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Abstract

Numerous studies of how people reason with statistical data
suggest that human judgment often fails to approximate
rational probabilistic (Bayesian) inference. We argue that a
major source of error in these experiments may be
misunderstanding causal structure. Most laboratory studies
demonstrating probabilistic reasoning deficits fail to explain
the causal relationships behind the statistics presented, or they
suggest causal mechanisms that are not compatible with
people’s prior theories. We propose that human reasoning
under uncertainty naturally operates over causal mental
models, rather than pure statistical representations, and that
statistical data typically support correct Bayesian inference
only when they can be incorporated into a causal model
consistent with people’s theory of the relevant domain. We
show that presenting people with questions that clearly
explain an intuitively natural causal structure responsible for a
set of statistical data significantly improves their performance.
In particular, we describe two modifications to the standard
medical diagnosis scenario that each eliminates the
phenomenon of base-rate neglect, merely by clarifying the
causal structure behind false-positive test results.

Introduction

Can people arrive at correct probability judgments after
reading sufficient statistical data? Decades of experimental
inquiry into intuitive statistical inference have documented
the ways in which human judgment deviates from rational
Bayesian norms. Examples include the phenomena of base-
rate neglect (Kahneman & Tversky, 1982), the conjunction
fallacy (Tversky & Kahneman, 1983), and deviations from
the additivity principle (Villejoubert & Mandel, 2002). Yet
in the real world, an environment that is saturated with
useful statistical information and that continually poses
challenges for reasoning under uncertainty, people function
quite well, and far better than any artificial systems built on
the norms of probability theory (Russell & Norvig, 2002).
One possible explanation for this discrepancy is that
laboratory studies typically present participants with
unnatural forms of information — single-event or epistemic
probabilities instead of naturally sampled frequencies — and
that human minds are only designed to operate on
information in the latter, more natural format (Gigerenzer &
Hoffrage, 1995). While we do not dispute the benefits of
presenting people with statistical data in frequency formats,
we doubt that the simple frequency-based algorithms of
Gigerenzer and Hoffrage (1995) are responsible for most of
our successful reasoning in everyday life. Real-world
systems are too complex, and often sufficiently different
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from anything we have seen before, to support reasoning
based on simply looking up frequencies in a table compiled
from past experience.

Here we propose an alternative account of probabilistic
reasoning errors in laboratory tasks, based on a different
conception of how uncertain reasoning operates in the real
world. We argue that human reasoning under uncertainty
naturally operates over causal mental models, rather than
purely statistical representations, and that statistical data
typically support correct Bayesian inference only when they
can be incorporated into a causal model consistent with
people’s theories of the domain. We will argue that
misunderstanding causal structure is a major source of error
in standard laboratory studies of probabilistic reasoning, and
then describe two modifications to a standard task which are
each capable of eliminating the typical “base-rate neglect”
error by clarifying the causal structure of the problem.

Bayesian Inference and Base-rate Neglect

We focus on diagnostic reasoning problems: inferring the
probability of a proposition H based on some observed data
D. The normative Bayesian approach to diagnostic inference
requires two kinds of probabilities: the prior, P(H),
representing our degree of belief that the hypothesis is true
before making the observation, and the likelihoods,
P(D|H) and P(D|—H), representing the probabilities
that the data would have been observed if the hypothesis
were true and if the hypothesis were false, respectively.
Bayes’ rule then prescribes an equation for computing the
posterior, our degree of belief in the hypothesis given the
data: P(H |D)=P(H)xP(D|H)/P(D), where P(D) is
computed as P(H)XP(D | HY1-P(H))xP(D|—-H) .

Bayes’ theorem does not prescribe how one should set the
prior probability or the likelihoods, but most researchers
have assumed that experimental participants should set them
based on the statistics provided, specifically setting the prior
equal to the base rate. The term “base rate” refers to a
statistic summarizing how often H has been true in similar
previous situations, independent of whether D was
observed. The label “base-rate neglect” refers to errors in
probabilistic reasoning that appear to be due to not setting
P(H) equal to the presented base rate, or to ignoring the
influence of the P(H) term in Bayes’ rule.

