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Abstract

We show how an abstract domain theory can be in-
corporated into a rational statistical model of induc-
tion. In particular, we describe a Bayesian model
of category-based induction, and generate the prior
distribution for our model using a formal theory
of the distribution of biological properties across
classes of biological kinds. Our theory-based model
is both more principled than previous approaches
and better able to account for human ratings of ar-
gument strength.

Philosophers since Hume have struggled with the
logical problem of induction, but children solve an
even more difficult task — the practical problem of
induction. Children somehow manage to learn con-
cepts, categories, and word meanings, and all on the
basis of a set of examples that seems hopelessly in-
adequate. The practical problem of induction does
not disappear with adolescence: adults face it ev-
ery day whenever they make any attempt to predict
an uncertain outcome. Inductive inference is a fun-
damental part of everyday life, and a fundamental
phenomenon in need of a psychological explanation.

Two important questions can be asked about in-
ductive generalization: what resources does a per-
son bring to an inductive task, and how are these
resources combined to generate a response to the de-
mands of the task? In other words, what is the pro-
cess of induction, and what is the prior knowledge
required by this process? Psychologists have consid-
ered both of these questions in depth, but previous
computational models of induction have tended to
emphasize process to the exclusion of prior knowl-
edge. This paper attempts to redress this imbalance
by showing how prior knowledge can be included in a
computational model founded on rational statistical
inference.

The importance of prior knowledge has been at-
tested by psychologists and machine learning the-
orists alike. Murphy and Medin (1985) have sug-
gested that the acquisition of new concepts is guided
by “theories” — networks of explanatory connec-
tions between existing concepts. Machine learning
theorists have built formal models of learning, and
argued that generalization within these models is not
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possible unless a learner begins with some sort of in-
ductive bias (Mitchell, 1997). The challenge that
inspires our work is to develop a model with an in-
ductive bias that is well motivated by a theory of
the domain under consideration.

Many previous models have taken similarity
judgments as their representation of prior knowl-
edge (Nosofsky, 1986; Osherson et al., 1990). This
approach has been dominant within the tradition
of category-based induction, and Osherson et al.’s
(1990) similarity-coverage model will be one stan-
dard against which our new model will be compared.
Using similarity data to represent prior knowledge
is a reasonable rst attempt, but similarity judg-
ments are less than ideal as a starting point for a
model of inductive inference. As Goodman (1972)
has pointed out, similarity is a vague and elusive
notion. It is meaningless to say that two objects
are similar unless a respect for similarity has been
speci ed. Any model based on similarity alone is
therefore a model without a secure foundation.

Instead of relying on similarity, the model devel-
oped in this paper is founded on a simple theory
of a particular domain of reasoning: kinds of ani-
mals and their properties. The theory consists of
two components: the ‘taxonomic principle,” which
holds that the set of animals naturally forms a tree-
structured taxonomy, and the ‘distribution princi-
ple,” which speci es how properties are probabilis-
tically distributed over the taxonomy. These two
principles are used to generate a prior distribution
for a Bayesian model of category-based induction.

Our approach is located at the most abstract of
Marr’s three levels: the level of computational the-
ory (Marr, 1982). Our goal is not to describe the
process by which people make inductive inferences,
but rather to explain why people reason the way that
they do and how they can reliably come to true be-
liefs about the world from very limited data. Intrigu-
ingly, both the taxonomic principle and the distri-
butional principle resemble analogous principles in
evolutionary biology and genetics. People’s remark-
able ability to make successful inductive leaps may
thus be explained as the result of rational inference
mechanisms operating under the guidance of a do-
main theory that reflects the true structure of the



environment.

We begin by introducing previous approaches
to the problem of category-based induction. We
then set out a ‘theory of biological properties’ that
can generate the prior distribution for a Bayesian
model of induction. Next we turn to experimental
data, and show that our new model performs bet-
ter than previous approaches across a collection of
four data sets. We conclude by discussing ways in
which Bayesian and traditional similarity-based ap-
proaches might be complementary, and directions for
future work.

Category-Based Induction

The tasks to be considered were introduced by Osh-
erson et al. (1990). In the rst task (the speci c¢ in-
ference task), subjects are asked to rate the strength
of arguments of the following form:

Horses can get disease X

Cows can get disease X

Dolphins can get disease X
The premises state that one or more speci ¢ mam-
mals can catch a certain disease, and the conclusion
(to be evaluated) states that another speci ¢ species
(here dolphins) can also catch the disease.

