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Abstract

One of the important aspects of human causal reasoning is
that from the time we are young children we reason about
unobserved causes. How can we learn about unobserved
causes from information about observed events? Causal
Bayes nets provide a formal account of how causal structure
is learned from a combination of associations and
interventions. This formalism makes specific predictions
about the conditions under which learners postulate hidden
causes. In this study adult learners were shown a pattern of
associations and interventions on a novel causal system. We
found that they were able to infer hidden causes as predicted
by the Bayes net formalism, and were able to distinguish
between one hidden common cause and two hidden
independent causes of the observed events.

Introduction

Causal reasoning is an important tool with which we make
sense of relationships between objects and events in the
world. Once we have a causal model of the world, we can
make predictions, generate explanations and reason about
the consequences of possible actions. How do we go about
acquiring such models? Because the data available to our
senses are often imperfect and incomplete, our causal
learning system has to be flexible about the kind of
information it requires. First of all, many of the causal
relations we observe have no obvious spatio-temporal
connection. We must, and indeed we do, learn about
causation by observing associations, and psychological
research has described this learning process in detail (Cheng
1997; Gopnik, Sobel, Schulz & Glymour, 2001; Shanks &
Dickinson, 1987). In addition, our causal learning system
should be able to postulate new objects/events without
observing them directly. This is important both for
discovering new observable causes and reasoning about
phenomena that cannot be directly perceived. How we learn
about hidden entities from observable ones is a topic that
has not been given much attention in psychological
research, and is the focus of this investigation.

There is a wealth of evidence that adults and even very
young children learn and reason about unobserved causes.
We appeal to unobserved mental states to explain human
behavior (Gopnik & Wellman, 1994; Ross 1977; Wellman,
1990). Unobserved causes underlie our representations of
basic categories (Gelman & Wellman 1991; Murphy &
Medin, 1985). We also reason about physical forces that we
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cannot see (Shultz, 1982; Schlottmann & Surian, 1999).
Scientific research is entirely devoted to explaining
observed events by appeal to hidden theoretical entities
(Gopnik & Melzoff, 1997). Often, as technology advances,
these entities turn from hidden to observable, though it is
their theoretical existence that prompts us to look for them
in the first place.

A perfect example of this is a classic study in the field of
epidemiology. In the 1850s, there were a series of cholera
epidemics in London. In order to test a theory that cholera
was a waterborne disease, a doctor named John Snow spent
almost a decade meticulously recording where cholera
victims lived, and which of several companies was
supplying them with water. He was able to confirm his
theory by using this statistical information to eliminate all
other possible causes, such as those related to poverty,
gender or occupation. It was not until much later that direct
microscopic evidence confirmed what he was able to figure
out using indirect evidence alone (Snow, 1855).

Snow’s account demonstrates how powerful the
combination of data and good scientific intuition is for
learning about hidden causes. However, what we call “good
scientific intuition” for interpreting data has traditionally
had no formal account. Recently, though, a convergence of
statistical models from several fields (machine learning,
epidemiology, social science, statistics) has resulted in a
formal account of causal learning and inference known as
causal graphical models, or causal Bayes nets (Pearl, 2000;
Spirtes, Glymour & Scheines, 1993). The successes of
these models in aiding scientific research have prompted a
recent effort in cognitive science to use causal Bayes nets to
model human causal reasoning (Glymour, 2001; Gopnik,
Glymour, Sobel, Schulz, Kushnir & Danks, in press;
Steyvers, Tenenbaum, Wagenmakers & Blum, in press;
Tenenbaum & Griffiths, 2001; Waldmann & Hagmayer,
2001).

Bayes nets represent joint probability distributions in their
simplest form by exploiting the set of conditional
independence relations among the variables (Jordan, 1998).
Causal Bayes nets apply this theoretical framework to sets
of variables that are causally related. Algorithms have been
developed along these lines that use the conditional
independence relations from a combination of observed
associations and interventions to infer causal structure.
Besides accounting for well-known findings in cognitive
psychology on the role of observational data in learning



causal relations (see Gopnik et al, in press), these models
provide the first formal account of the role of interventions
in causal learning and inference (Pearl, 2000; Spirtes et al,
1993).

