational stage.

One more recent domain general account suggests that
changes in analogical reasoning reflect increased working
memory capacity with age. Halford, Wilson & Phillips
(1998) argue that one of the most fundamental constraints
acting on cognitive development is the relational complexity
that can be processed in parallel in working memory. They
further suggest that the ability to process binary relations



(relations with two arguments) allows for the ability to form
a:b::c:d analogies.

Gentner offers a different account of the development of
analogical reasoning by applying her structure mapping
theory of adult analogical reasoning (Gentner, 1983) to
cognitive development. This framework argues that analogy
is the mapping of systems of relations from a base domain
to a target. She suggests that there is a relational shift that
occurs in children’s analogies through development
(Gentner & Toupin, 1986; Gentner, 1988). Children’s
analogical reasoning changes from being initially based on
the surface similarity of object attributes to gradually
including relational information between objects and then
later on involving systems of relations.

In addition, analogical competence varies from domain to
domain. Thus, some researchers such as Goswami (1996)
and Gentner (1989) suggest that the crucial constraint on
analogical development is the knowledge that the child has
about the relevant relations. Indeed, Goswami and Brown
(1989) showed that if sufficiently well known relations were
used 4- and 5-year-olds could complete analogies of the
kind Piaget had suggested they would fail. They also found
that successful analogy performance correlated with an
independent test of the child’s knowledge of a domain.
Similar conclusions were reached by Rattermann and
Gentner (1998).

Key Phenomena

From the developmental literature, it follows that any
successful theory of the development of analogical
reasoning has to capture the following key components:

(1) The relational shift - where there is a move in
preference from judging similarity on the basis of attributes
to relations (Gentner, 1988; Gentner & Rattermann, 1998;
Gentner & Toupin, 1986).

(2) The strong role of relational knowledge underlying
successful analogical reasoning (Goswami & Brown, 1989;
Gentner & Rattermann, 1998).

(3) The domain specific nature of this knowledge and
consequently the domain specific change over development
in the ability to form analogies (Goswami & Brown, 1989).
(4) Spontaneous analogical ability within a domain, without
the need for specific teaching of analogies (Paen &
Wilkening, 1997; Ingaki & Hatano 1987).

(5) Finally, knowledge acquisition over time - something
that children do, but which is almost entirely absent from
developmental work on analogy so far.

The Goswami and Brown Task

These key phenomena are all, by and large, present in
Goswami and Brown’s (1989) experiment, making it a good
starting point for modelling analogical development. This
experiment is a variant of the classic IQ item analogy test of
the form “A is to B as C is to D”. For example, “dog is to
puppy as cat is to...?”, with “kitten” as the correct D term.
Goswami and Brown (1989) wanted to make the task easy
enough for young children by showing children pictures of
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familiar objects (such as lemons, bread, televisions) in
different familiar states (cut lemon, switched on television).
For example, the bread could be either cut into slices or
uncut in a loaf. Children were shown the A, B and C terms
of an analogy (Playdoh, cut Playdoh and apple) and were
asked to choose from four pictures. These included the
correct answer and three distractors. The distractors were:
(1) a different object with the same analogical causal change
(cut bread), (2) the same object non-analogically causally
changed (bruised apple), (3) a semantically similar object (a
banana), and (4) an object with a similar appearance (a ball).

A Theory and a Model

There are two central questions which the current account
attempts to answer. The first question is what mechanisms
drive analogy formation in children? In the present work,
analogy completion is driven by priming. For an A:B::C...?
analogy, the A and B terms prime a relation which then
biases the C term to produce the analogically appropriate D
term. This idea is consistent with Schunn and Dunbar
(1996) who found evidence of priming with earlier
analogous tasks improving subjects’ performance in
complex tasks whilst they were unaware of the analogy.

The second question is what mechanisms underlie
analogical development? The development of the analogical
abilities is achieved through the gradual acquisition of
knowledge about relations. The model learns causal
relational information from which analogies can be formed.
As in the Goswami and Brown tasks, these are simple
familiar relations; for example, cutting or melting.

A causal relation is assumed to be embodied in the
transformation of state A to state B (e.g. the transformation
of “apple” to “cut apple”; see also Jani & Levine, 2000). In
other words, there is no explicit coding of the relation itself.
The similarity between two different examples of a relation
(e.g. the similarity between apple:cut-apple and bread:cut-
bread) lies in how the perceptual features of the objects
involved are transformed.