Our primary example of base-rate neglect is a word
problem adapted from Eddy (1982) and tested in an
influential paper by Gigerenzer and Hoffrage (1995), and
several follow-ups (Cosmides & Tooby, 1996; Lewis &
Keren, 1999; Macchi, 2000). The problem reads as follows
(from Gigerenzer & Hoffrage, 1995):



The probability of breast cancer is 1% for a woman at age forty who
participates in a routine screening. If a woman has breast cancer, the
probability is 80% that she will get a positive mammography. If a
woman does not have breast cancer, the probability is 9.6% that she will
also get a positive mammography. A woman in this age group had a
positive mammography in a routine screening. What is the probability
that she actually has breast cancer? %

The probabilities here are called “single-event
probabilities”, or “epistemic probabilities”; they refer to
degrees of belief about an individual case rather than the
frequency of an outcome in a series of repeated trials.
People are poor at solving this diagnosis problem, often
giving an answer of 70%-90%, while Bayes’ rule prescribes
an answer of 7.8% (Gigerenzer & Hoffrage, 1995).
Kahneman and Tversky (1982) used the term “base-rate
neglect” to characterize errors in this range because in this
and similar problems people seemed to be neglecting the
base rate of 1% (the prior) in favor of the individuating
information (the likelihoods), rather than combining the two
via Bayes’ rule to calculate the posterior. Other explanations
for this phenomenon have been offered, such as the
tendency to confuse a given conditional probability with its
inverse (Villejoubert & Mandel, 2002). Macchi (1995) has
catalogued incorrect answers to typical inference problems
and found that most instances of “base-rate neglect” are best
described as calculating P(D|H), 1-P(D|-H), or
P(D|H)—P(D|—H) .Few participants actually carry out a
Bayesian computation that neglects priors, which would
produce answers equal to P(D|H)/[P(D|H)+ P(D|—-H)].

Regardless of how one categorizes errors, one thing is
clear: people do not possess a general-purpose probabilistic
reasoning engine that takes as input single-event
probabilities, sets priors and likelihoods equal to the
corresponding statistics, and outputs correct posterior
probabilities. But if people do not have such an ability, how
are they generally able to navigate the world so well?
Gigerenzer and Hoffrage (1995) propose that people do
have the ability to make correct Bayesian computations, but
typical laboratory problems present the statistical
information in an unnatural format. They have shown that
questions provided in a natural frequency format, rather than
a probabilistic format, can dramatically reduce inference
errors such as base-rate neglect. For instance, they tested the
following “natural frequency” version of the mammography
problem:

10 out of every 1,000 women at age forty who participate in a routine
screening have breast cancer.

8 of every 10 women with breast cancer will get a positive
mammography.

95 out of every 990 women without breast cancer will also get a positive
mammography.

Here is a new representative sample of women at age forty who got a
positive mammography in a routine screening. How many of these
women do you expect to actually have breast cancer? _ outof .

Gigerenzer and Hoffrage (1995) explain these results on
evolutionary grounds, arguing that “as humans evolved, the
‘natural’ format was frequencies as opposed to probabilities
or percentages.” However, we know that people can use
simple probabilities and percentages to reason correctly, and
can often solve more complex probabilistic reasoning
problems provided that the causal relevance of all factors is
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made clear (Kahneman & Tversky, 1980). The frequentist
hypothesis does not explain success in these cases.
Furthermore, the reduction of error in frequency formats
could be due to the fact that Bayesian diagnosis problems
phrased in terms of frequencies are just simpler to solve,
involving only the addition of two whole numbers rather
than the multiplication and division of six decimal numbers.
Gigerenzer and Hoffrage point to the simplicity of the
frequency calculation as evidence that people only needed
to evolve a simple inference system, but the success of the
frequentist algorithm in simple word problems is not enough
to justify the claim that people use this simple frequency
computation for most real-world inferences. One never
hears a mechanic say: “If you want to estimate the chances
of your car breaking down on a long road trip, first think of
the last 1000 cross-country road trips you took....” This
approach only works when only one or two variables are
relevant, and ample statistics are available. Real-world
systems present complex patterns of correlation over many
variables, and people typically do not have access to enough
observations to warrant drawing conclusions based on a
simple look-up table of frequencies of previous occurrences.
Rather than appealing to a large collection of similar past
experiences, we typically make judgments about the
probability of a car breaking down, the chance of getting a
certain job, or an acquaintance’s intentions, by constructing
and manipulating some kind of domain-specific causal
mental model. This capacity to reason with causal mental
models may also be responsible for our successes — and
failures — on probabilistic reasoning tasks in the laboratory.