So far, there is evidence that both adults and young
children can learn the causal structure of a set of observed
events using patterns of conditional probability in a manner
consistent with the Bayes net formalism. Both children and
adults can use information about conditional independence
and dependence to discount (or “screen off”) spurious
associations in favor of true causes (Gopnik et al, 2001;
Cheng 1997; Shanks & Dickinson, 1987; Spellman, 1996).
Recently, several researchers (Gopnik et al, in press;
Schulz, 2001; Lagnado & Sloman , 2002, Steyvers et al, in
press) have also demonstrated that adults and young
children can use information from interventions to learn the
causal relations between observed variables. For example,
Schulz (2001) showed 4-year-olds and adults two objects (A
& B) that moved simultaneously without touching (no
spatio-temporal cues), and asked them to determine which
object caused the movement. Participants then saw that
intervening on object B did not result in the movement of
object A. Both children and adults inferred that object A
was the cause. The same pattern of movement (A & B
together, then B alone) without an intervention resulted in
chance responding.

The formal story, according to the theory of interventions
on causal graphs (see Spirtes et al, 1993; Pearl, 2000) is
this: Before the intervention was performed, participants
had information about P(A|B) and P(B|A), namely that both
were equal to 1. This, however, is very different from
P(A|do(B)) (where do(X) notes an intervention on X). The
intervention do(B) sets B to a fixed value determined by the
intervener, thus effectively removing all other causes of B in
the system (represented by removing the arrow from A to
B). If A is a cause of B, then P(A|do(B)) # P(A|B). If A is
an effect of B or is independent of B, then P(A|do(B)) =
P(A|B). Since the former is true in this case, the learner
should conclude that A causes B.

In another condition, participants (both children and
adults) saw three objects (A, B & C) moving together
simultaneously and were asked which was the cause of
movement. An intervention on object A didn’t result in the
movement of either B or C. An intervention on C left A &
B unmoving. Children as young as 4 came to the (formally)
correct conclusion that B was the cause. Again, the same
pattern of associations without interventions resulted in
chance responding.

If object B were hidden from view, the Bayes net learner
would infer that a hidden common cause for A & C must
exist given the same pattern of interventions as in the above
example. Since the interventions on A & C are independent
of each other, then only a common cause of A & C can
produce the dependency between them that was initially
observed. If that cause is hidden, then it must be inferred
given the Bayes net modeling assumptions (see Gopnik et
al, in press for a formal analysis). Moreover, in addition to
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simply inferring that there is an unobserved variable,
learners should also be able to infer that this unobserved
variable is a common cause of A and C, and to differentiate
this hypothesis from the hypothesis that A and C are the
result of two independent unobserved causes.

There is some preliminary evidence that children can
infer an unobserved cause when the causal relations
between the objects are deterministic (Gopnik et al. in
press). A stronger test of the hypothesis would be to see if
learners can also do this when the relations are probabilistic,
and can differentiate common and independent unobserved
causes. However, before asking whether children can infer a
hidden cause in the above scenario, we need to investigate
whether adult learners will do so -- a question that has never
been investigated. In the following studies, we show that
adults can infer a hidden cause from conditional
probabilities without temporal or mechanistic cues, and can
differentiate common and independent unobserved causes.
In particular, we will show that, as predicted by Bayes net
models, a combination of observations and interventions can
lead to such a conclusion — even when each alone is
insufficient to learn the correct causal structure.

Experiment 1

In this experiment, we showed participants two objects,
colored balls on sticks, moving simultaneously up and down
due to being placed in a “stick-ball machine.” The stick-ball
machine could have one of several possible mechanisms
operating within it on any given trial. In one trial, the
evidence presented was similar to that in the above
experiment (Schulz 2001, condition 2).  Participants
observed balls A & B move together. They then observed
interventions on ball A and on ball B, neither of which
resulted in the movement of the alternate ball. If the Bayes
net account is correct, this should lead to the conclusion that
one hidden mechanism causes both balls to move.

As one comparison, we presented participants with the
identical intervention information but different initial
observations — balls A and B moved independently most of
the time. This observational information should lead to the
conclusion that there is no association between A and B, and
thus they are not caused by a common mechanism.

Because the apparatus had a hidden mechanism, we
performed another control to insure that participants did not
favor an unobserved causal explanation when an observed
cause could account for the movement. In this condition,
we constantly intervened on one of the balls, which should
lead to the conclusion that it is the cause of movement.