After Output 1 Output 2
state Transformed Object Causal Agent
DN
Hidden
<4 / \>
Before | Input1 Input 2
state Object Causal Agent

Figure 1. Schema of the model architecture. The input layer
codes objects before a transformation, and the output layer
codes objects after a transformation has occurred.

Figure 1 shows the architecture of the connectionist network
used to model both the acquisition of relational information



and the completion of analogies. All network weights are bi-
directional and symmetrical. The input layer is split into two
banks of units, representing the presentation of two different
objects in a “pre”-transformation state. Similarly, the output
layer is split into two banks, representing the same two
objects in their “post”-transformation state. At both input
and output, objects are encoded in terms of perceptual
features only (e.g. shape, size, color).

Input 1, Output 1 and the hidden layer have 40 units each.
Input 2 and Output 2 have 10 units each. The activation of
any unit varies according to a sigmoidal activation function
from 0 to 1. The initial weights are uniformly randomised
between +0.5.

Because of the bi-directional connections, input activation
can cycle through the network before settling into a stable
attractor state. During training, contrastive Hebbian learning
was used to change the connection weights so the attractors
on the output units coincided with target output states of the
network (O'Reilly, 1996). The learning rate was set to 0.1,
and activations were updated for 50 cycles between each
weight update.

The networks were trained on input patterns produced on-
the-fly by adding Gaussian noise (u=0.0, ¢=0.2) to
prototypes. The prototypes were randomly generated input
vectors within the range [0, 1]. There were 20 different
possible Input 1 (object) prototype patterns, and 4 different
Input 2 (causal agent) prototype patterns. This was meant to
capture the fact that although two instances of cutting an
apple with a knife are similar, they are not identical.

Four transformation vectors were also randomly
generated. The transformation vectors encode the relation
between the pre- and post transformation states of the
object. In fact, the transformed state of the object (Output 1)
is obtained by adding a transformation vector to an object
(Input 1). For example, Input 1 (e.g., apple): [0.50.2 0.8 0.2
0.4], might be transformed by the vector (e.g., cut): [-0.4
0.0 0.0 0.0.7 0.0] resulting in Output 1 (cut apple): [0.1 0.2
0.8 0.9 0.4]. Note that while the transformation vector is
used to generate the output corresponding to any particular
input, the transformation vector itself is never presented to
the network. Different objects (e.g. “bread” or “apple™)
transformed by the same relation (e.g. cutting) are
transformed by the same vector. Thus, the network can learn
about a particular transformation by generalising across sets
of Input/Output pairings.

Input 2 represents a causal agent (e.g. “a knife”) which
when it occurs alongside certain objects represented at Input
1 (e.g. “an apple”) leads to a transformation of that object at
Output 1 (e.g. “a cut apple”). Consequently, the target
pattern for Output 1 (the post-transformation state of the
object) depends on Input 2 patterns. Output 2 is always the
same as Input 2.

Training consists in randomly selecting an object and an
agent, computing the output states, and updating the weights
such that the actual output state produced by the network
moves closer to the target output state. One can think of the
input and target output states as two temporally contiguous

712

states of the world. Because both the input and target can be
obtained by direct observation of the world, learning of
relational information does not require an external teacher,
and constitutes a form of self-supervised learning
(Japkowicz, 2001). Here, each of the 20 Input 1 objects can
be affected by 2 of the 4 causal agents and so 2 of the 4
transformations. Thus, there are 360 potential analogies for
the network to be tested on. However, when an object is
presented in conjunction with one of the remaining 2 causal
agents, the target Output 1 is the same as the untransformed
Input 1. Thus, the presence of the causal agent alone is not a
predictor of whether a transformation will occur.

The testing of analogy completion proceeds in a very
different way from learning of relation information. Priming
underlies the network’s ability to complete a:b::c:d
analogies. Priming occurs because the bi-directional
connections allow the hidden and output units to maintain
activity resulting from an initial event (e.g., an a:b event).
The activity that is maintained in the network impacts on
how new input is then subsequently processed (e.g., a c:?
input).