Bayesian Inference with Causal Models

Both the frequentist algorithms and standard Bayesian
inference are domain-general and purely statistical
approaches to uncertain reasoning. We propose that rather
than possessing a domain-general engine taking statistical
data as input and producing probabilities of hypotheses as
output, people naturally evaluate and interpret statistical
information within the framework of a domain-specific
probabilistic causal model, derived from a theory of how
particular kinds of causes produce particular kinds of effects
in that domain. An individual’s probabilistic causal model
encompasses knowledge of which causes produce which
effects (the structure), how likely certain causes are to occur
(the priors), and how likely a given effect is to follow from a
given set of causes (the likelihoods). This model provides
the knowledge base for a causal reasoning engine, which
takes as input (1) a probabilistic causal model and (2)
observations or statistical data, and is capable of producing
probabilities of hypotheses as output. The causal reasoning
engine can be formally modeled using the tools of Bayesian
networks (Pearl, 2000), but for the purposes of this short
paper, we limit our discussion to informal graphical
representations of probabilistic causal models.

Graphical models have figured in many recent accounts of
human categorization (Rehder, 2001; Waldmann et. al,
1995) and causal structure learning (Ahn & Dennis, 2000;
Gopnik et al, in press; Steyvers, Tenenbaum et al., in press;
Tenenbaum & Griffiths, 2001), but have not to date made a
large impact on the study of reasoning under uncertainty



more generally. Yet the connections between real-world
causality and uncertainty run deep — so deep that we doubt
there can be a complete theory of reasoning under
uncertainty that does not include, and perhaps center
around, causality. Pearl (2000) argues that much of the
uncertainty of inference in an otherwise deterministic world
is due to multiple causal influences that can produce the
same effect. For instance, coffee is occasionally bitter, but
this is not due to a stochastic mechanism that unpredictably
makes coffee bitter; rather it is due to one of several hidden
causal influences: over-roasting or burning the coffee. If one
wishes to know the probability that a given cup of coffee
will be bitter, the first step should be to identify the potential
causes of bitterness and then to investigate them, (e.g., how
long has the pitcher been on the burner, etc.), rather than to
start with a statistical analysis, e.g., estimating the
proportion of bitter cups of coffee you’ve had in your
lifetime. As all statistical correlations are ultimately a result
of (perhaps very indirect) differential causal influences, we
expect reasoning under uncertainty to be sensitive to the
causal structures that create uncertainty in the first place.

The connection between causality and uncertain reasoning
was one of many directions pioneered by Tversky and
Kahneman. Tversky and Kahneman (1980) found that
providing “causally relevant” base rates improved
probabilistic inference, but they did not explain why, or
even define what they meant by “causally relevant”. Their
most explicit proposal was that “base-rate information
which is not incorporated into a causal schema, either
because it is not interpretable as an indication of propensity
or because it conflicts with an established schema, is given
little or no weight.” Tversky and Kahneman treated causal
schemas as potential sources of error in statistical reasoning,
whereas we take them as necessary substrates for
probabilistic inference to succeed in complex, everyday
scenarios. The effects of causal schemas are not indicators
of how some “pure” statistical reasoning engine may go
wrong, but the sign that people are not doing “pure”
statistical reasoning at all; they are doing intrinsically causal
reasoning, by computing probabilities over causal mental
models.