In addition, we told participants that the balls were
probabilistically causally effective and demonstrated this in
a familiarization trial beforehand.  This way, failed
interventions could be interpreted as having failed by
chance, thereby leaving open the possibility that the
observed balls could still be the causes of movement.



Method

Participants: Participants were 48 undergraduates
recruited from the research participation pool at an urban
university.

Materials: The stick-ball machine (shown in figure 1) was
a3’ x 1’ x 1” wooden box with two holes at the top and an
open back which faced the experimenter and was hidden
from participants. Two colored rubber balls attached to
wooden sticks could be placed in the holes. The mechanism
in the box allowed the experimenter to move the stick-balls
up and down either together or one at a time.

Front View

Back View

Figure 1: The stick-ball machine

Procedure: Each group of participants was seated facing
the two experimenters so that they could only see the front
of the stick-ball machine. One experimenter narrated the
task and performed interventions while the other operated
the machine. Participants were told that there was a
mechanism behind the machine that could change from trial
to trial, and that their job was to figure out the mechanism
that made the stick-balls move on each trial. They were also
told that the mechanism “almost-always” worked. This
allowed for the possibility that balls could fail to move by
chance. The experiment included one familiarization trial
and three test trials. On each trial two new stick-balls of
different colors were introduced. Each stick-ball was given a
name based on its color and this name was used to refer to
the stick-ball throughout (eg This is Reddy and this is
Bluey). The stick balls could be moved by a hidden machine
operator from behind (observations) or the experimenter
could move them by pulling on the top of the stick from
above (interventions). Order of trials was counterbalanced,
with the familiarization trial always first. The types of
movement (interventions and observations) on each trial
were intermixed. The interventions were counterbalanced
by side so that no ball (right or left) was always intervened
on first.

Familiarization trial: On this trial alone the experimenter
explicitly told participants that ball A almost always caused
ball B to move. This was then demonstrated by showing
both balls moving together four times and ball A moving
alone twice.
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1. Common unobserved cause: The stick-balls moved
together four times. The narrator intervened on ball A twice
and each time ball B didn’t move. The narrator intervened
on ball B twice and each time ball A didn’t move.

2. Independent unobserved causes: The stick-balls each
moved separately twice, and they moved together once. The
narrator intervened on ball A twice and each time ball B
didn’t move. The narrator intervened on ball B twice and
each time ball A didn’t move.

3. One observed cause: The narrator intervened on ball A
six times. Four of those times, both ball A and ball B
moved. The remaining two times ball A moved and ball B
didn’t move.

After each trial, participants were given an answer sheet
with a choice of four possible mechanisms: A causes B, B
causes A, one hidden cause or two hidden causes (see figure
2) and asked to circle the one that was operating on that
trial.

Reddy makes Bluey move

?_¢

Something makes

Bluey makes Reddy move

?. ¢

them Two things make each of
both move together them move separately

? ¢ ? ¢
W t

Figure 2: A sample answer sheet for one trial.

Results & Discussion

The results confirmed the predictions of the Bayes Net
model. Overall, participants’ responses matched the
normative response for each type of trial. Table 1 shows the
percentage of participants that chose each picture in the
three test trials. The majority response for each trial is in
boldface. In trial 1 (common unobserved cause), 63% chose
the common cause picture. In trial 2 (independent
unobserved causes) 96% chose the separate causes picture.
In trial 3 (One observed cause), 65% chose “A makes B
move,” where A was the ball that the experimenter
intervened on.  All three response distributions are
significantly different from chance (* = 26.38, 40.33, 42.50
respectively, all p <.001).

Participants’ responses to trial 1 (common unobserved
cause) were compared with their responses to the two other
types of trials. Participants were more likely to pick the
common cause picture in trial 1 than in trial 2 (McNemar’s
test, p<.001) or in trial 3 (McNemar’s test, p<.001).



Table 1: Percentage of responses in each of the test trials in
Experiment 1.