In the second task (the general inference task),
subjects are asked to consider a generalization from
speci ¢ premises to a property of all mammals. For
instance:

Seals can get disease X
Dolphins can get disease X
All mammals can get disease X

Previous Models

Similarity-based models. Osherson’s similarity-
coverage model expresses the strength of an ar-
gument as a linear combination of two compo-
nents: a term representing the similarity between
the premises and the conclusion, and a term rep-
resenting the extent to which the premises cover
the lowest level taxonomic category including both
premises and conclusion.

Formalizing these ideas, the strength of the ar-
gument from a set of premises X to a conclusion
category Y is:

a setsim(X,Y) + (1 — a) setsim(X, [X;Y])
where « is a free parameter, setsim(-) is a setwise
similarity metric, and [X; Y] is the lowest level tax-
onomic category including X and Y.

Several setwise similarity metrics might be tried.
Osherson et al. propose maxsim(-) but also consider
sumsim(-):

maxsim(X,Y) = Zmaxi sim(X;,Y;)

ZZsim(Xi,Yj).

sumsim(X,Y) =
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Both are de ned in terms of sim(-), the standard
pairwise similarity metric, assumed as a primitive.

The similarity-based approach can o er no princi-
pled reason for preferring one of these metrics. Osh-
erson et al. suggest that maxsim(-) conforms better
to their intuitions, yet sumsim(:) is more standard
in models of inductive learning, categorization, and
memory. Later we show that maxsim(-) ts the ex-
perimental data much better than sumsim(-) and of-
fer a possible explanation for its success.

Bayesian Models. Heit (1998) and Sanjana and
Tenenbaum (2003) considered Bayesian approaches
to category-based induction. Assume that we are
working within a nite domain. For the tasks mod-
eled here, the domain will be a set of ten mammal
kinds. We are interested in a concept, C, that picks
out some subset of these objects. In the examples
above, C' is the concept “mammals that can get dis-
ease X.” Let H be our hypothesis space: the set of
all possible concepts over our domain. With 10 ani-
mal types, there are 2'0 distinct subsets of animals,
or logically possible concepts. To each hypothesis h
in H we assign a prior probability p(h), where p(h)
is the probability that A is the concept of interest.
Osherson’s rst task may now be formalized as
follows. We observe X, a set of n examples of the
concept C, and want to compute p(y € C|X), the
probability that another object, y, is also a member
of C'. Summing over all hypotheses in H, we have:

plyeCIX) = Y plyeChlX) (1)
heH

= Y plyeClh, X)p(h|X). (2)
heH

Now p(y € Clh,X) equals one if y € h and zero
otherwise (independent of X). Thus:

plyeClX) = Z p(h|X) (3)
heH:yeh
B p(X|h)p(h)
- W

where the last step follows from Bayes’ rule.

The numerator in Equation 4 depends on p(X|h),
the likelihood of X given h, as well as on the prior
p(h). Assuming the n examples in X are sampled
independently at random from h yields:

(X|h) {ﬁ if all n examples in X belong to h
p pu—

0, otherwise

where |h| denotes the size of h (the number of in-
stances in its extension). The denominator in Equa-
tion 4 can be computed by summing over all hy-

potheses: p(X) = >, .y p(X|h)p(h).



Osherson’s general inference task is formulated
similarly. The probability that all of the members
of category Y belong to C' is:

p(Y CCIX) = 3 p(¥ € Clh, X)p(hlX) (5)
heH
— Y px). (6)
heH:Y Ch

The only piece missing from the Bayesian frame-
work is a speci cation of how the prior probabilities
p(h) are calculated. Heit (1998) does not address
this question, and Sanjana and Tenenbaum (2003)
use a prior distribution that is not deeply motivated
by a theory of the domain. We now describe a prin-
cipled method for generating the prior distribution.

A Theory-Based Model

The prior distribution for our Bayesian model is mo-
tivated by two principles: the ‘taxonomic principle’
and the ‘distribution principle.” Together these prin-
ciples form a theory of the distribution of biological
properties.