Our goal is to go beyond the notion of “causally relevant”
base rates by examining more precisely how causal mental
models provide the substrate for reasoning under
uncertainty, and how those models are constructed. We
view causal models as transient mental representations
constructed on the fly to solve specific problems, based on
both given information and the constraints imposed by
people’s domain theories. For instance, one’s theory of
electricity should not allow one to construct a causal model
in which taking the batteries out of a device causes it to start
working. Our evidence suggests that any piece of given
information — base rates, likelihoods, or qualitative
statements — will only be used if people can incorporate it
into a causal model compatible with their domain theory.

More specifically, we will argue that the difficulty in the
probabilistic version of the mammogram problem stems not
from neglecting the base rate, but from misunderstanding
the causal mechanism behind the false-positive rate. Based
on the information provided in the problem, people may
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assume that false positives are caused by noise or random
error. Since doctors presumably trust the test, people might
further assume that the level of noise is low, and this
assumption is incompatible with the statistics provided. In
fact, the statistics provided are not compatible with the
actual causal structure of standard mammogram screenings.
Gigerenzer and Hoffrage adapted the probabilistic version
of the breast cancer problem from Eddy (1982), which
describes the true statistical nature of mammograms. We
found several important discrepancies between the true
statistics in Eddy (1982) and those presented to participants
by Gigerenzer and Hoffrage (1995), which could be at least
partly responsible for their participants’ poor performance.

1. In Eddy’s paper, the likelihoods of 80% and 9.6% are
not for women receiving routine screenings. The
numbers come from Snyder (1966, p. 217), whose
statistics are of women who already have a breast mass
(a lesion): “The results showed 79.2 per cent of 475
malignant lesions were correctly diagnosed and 90.4 per
cent of 1,105 benign lesions were correctly diagnosed”
(Snyder, 1966). Gigerenzer and Hoffrage chose to apply
the likelihood of 9.6% to all women without cancer,
rather than just those with benign lesions. Participants
thus had no indication that benign lesions are actually
the cause of the false positives.

2. The structure of the problem is misleading, by simply
giving a probability of 9.6% that a woman without
cancer will get a positive mammography. This could be
interpreted to mean that if this woman takes the
mammogram 1000 times, she will receive a positive
result approximately 96 times. However, the facts of the
matter are quite different: the size and density of the
benign lesion is actually the major determinant of the
false positive, and this does not change from moment to
moment. So, while it is true that 9.6% of women with
benign lesions will receive a positive mammogram, it is
not true that any individual will have a 9.6% chance;
some will have a high chance and others a low chance.

As Gigerenzer and Hoffrage have described it, the
mammogram appears to be an extremely error-prone test:
the mammogram will come back positive nearly 10% of the
time when testing a woman without cancer, for no reason
whatsoever. How could the medical community trust such a
test, with a noise rate 10 times higher than the base rate of
cancer (1%)? We believe a principal reason people perform
so poorly is that they have difficulty understanding how
such a high false-alarm rate could result purely from noise
(the only cause of a false alarm they are aware of) given that
doctors trust this test enough to declare the result “positive”.

Probabilistic Causal Models

A basic causal model for this scenario is depicted in Figure
1A, in which a positive mammogram can result from one of
two independent and stochastic causes: the patient having
cancer or the test having noise. Formally, this model can be
represented as a Bayes net with a noisy-or parameterization
(Cheng, 1997; Pearl, 2000). If there were only one potential
cause, the probability that the effect occurs is just the base



rate of the cause times the causal power of that cause (a
conditional probability, between 0 and 1; Cheng, 1997);
with multiple potential causes, the probability that the effect
occurs is equal to the probability that one or more of its
causes occurs and succeeds in causing the effect (treating
both the occurrence of causes and their causal powers as
independent).