1 - Common 2 - Independent 3 - One
unobserved unobserved observed *
A causes B 0 0 65
B causes A 2 0
Common cause 63 4 8
Separate causes 35 96 21
7 (df) 26.38 (2)** 4033 (1% 42.50 (3)**
*Intervention on ball A
*kp < 001

The data show that adult learners inferred a hidden
common cause when they observed that two events were
associated with each other, but the association was not
preserved when the experimenter intervened to cause either
event. If the events are not associated to begin with, adults
attribute their occurrence to independent hidden causes,
regardless of the fact that they witness the same pattern of
interventions. Also, participants clearly inferred that one
observed event cause the other when it was appropriate to
do so, rather than defaulting to some hidden mechanism.
Interestingly, a portion of the participants seemed to default
to the “separate causes” response — it was the second most
frequent response in both trials 1 and 3. This may have to
do with the fact that it is the safest response (could always
be true) though not the most parsimonious one.

Experiment 2

In experiment 2 we explored whether adults would make
similar judgments when they saw the same pattern of
associations between the objects, but those patterns were not
due to interventions. The Bayes net models should generate
different results in these two cases. Other accounts, such as
a simple associationist account, should not distinguish
between observations and interventions in this way. In this
experiment participants were shown the same hidden
common cause task as in Experiment 1. They were also
shown the same pattern of events without any interventions.
Instead of intervening, the experimenter pointed at each
object as it moved by itself. The pointing made each stick-
ball salient in exactly the same way that the intervention did,
and was a very similar perceptual event to direct
intervention. However, in this case, since participants
observe that the movement of A & B is associated only half
of the time, they should be just as likely to infer two
unobserved causes as one common unobserved cause.

Method

Participants: Participants were 24 undergraduates
recruited from the research participation pool at an urban
university.

Materials: The stick-ball machine and stick balls were the
same as in experiment 1.
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Procedure: Participants were introduced to the stick-ball
machine in the same manner as in experiment 1. After the
familiarization trial, there were two test trials,
counterbalanced across groups of participants.

Common unobserved cause: The stick-balls moved
together four times. The narrator intervened on ball A twice
and each time ball B didn’t move. The narrator intervened
on ball B twice and each time ball A didn’t move.

Pointing control: The stick-balls moved together four
times. The narrator pointed at ball A twice as it moved
alone. The narrator pointed at ball B twice as it moved
alone. Pointing always began slightly after the movement
(to rule it out as a cause).

After each trial, participants were asked to circle the
mechanism behind the machine on the answer sheet (same
as experiment 1).

Results & Discussion

As in Experiment 1, participants’ responses matched the
predictions of the Bayes net model for each trial. Table 2
shows the percentage of participants making each type of
response. In trial 1, 67% of participants chose the common
cause picture (replicating the findings in Experiment 1). In
trial 2, 79% chose the separate causes picture. Participants
were more likely to pick the common cause picture in trial 1
than in trial 2 (McNemar’s test, p<.01).

This experiment again shows that, with the right
combination of observations and interventions, adult
learners inferred an unobserved common cause for the two
events. Without interventions, adult learners were most
likely to view the identical pattern of events as arising from
separate hidden mechanisms.

Table 2: Percentage of responses in each of the test trials in
Experiment 2.

1 - Common 2 - Pointing
unobserved Control
A causes B 0 0
B causes A 0 4
Common cause 67 17
Separate causes 33 79
2
% (dD) 2.67 (1) 2325 (2)*+
*Intervention on ball A
**p <.001

General Discussion

In both experiments participants were able to infer an
unobserved common cause, and to distinguish unobserved
common causes from unobserved independent causes.
Neither identical data from observed associations without
interventions (Experiment 2) nor identical interventions
with different observed associations (Experiment 1) lead to
the same conclusion. This investigation showed that, given
certain patterns of evidence, adult learners will infer
unobserved causes for observed events. In order to do this,
learners relied on the crucial distinction between observed
associations and interventions. Causal Bayes nets are the



only formal models that currently make this distinction and
that provide algorithms for how causal structure learning
takes place based on both types of evidence.

However, the undergraduate participants in this
experiment had extensive experience of causal inference,
and often had some explicit tuition in causal reasoning. For
this reason, it is important to ask whether even young
children, with relatively little prior experience, would infer
hidden causes under the same circumstances. Such evidence
would at least suggest that a general learning mechanism is
more likely than a rule based on years of experience.

Another possibility is that adults only infer hidden causes
when they are explicitly presented as options. In this
experiment, participants were given pictures of mechanisms
with either one or two unobserved causes in them. Further
research is needed to investigate other circumstances under
which people will spontaneously infer a hidden cause
without being given any explicit cues to do so.
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