The taxonomic principle holds that animals nat-
urally fall into a tree-structured taxonomy — a col-
lection of hierarchical groups. This belief may well
be universal. A substantial body of work has doc-
umented that cultures all over the world organize
living kinds into ‘folk taxonomies’ (Atran, 1995). It
is also scienti cally sound, as the theory of evolu-
tion implies that living kinds should conform to a
tree structure.

Our rst step towards generating a prior distribu-
tion is therefore to build a folk taxonomy for the ten
mammals in our domain. Osherson collected simi-
larity ratings between all pairs of animals in the do-
main, and we use these ratings to de ne a distance
measure d, where d(z,y) = 1 — sim(z,y). We then
perform average-link clustering, which rst assigns
each animal to its own cluster, then proceeds by re-
peatedly merging the two closest clusters. The tree
produced is shown in Figure 1.

Although our distance measure is de ned in terms
of similarity, our approach does not depend crit-
ically on similarity as a primitive. We could use
other measures of distance: for example, one could
represent each animal using a set of behavioral and
morphological features (e.g., ‘lives in water,” ‘has a
tail’), and set the distance between two animals to
be the distance between their feature vectors. We
could also use more structured domain knowledge
that might obviate the need for any bottom-up clus-
tering. Building the taxonomy without reference to
similarity is our preferred approach, but using Os-
herson’s similarity data yields one important payo
for the present study: it allows the performance of
our model to be directly compared with the perfor-
mance of the similarity-based models.
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Figure 1: A taxonomy built from similarity data

A simple prior distribution can be generated us-
ing the taxonomy alone. There are 19 nodes in the
tree (one for each animal type, together with nine
internal nodes), and each speci es a concept that
includes the animals falling beneath it on the tree.
A straightforward way to set the prior is to assign a
uniform probability to each of these 19 concepts, and
zero probability to all other possible concepts. We
call the model that uses this prior the ‘Taxonomic
Bayesian model.’

The Taxonomic model is appealingly simple and
corresponds roughly to some informal accounts of
taxonomically driven induction (e.g., Atran, 1995).
But to see that it is not adequate, compare the argu-
ment “seals and squirrels catch disease X, so horses
are also susceptible” with “seals and cows catch dis-
ease X, so horses are also susceptible.” The second
is stronger than the rst, yet the Taxonomic model
assigns them both the same rating, since each set of
premises is compatible with only one hypothesis, the
set of all mammals.

The distribution principle, the second part of our
theory, states that concept membership (or feature
possession) depends on a process of random muta-
tion operating over the taxonomy. This principle
acknowledges that convergent evolution can occur:
that two animals may share a property even if it
occurs in none of their common ancestors. Some
additional notation is needed to make this principle
precise.

Imagine that membership in C, the concept to be
learned, depends on a single feature F' that could
have evolved at any point in the tree and may have
evolved independently along di erent branches of
the tree. Once F has arisen along a branch, all
nodes falling below that branch are members of C.
For example, if F' appears at the points marked with
crosses in Figure 1, then C will include chimps, go-
rillas, dolphins and seals.

We model the evolution of F' using a Poisson ar-
rival process with a free parameter, A that will be



called the mutation rate. The Poisson process as-
sumes that mutations arrive randomly, potentially
occurring at any point along any tree branch, but
are constrained to respect an overall rate of . The
probability that the feature develops along a branch
b of length |b| is one minus the probability that the
mutation arrives zero times along that branch:

p(F develops along b) = 1—e Ml (7)
A branch is ‘marked’ if F' develops along that
branch.

To obtain a single estimate of the extension of
C, we consider all branches in the tree, label each
as marked or unmarked according to Equation 7,
then collect all external nodes that fall beneath a
marked branch. Repeating this many times gener-
ates a prior distribution over all possible concepts,
where the probability assigned to a concept is the
proportion of times it was chosen as our estimate of
C.

This prior distribution may also be computed an-
alytically. First consider all single branches in the
tree. For each branch, calculate the probability that
F arises along that branch and nowhere else in the
tree, and add this probability to the prior for the
corresponding concept. Continue by considering all
pairs of branches, all triples, and so on.

Our model of the evolution of F' captures two im-
portant intuitions. First, F' is more likely to develop
along the longer branches of the tree. Second, since
F develops independently along di erent branches
and the probability of arising on any branch is small,
the model favors simpler hypotheses — hypotheses
consisting of fewer rather than more clusters.