Suppose a participant believes a positive mammogram to
be tantamount to a doctor’s diagnosis of breast cancer. This
is not implausible: doctors as a rule avoid scaring patients
unnecessarily, and it is common for them to say, “You have
some indications consistent with disease X, but it’s probably
nothing”. If instead the doctor says, “You’ve tested positive
for breast cancer,” there should be a good chance that you
actually have cancer. In this case, people may assume that
the base rate of noise would not be higher than the base rate
of cancer. Otherwise, the doctor would say, “It could be
cancer, but there’s a good chance it was just noise”. This
assumption, however, is inconsistent with the high 9.6%
false-positive rate and the causal model described above; at
most, the false alarm rate could equal the base rate of cancer
(1%). People reasoning with this model could become
confused at this point and just look for some way to
combine the given numbers to obtain a reasonable estimate.

As discussed above, the model in Figure 1A does not
reflect the true causal structure of the test. Figure 1B shows
a more realistic model, in which the source of the false
positives is an alternative tissue anomaly: dense benign
lesions. Now, the 9.6% false-positive rate can be naturally
interpreted as the approximate base rate (for women with a
breast mass) of having a benign lesion dense enough to
cause a positive mammogram. This interpretation is
perfectly consistent with people’s background knowledge
that tissue anomalies (e.g., pimples, moles, birthmarks, or

bumps) are often harmless.
Dense Benign
Lesion

“ @
Positive Positive
Mammogram Mammogram

Figure 1: (A) basic causal model of mammogram, with noise.
(B) more accurate model with specific alternative cause.

Experiment 1

Our first experiment directly tested the idea that people
might tacitly assume a positive result to be tantamount to a
doctor’s diagnosis of cancer. We hypothesized that people
would better understand the given statistics if most women
without cancer who did not test “negative” received an
“uncertain” result rather than a “positive” one. Since a
doctor’s report of “uncertain” implies that she believes the
test outcome could well be the result of random noise,
participants could naturally incorporate the 9.6%
“uncertain” rate in healthy women as the base rate of the
noise variable in Figure 1A.
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Method

Participants. 73 airplane passengers were recruited while
waiting for their flights to begin boarding. Their only
compensation was temporary alleviation of boredom.

Design. Participants were given paper-and-pen versions of
Gigerenzer’s breast cancer question, with the modification
that the test has three possible results: “positive”,
“uncertain”, and “negative” (inspired by Eddy, 1982).
Participants received one of two versions: in one, a woman
gets a “positive” result; in the other she gets an “uncertain”
result. The numbers were exactly the same in both versions,
except that the conditional probabilities for “positive” and
“uncertain” were switched, so the same calculations were
required in both versions. The questions follow:

“Positive” Question

Women at age 40 are often encouraged by their doctor to participate in a

routine mammography screening for breast cancer. The mammogram

has 3 possible results:

Positive: the patient has breast cancer. This results when tumors are
found that are definitely cancerous.

Uncertain: the patient may have breast cancer. This result occurs
when tissue exists that may be normal breast tissue, benign tumor,
or cancerous tumor. More testing is needed to determine whether
the patient has breast cancer.

Negative: the patient does not have breast cancer.

From past statistics of routine mammography screenings, the following
is known:

1% of the women who have participated in past screenings had breast
cancer at the time of the screening.

Of the 1% who had breast cancer, 20% tested 'uncertain' during the
mammogram (further testing was required to determine that they had
breast cancer), and the other 80% tested ‘positive'.

Of the 99% of women who did not have breast cancer, 2% tested
‘uncertain’ (further testing was required to determine that they did not
have breast cancer), 9.6% tested 'positive', and the other 88.4% tested
'negative'.

Suppose a woman in this age group participates in a routine
mammography screening and the test result is 'positive'. Without
knowing any other symptoms, what is the probability that she actually
has breast cancer?

“Uncertain” Question

[first 14 lines identical to “positive” question]

Of the 1% who had breast cancer, 20% tested 'positive’ during the
mammogram, and the other 80% tested 'uncertain' (further testing was
required to determine that they had breast cancer).

Of the 99% of women who did not have breast cancer, 2% tested
‘positive’, 9.6% tested 'uncertain' (further testing was required to
determine that they did not have breast cancer), and the other 88.4%
tested 'negative'.