Consider the following example. First, the input and
output units are clamped with the “apple” at Input 1 and
“cut apple” at Output 1 while Input 2 and Output 2 are
initially set to 0.5, the resting value. This corresponds to
being presented with the information apple:cut apple (i.e.,
the first half of an a:b::c:d analogy). The causal agent is not
presented to the network at any point during testing. After
50 activation cycles the network settles into the attractor
state it was trained on by filling in Input 2 and Output 2 and
arriving at hidden unit activations consistent with the
transformation cutting. Following this, the Input 1 and
Output 1 units are unclamped and a second pattern,
corresponding to “bread”, is presented to Input 1 and
nothing at Output 1. Input 2 and OQutput 2 are initially
presented with resting activation patterns and then
unclamped. This corresponds to being presented with the
information bread:? (i.e., the second probe half of the
a:b::c:d analogy). By unclamping the original inputs and
outputs and by presenting a different input pattern, the
network is no longer in equilibrium and settles into a new
attractor. During training, the network has encoded in the
connections to and from the hidden layer the similarities in
the transformations corresponding to relations such as
cutting. Consequently, the prior priming of the “apple” and
“cut apple” transformation biases the network to settle into
the attractor state corresponding to “bread” clamped at Input
1 and the transformation cutting, which gives “cut bread” at
Output 1. Now the network has produced the appropriate
response at Output 1 to complete the analogy (i.e., apple:cut
apple::bread:cut bread).

Results

The network is only ever trained to predict the causal
consequences of an object and an agent. During training, the
output SSE is reduced from 4.31 initially to 0.88 by 10,000
epochs. After 20,000 epochs the network is able to reliably



produce at output all the correct patterns with a mean SSE <
0.65.

An example of analogy and non-analogy

Figure 2 shows the changing activations of a fully trained
network as it settles into a stable attractor state in response
to new input. The different lines represent the sum of
squared difference (SSD) between the actual output
produced and four possible distractor patterns. The
distractors are comparable to those used in the Goswami and
Brown task. The pattern with the lowest SSD can be thought
of as the current choice of the network. In Figure 2a the
network is presented with the analogy problem “bread:cut

response “cut apple”.

Moreover, if the network is completing analogies
appropriately, it should not apply analogies where these are
inappropriate. Figure 2b shows the network’s response
when  presented with the non-analogy
“bread:bread::apple...?”. Here, the network correctly
produces the untransformed “apple” at Output 2. Figures 2a
and 2b both show how the network responds when
presented with the “apple” input pattern. However, the
network’s output is different. These cases differ only in
what preceded the test input “apple”, and whether this
primed a transformation.
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Figure 2a and 2b: The sum of squared difference between
the actual output activation and four training patterns after
20,000 epochs of training. 2a is after presentation of an
analogy. 2b is after presentation of the non-analogy.
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Developmental profile

Figure 3 shows the network's performance when tested on
all 360 analogies across time. If the analogically appropriate
response has the lowest SSD then the network is assumed to
have successfully completed the analogy. After 100 epochs
of training, only 29% of analogies are completed
successfully. However, by 20,000 epochs of training, the
network produces the analogically appropriate response for
almost 85% of analogies.

The network completes different analogies at different
points in its training. The percent of analogies correct has an
inverse relationship to the average sum of squared error

100% ~
90% +
80%
70%
60%
50% 4
40% -
30%
20% +
10% -

(OB Z N R I ]
1 15 29 43 57 71 85 99 113 127 141
EPOCH

CORRECT

(SSE) at output. So, the percent of analogies correct is
related to the network’s knowledge of the transformations.
Figure 3. Percentage of analogically appropriate responses
at output over training. These results are the average of 20
replications.

This profile parallels the evidence from the
developmental literature suggesting that domain specific
changes in the abilities of children correlate with their
domain knowledge of the relations involved (e.g.,
Rattermann and Gentner, 1998).

Analogical errors

It is important to compare the kind of errors that the network
makes with those made by children. The network made two
types of errors: appearance errors (where the network
responded at Output 1 with the same object as at Input 1)
and transformational errors (where the network produces the
correct changeable object at Output 1 but transformed by a
non-primed relation). These are the same kinds of errors
predominantly made by children (Rattermann and Gentner,
1998).