An alternative prior over all possible concepts was
considered by Sanjana and Tenenbaum (2003). They
also compute p(h) by taking disjunctions of the 19
hypotheses represented by the folk taxonomy. The
19 original hypotheses are assigned the highest prior
probability, disjunctions of two of these are assigned
a somewhat smaller probability, and disjunctions of
three hypotheses are assigned a still smaller prob-
ability. This approach represents a general strat-
egy for expanding any hypothesis space, and can
be applied to hypothesis spaces that have nothing
at all to do with taxonomies. Generality, however,
is bought at a price: unlike our new ‘Evolutionary’
model, the ‘Disjunctive Bayes’ model of Sanjana and
Tenenbaum is not deeply motivated by the structure
of the domain. A symptom of this lack of principled
motivation is that Disjunctive Bayes does not take
the branch lengths of the taxonomic tree into ac-
count, and thus fails to predict important e ects of
typicality that we describe below.

Performance of the Models

Each model presented in the previous section can be
used to rank a set of arguments in order of increasing
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strength. Figure 2 shows how well these ranks match
the ranks assigned by humans.

The rst three columns show the performance of
the models on three data sets published in previous
studies. The Osherson general set contains 45 three-
premise general arguments. The Osherson speci ¢
set contains 36 two-premise arguments, and the San-
jana set contains 28 speci ¢ arguments with a vari-
able number of premises.

All of the models (except Taxonomic Bayes) in-
clude a single free parameter, and each correlation
in Figure 2 is shown for the setting of the param-
eter that best ts the human data. As expected,
Taxonomic Bayes performs poorly, but the other
two Bayesian models both outperform the similarity-
based models over the rst three datasets. Both
of these Bayesian models show robust performance
across a range of parameter settings, and both admit
a single setting that achieves correlations exceeding
0.9 on the rst three data sets.

A New Experiment. A limitation of the Dis-
junctive Bayes model is that it does not capture at
least one phenomenon documented by Osherson et
al. (1990). General arguments tend to increase in
strength as the premises become more typical of the
conclusion category. For example, since horses are
more typical mammals than seals,

Horses can get disease X
All mammals can get disease X

is a stronger argument than

Seals can get disease X
All mammals can get disease X
Although the Evolutionary model was not built
with premise typicality in mind, we collected new
data which show that it captures this e ect more
successfully than the Disjunctive Bayes model. Ten
single-premise general arguments (one for each
species in our domain) were printed on a set of cards,
and 25 undergraduates sorted these cards in order of
increasing argument strength. The average rank of
each argument was calculated and compared with
the ranks assigned by the models. Owing to the
limited number of arguments, correlations are much
lower than for the previous three data sets. Figure 2
nonetheless shows that the Evolutionary Bayes and
similarity models partially capture the premise typ-
icality e ect, but the other Bayesian models do not.

Evolutionary Bayes and Maxsim

Sumsim performs dramatically worse than Maxsim,
to the point of being anticorrelated with people’s
judgments on the Osherson general stimuli. This
con rms the intuition that maxsim(-) is the better
metric for category-based induction, but the superi-
ority of Maxsim still awaits a principled explanation.

Heit (1998) and Sanjana and Tenenbaum (2003)
have suggested that Bayesian analyses might explain
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Figure 2: Model predictions (x axis) vs human judgments (y axis). Each row shows the performance of a
model, and each column shows the performance over a data set. Every model (except Taxonomic Bayes)
includes a single free parameter, and the plots shown are for the best setting of that parameter.

the success of other approaches to category-based
induction. Noticing that Maxsim and Evolution-
ary Bayes perform similarly on all four data sets,
we conjectured that Maxsim might e ectively be an
approximation to the more principled but more com-
plex Evolutionary Bayes model. Such a correspon-
dence would support a rational justi cation for why
human inference might follow the Maxsim rule in
this domain.

To further explore the relationship between these
two models, we ran a simulation using a set of 100
randomly generated taxonomies. Each taxonomy
was generated by starting with a set of 10 nodes,
and merging pairs of nodes at random until only
one remained. The branch lengths were generated
by choosing 9 random numbers between 0 and 1,
and setting the height of the node created by the
kth merge to the kth smallest of these numbers. For
each taxonomy, we calculated the correlations be-
tween the predictions of each pair of models on an
analog of the Osherson general task. To calculate the
predictions of the similarity models, the similarity of
two objects was de ned to be one minus the length of
the path joining the objects in the tree. This makes
sense under the assumption that the tree approxi-
mates the structure used to generate the similarity
judgments.