Suppose a woman in this age group participates in a routine
mammography screening and the test result is 'uncertain’. Without
knowing any other symptoms, what is the probability that she actually
has breast cancer?

Results and Discussion

A one-way ANOVA of the raw responses revealed a
significant difference between the two versions (F(1,71)=
21.59, MSE=897.36, p<.0001). We classified as base-rate
neglect any answer greater than or equal to 70%. Since the
exact correct answer of 7.8% is difficult to calculate, we
classified as “close” any answer between 5% and 12%
inclusive. We also classified answers of 1% or 2% as base
rate overuse. The result was a significant difference between
the two versions (x*(3) = 16.15, p < .005).



Table 1: “Positive” versus “Uncertain” Questions

Mammogram Base-rate Close Base-rate Other
Neglect Answer Overuse

Positive 14 9 6 6

Uncertain 1 15 14 8

These results are consistent with our hypothesis that “base-
rate neglect” may arise in the basic question because people
take the “positive” label to mean that the doctor trusts the
test, thus limiting the base rate of noise to a level
inconsistent with the high false-alarm rate. An alternative
interpretation is that participants are answering simply based
on the meaning of the words “uncertain” and “positive”,
rather than reasoning about likely levels of noise. To test
this, we gave 36 new participants a third “control” question
in which we relabeled the “positive” result “certain” and the
“uncertain” result “positive”, so that “positive” now means
the patient may have cancer, and more testing is needed:

“Control” Question
The mammogram has 3 possible results:

Certain: the patient has breast cancer. This results when tumors are
found that are definitely cancerous.

Positive: the patient may have breast cancer. This result occurs when
tissue exists that may be normal breast tissue, benign tumor, or
cancerous tumor. More testing is needed to determine whether the
patient has breast cancer.

[the rest of the question is identical to the “positive” question]

The incidence of base-rate neglect for this “control”
question was significantly higher than in the “uncertain”
question (6/36 versus 1/38, x*(1) = 4.25, p < .05), but much
lower than in the “positive” question (6/36 versus 14/35,
x*(1) = 4.78, p < .05). The only difference in the latter case
was defining “positive” as “may have cancer” rather than
“has cancer”. This result suggests that “base-rate neglect” is
due to a mismatch between the information given (a false-
positive rate much higher than the cancer rate) and people’s
domain knowledge (the only cause of false positives they
are aware of is noise, and a trusted test implies a noise rate
lower than the disease rate).

Experiment 2

While Experiment 1 focused on constraints imposed by
domain knowledge, Experiment 2 directly tests the role of
causal reasoning. Specifically, we investigated whether
people would more easily integrate the high false-positive
rate into their causal models if they knew what causes false
positives: dense benign cysts. They could then use the
causal model of Figure 1B, assimilating the high false-
positive rate as the base rate of an alternative kind of tissue
anomaly, which would not be inconsistent with their domain
knowledge.

Method

Participants. 155 people were recruited at the airport or the
MIT campus. MIT students were compensated with candy;
airplane passengers were compensated as in Experiment 1.

Design. We posed two paper-and-pen questions, one with
only statistical information about false positives and one
with information about an alternative cause for a positive
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result. Crucially, both versions required the exact same
Bayesian formula to calculate the answer. To minimize
arithmetic errors, participants were allowed to answer with
either ratios or percentages. We also varied the base rate and
false-positive likelihoods (1% and 5% respectively vs. 2%
and 6%), and the cover story (breast cancer and harmless
cyst vs. colon cancer and harmless polyp), for a total of 8
different questions. Sample questions were as follows (for
variants, see http://web.mit.edu/tevya/www/CogSci20003):

“Statistical” Question

The following statistics are known about women at age 60 who
participate in a routine mammogram screening, an X-ray of the breast
tissue that detects tumors:

About 2% have breast cancer at the time of the screening. Most of those
with breast cancer will receive a positive mammogram.

There is about a 6% chance that a woman without cancer will receive a
positive mammogram.

Suppose a woman at age 60 participates in a routine mammogram
screening and receives a positive mammogram. Please estimate the
chance that she actually has breast cancer.