Children Networks
Response 4-year- 5-year- 2200 3500
olds olds epochs epochs
Correct 35% 67% 36.4%  65.8%
analogy
Wrong 35% 28% 34.7%  23.5%
transformation
Similarity 22% 3% 28.9% 10.7%

based error

Table 1. Distribution of responses made by children and the
network

In Ratterman and Gentner (1998), children were not
tested on all available relations, only those where the
transformations were familiar enough for them to
successfully complete analogies. Indeed, the 6-year-olds
performed at ceiling, successfully completing nearly 100%
of analogies used in this study’. However, in the results
above, the networks are tested on every possibly analogy.
So, to enable a comparison of the networks performance
with the children’s performance, we selected a subset of
83% of analogies such that the networks would have 100%
correct performance on those analogies after 20,000 epochs
of training.

Table 1 compares the responses of children in the
Rattermann and Gentner (1998) study with those of the
networks. The network simulates the children’s responses
closely. The network shows a shift over training with a
considerable decrease in the proportion of appearance
responses (from 28.9% to 10.7%). This is matched with an
increase in transformational responses (either correct or
transformational error) from 71.1% to 89.3%. This is
consistent with the relational shift phenomenon in which
children give more transformation-based analogies as they
get older.

Developmental asymmetry

One interesting phenomenon of the networks is a
developmental asymmetry in analogy completion when base
and target are reversed. Figure 4 shows the SSE of the
output during training. It also includes arrows indicating
when four randomly chosen analogies and their reverses
were first successfully completed. For each analogy, there is
a period when the model can complete an analogy one way
but it fails to complete its reverse. For example, “apple:cut
apple::bread::cut bread”, is completed hundreds of epochs
later than the reverse analogy: “bread:cut bread::apple:cut
apple”. This asymmetry has so far not been tested and so is
a strong prediction about children's behaviour.

! There are many other analogies that six-year-olds would
perform very poorly on (e.g. Piaget et al, 1977).
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Figure 4: The average SSE at output for every input pattern
over training. The arrows indicate when four analogies
(numbered 1a-4a) and their reverse analogies (numbered 1b-
4b) are first successfully and consistently completed.

Transformational similarity

Figure 5 highlights another interesting prediction of the
network. In the network, the number of transformational
errors is largely determined by the degree of similarity
between the transformational vectors encoding different
relations. The Euclidean distance between the
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Figure 5: The percentage of responses which are one of the
two types of errors when the transformations are (a) more or
(b) less similar. The results are the average of 20
replications.



transformational vectors determines the number of
transformational errors. The transformation vectors for the
simulation results depicted in 5a have a maximum
Euclidean distance of 10 from each other, whereas distance
between those for the results depicted in 5b is greater than
15. There are many fewer transformational errors in 5b than
in 5a. The implication of this is that analogies using more
distinct transformations should produce fewer
transformational errors with children.

Discussion

This work presents a connectionist account of the
development of simple analogy completion. Analogy is seen
as a form of relational priming. A relation, at least for the
simple cases considered here, is the transition from one state
to another causally related state. These assumptions allow
the network to account for several key developmental
phenomena observed with children.

When we consider the network’s errors, it demonstrates a
relational shift paralleling that in children. Furthermore, this
transition from drawing analogies on appearance to relations
occurs only through increasing training. This again
conforms to the developmental evidence suggesting that
knowledge accretion underpins the development of
analogical reasoning. A second consequence of analogy
depending on training is that analogies involving different
relations and different objects are completed at different
times. This fits with the domain specific nature of analogical
reasoning highlighted in much of the developmental
literature.

It is important to note that the network is never directly
trained on analogies. Its ability to complete analogies
emerges from the way relational information is represented
and tested. This is consistent with developmental studies
that suggest untrained analogy use in young children in
some circumstances.

The model makes two novel predictions. The
developmental asymmetry prediction differentiates between
the present model and structure-mapping accounts, which
do not naturally suggest such an asymmetry. The
transformational error prediction is interesting because until
now most empirical work has focused on the structural or
perceptual similarity of the objects involved in an analogy.
Instead, this prediction derives from the transformations of
objects and their impact on analogical reasoning. We are
currently testing these two predictions.

The analogical abilities of the network are achieved
without an explicit structure-mapping system or any built-in
syntactic structure. Of course, the current model is unable to
account for many more complex child and adult analogies,
(e.g. Rutherford's solar system - atom analogy). However,
the present work suggests that, at least for simple cases,
simple memory-based mechanisms may suffice to explain
behavior.
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