Figure 3 shows the outcome of this simulation.
The pair of models that matched most closely on
these general arguments was Maxsim and Evolution-
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ary Bayes, even though Evolutionary Bayes is super-

cially much more similar to Disjunctive Bayes than
Maxsim. This result supports the idea that Maxsim
and Evolutionary Bayes may specify a very similar
mapping between their input (the similarity matrix)
and their output (ratings of argument strength).

Marr (1982) proposed three broad levels at which
a psychological account may be situated. The
Bayesian approach is best suited for the formula-
tion of models at the most abstract level of “com-
putational theory.” In contrast, Maxsim falls most
naturally into Marr’s second level as an algorithm
that might implement the computational theory in
a psychologically plausible way. The similar perfor-
mance of these two models supports the idea that
they are complementary. Evolutionary Bayes helps
to show why Maxsim may be a reasonable model
of inductive generalization, and Maxsim provides an
existence proof that the computations required by
the Bayesian model can be approximated by simple
heuristics.

Discussion

The prior distribution used by the Evolutionary
model follows directly from the theory consisting
of the taxonomic and distribution principles. It is
striking that a model inspired by ideas about ran-
dom mutation and convergent evolution can predict
people’s intuitive judgments so well, but this should
not be surprising if we believe that the success of
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Figure 3: Frequencies (y-axis) against correlations
(x-axis). Each histogram shows the distribution of
the correlations achieved by a pair of models across
100 random trees.

human cognition rests on our ability to abstract the
deep enduring structure of our environment. It is
an open question whether the biological principles
guiding our model are explicitly represented in peo-
ple’s minds, or only implicitly present in the infer-
ence procedures they use. Studies with experts in
biological taxonomy, creationists, or other groups of
individuals who at a conscious level hold di erent
theories of biology may yield some insight into this
question.

Many aspects of intuitive (and scienti c) theories
of biology have not been included in our model so
far, but will need to be incorporated as we enlarge
its explanatory scope. We have assumed that all fea-
tures are independent and are equally likely to arise
anywhere in the taxonomy. In contrast, both scien-
ti ¢ and intuitive biological theories posit that fea-
tures are not independent but causally related, and
that causally deeper features tend to arise higher
up in the taxonomy (Atran, 1995). Also, many
features are not taxonomically organized, but de-
pend on an animal’s ecological niche — its behav-
iors and its interactions with other species. We are
currently studying how to incorporate these prin-
ciples into our approach by adopting more sophisti-
cated mutation-and-selection models and alternative
structures for hypotheses organized around causal
networks or spaces of behavioral traits.

A theory-based approach should not be criticized
if it fails to generalize beyond the domain for which
it was designed. The main reason for wanting to
model a theory is that domain-speci ¢ knowledge is
likely to be important. Still, we are optimistic that
the theory used to build our model will be useful
beyond the domain of animals. It should apply to
all living kinds, and more generally to any set of
objects that can be represented by a developmental
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tree. Artifacts are one example of a non-biological
domain that may meet this condition. Consider, say,
the set of all electronic devices. Any two devices that
share a QWERTY keyboard are similar partly be-
cause both grew out of a single previous technology.

Our behavioral experiment explored typicality ef-
fects, which have often been interpreted as evi-
dence against taxonomically structured represen-
tations with all-or-none concepts and in favor of
more graded, similarity-based representations. We
showed that typicality e ects in inductive reason-
ing are in fact compatible with a taxonomy of all-
or-none concepts, under the appropriate inference
engine and prior probability distribution. Typical-
ity may arise not from the intrinsic format of the
knowledge representation, but from the inferential
processes operating over that representation.

More generally, by allowing a natural combina-
tion of structured domain knowledge with proba-
bilistic inference, our Bayesian framework o ers an
alternative to the traditional debates of “structure
versus statistics” that have polarized much of cogni-
tive science. From a rational functional standpoint,
“structure” and “statistics” are not competitors. In-
ductive inference should be most successful when it
brings the most powerful inferential machinery to-
gether with the most accurate domain knowledge.
Here we have worked out one version of this ratio-
nal approach to integrating a domain theory with
statistical inference, and shown that it provides a
satisfying account of people’s inductive judgments
about animal properties.
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