“Causal” Question

The following statistics are known about women at age 60 who
participate in a routine mammogram screening, an X-ray of the breast
tissue that detects tumors:

About 2% have breast cancer at the time of the screening. Most of those
with breast cancer will receive a positive mammogram.

About 6% of those without cancer have a dense but harmless cyst, which
looks like a cancerous tumor on the X-ray and thereby results in a
positive mammogram.

Suppose a woman at age 60 participates in a routine mammogram
screening and receives a positive mammogram. Please estimate the
chance that she actually has breast cancer.

Note that this experiment did not specify the true positive
rate, but only that “most women with breast cancer will
receive a positive mammogram.” We made this change to
encourage participants to provide answers based on their
intuition rather than memorized mathematical formulas.

Results and Discussion

Preliminary analyses showed no differences between MIT
students and airport passengers, so the two groups were
collapsed for the remaining analyses. A three-way ANOVA
of raw responses showed no significant interactions, with a
significant difference between “Statistical” and “Causal”
questions (F=8.33, p<.005), and no significant effect of
cover story (F=0.43, p=51) or prior and false-positive
likelihood values (F=.0052, p=.94), all with df=(1,125),
MSE=836. We classified as base-rate neglect any answer
greater than or equal to 70%. We classified as correct any
answer equal to between 80% and 100% of the correct ratio
or percentage. (This range accommodates the fact that most,
but not all, women with cancer receive positive results.) The
causal version significantly reduced base-rate neglect and
improved correct responding as compared to the statistical
version (*(2) = 12.83, p < .0005) (see Table 2).

Table 2: “Statistical” versus “Causal” Questions

Problem Base-rate Correct Base-rate Other
Type Neglect (orclose)  Overuse

Statistical 19 24 17 16
Causal 3 40 16 20


http://web.mit.edu/tevya/www/CogSci20003

General Discussion

In two experiments, we gave people a natural way to
make sense of the high false-positive rate in terms of their
causal mental models of the mammogram scenario, and
thereby essentially eliminated the phenomenon of base-rate
neglect. A total of 4 out of 117 participants exhibited base-
rate neglect on our new questions, compared to 33 out of
111 people on questions paralleling the original version,
despite the required calculations being identical. Likewise,
the incidence of correct or near-correct responses increased
from 33 out of 111 participants to 55 out of 117. Experiment
1 showed that diagnostic reasoning could be improved by
removing the inconsistency between an apparently high
noise rate and an apparently trusted test. Experiment 2
showed that reasoning could be improved by introducing a
compelling non-noise alternative cause for the frequent false
positives. We interpreted these findings as evidence that
human probabilistic reasoning operates over causal mental
models rather than purely statistical databases. We also
argued that this central role for causality in reasoning under
uncertainty should be considered rational and normative,
contrary to standard assumptions in the Heuristics and
Biases (Kahneman & Tversky, 1982) or Natural Frequency
research programs (Gigerenzer & Hoffrage, 1995).

From the standpoint of probabilistic causal models, the
real problem behind “base-rate neglect” errors comes not
from having a low base rate for the cause in question, but
from having a high false-positive rate. Assuming
independent, probabilistically sufficient causes, as in the
noisy-or model, and assuming that each cause is relatively
rare, suggests a natural interpretation for the true positive
rate P(D|H) in terms of the approximate causal strength
of H. But the false-positive rate P(D|—H), while just as
important as the true positive rate in purely probabilistic
reasoning, has no such natural causal interpretation; an
effect cannot result from the absence of a cause. In causal
reasoning, we must come up with one or more alternative
causes to account for false positives. Whether that can be
done coherently depends on the match between the statistics
given in the problem and our intuitive domain theories,
which determine what alternative causes are likely to be
considered and constrain their base rates and causal
strengths. Telling people about an alternate cause whose
base rate could plausibly be high enough to account for the
given false alarm rate, such as the “dense benign cysts” in
the breast cancer scenario, could thus make a huge
contribution to improving uncertain reasoning.

Despite the advantages of probabilistic causal reasoning
over purely statistical reasoning, the successes of real-world
inference cannot be explained just by appealing to causal
models. In order to construct a causal model for a given
scenario, people must recruit domain-specific theories that
specify which kinds of causes are likely to produce which
kinds of effects. But what does that theoretical knowledge
consist of, and how is it used to constrain causal model
construction? Understanding how causal models are
constructed through the interaction of domain theories (top-
down constraints) and statistical data (bottom-up
constraints) is a largely open question, and the answer
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should play a critical role in explaining how people reason
so successfully and efficiently in an uncertain world.

References

Ahn, W., & Dennis, M. (2000). Induction of causal chains.
Proceedings of the Twenty-second Annual Conference of
the Cognitive Science Society. Mahwah, NJ: Erlbaum.

Cheng, P. W. (1997). From covariation to causation: A causal
power theory. Psychological Review. Vol 104(2), 367-405.

Cosmides, L. and Tooby, J. (1996) Are humans good
intuitive statisticians after all? Rethinking some
conclusions from the literature on judgment under
uncertainty. Cognition, 58, 1-73.

Eddy, D. M. (1982). Probabilistic reasoning in clinical
medicine: Problems and opportunities. In D. Kahneman,
P. Slovic, & A. Tversky (Eds.), Judgment Under
Uncertainty: Heuristics and Biases. Cambridge..

Gigerenzer, G. & Hoffrage, U. (1995). How to improve
Bayesian reasoning without instruction: Frequency
formats. Psychological Review, 102, 684-704

Gopnik, A., Glymour, C., Sobel D., Schulz L., Kushnir, T.,
& Danks, D. (in press). A theory of causal learning in
children: Causal maps and Bayes-Nets. Psych. Review.

Kahneman, D. & Tversky, A. (1982). Evidential impact of base
rates. In D. Kahneman, P. Slovic, & A. Tversky (Eds), Judgment
Under Uncertainty: Heuristics and Biases. Cambridge.

Lewis, C.,, & Keren, G. (1999). On the difficulties
underlying Bayesian reasoning: comment on Gigerenzer
and Hoffrage. Psychological Review, 106, 411-416.

Macchi, L. (2000). Partitive Formulation of Information in
Probabilistic Problems: Beyond Heuristics and Frequency
Format Explanations. Organizational Behavior and
Human Decision Processes, 82,217-236.

Macchi, L. (1995). Pragmatic aspects of the base-rate
fallacy. Quarterly Journal of Experimental Psychology A:
Human Experimental Psychology, 48A4(1), 188-207.

Pearl, J. (2000). Causality: Models, Reasoning, and
Inference. Cambridge University Press.

Russell, S., & Norvig, P., (1995). Artificial Intelligence: a
Modern Approach. Prentice Hall.

Snyder, R. E. (1966) Mammography: Contributions and
limitations in the management of cancer of the breast.
Clinical Obstetrics and Gynecology, 9, 207-220.

Tenenbaum, J. B. & Griffiths, T. L. (2001) Structure
learning in human causal induction. Advances in Neural
Information Processing Systems 13. MIT Press.

Tversky, A. & Kahneman, D. (1983). Extensional versus
intuitive reasoning: The conjunction fallacy in probability
judgment. Psychological Review, 90, 293-315.

Tversky, A. & Kahneman, D. (1980). Causal schemas in
judgments under uncertainty. In M. Fishbein (Ed.),
Progress in Social Psychology. Mahwah, NJ: Erlbaum.

Waldmann, M. R., Holyoak, K. J., & Fratianne, A. (1995).
Causal models and the acquisition of category structure.
Journal of Experimental Psychology: General, 124, 181-2006.

Villegjoubert, G. & Mandel, D. R. (2002). The inverse fallacy:
An account of deviations from Bayes’s theorem and the
additivity principle. Memory and Cognition, 30(2), 171-178

Acknowledgements We thank Liz Baraff for helping with
experiments and Tom Griffiths for statistical assistance.





