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Abstract about the differential behavior of verb final and verb ini-
We present a model of global processing difficulty in ~ tial sentences and provides evidence for the importance
human parsing. This model is based on a probabilistic Of lexical information in sentence processing.
context-free grammar and is trained on a realistic cor- ]
pus sample. It achieves broad coverage and good pars- Expenmental Data

ing accuracy on unseen text, and its predictions are sig- .

nificantly correlated with experimental data on word or-  K€ller (2000a, 2000b) presents experimental results on
der preferences in German. The model makes predictions WOrd order variation in subordinate clauses in German.
about the differential behavior of verb final and verb ini-  These data form the basis for our modeling studies, and
tial sentences and provides evidence for the importance Will be summarized in the following section.

of lexical information in sentence processing.

Experiment 1

. Keller's (2000a) experiment included transitive verbs
Introduction such askaufen‘buy’ which take an animate subject and
The human sentence processor is constantly confronteah inanimate object. Four different word order patterns
with ambiguous input, i.e., with linguistic material that were investigated: SOV, OSV, VSO, VOS (we use ‘S’
is compatible with more than one syntactic analysis.for subject, ‘O’ for object, and ‘V’ for verb). The object
The question of how such ambiguities are resolved hasnd the subject were realized as either a full NP or as a
generated considerable debate in the psycholinguistipronoun. The target word order was presented as a subor-
literature, and a variety of approaches have been pradinate clause embedded by verbs liauben'believe’.
posed to address this question (see Crocker, 1999 for afl) illustrates the SOV order with two full NPs.
overview). .
: : : 1) Mariaglaubt, dassder Vater den Wagenkauft.
Qne of these approaches is tfianing Hypothes!s @ Mariagelieveshat the[nom]fatherthe[acc]carg buys
(Mitchell, Cuetos, Corley, & Brysbaert, 1996), which ‘Maria believes that the father is buying the car.’
states that the sentence processor extracts frequency in- ying '
formation from its environment. In the case of ambigu- In the syntactic literature on German (e.gLlli, 1999)
ity, the processor adopts the most frequent structure. ThiSOV is generally regarded as the basic word order for
predicts that more frequent structures are easier to prasubordinate clauses. Verb initial orders are regarded as
cess than less frequent ones, as the processor is moi@grammatical, while scrambling (the permutation of
likely to have encountered them before, and can choossubject and object) is regarded as marked, i.e., of reduced
the correct analysis. A number of experimental studieggrammaticality, but it not outright ungrammatical.
confirm this prediction for PP attachment and relative  Keller (2000a) used magnitude estimation (ME; Bard,
clause attachment (e.g., Brysbaert & Mitchell, 1996).  Robertson, & Sorace, 1996) to test these theoretical
~ The aim of the present paper is to generalize the Tunclaims. He elicited acceptability judgments for 16 word
ing Hypothesis fromocal processing difficultyas it oc-  orders, each of which as represented by eight lexicaliza-
curs with attachment ambiguities) gobal processing tions, yielding a total set of 128 sentences. Twenty native
difficulty. By this we mean processing difficulty that per- speakers of German were used as subjects. Under the as-
sists even when the whole sentence has been read gumption that ME judgments provide an index of global
by the parser, and a unique reading should be availablgyrocessing difficulty, Keller's (2000a) results support the
Standard examples include center embedding construgellowing generalizations:
tions and constructions that induce ‘strong’ garden paths _ )
i.e., garden paths from which the parser fails to recover.(z) a. c\)ﬁrebr;mtlal orders are harder to process than verb final
The Tuning Hypothesis predicts a link with frequency SO -
for these cases: if the globally correct analysis of a sen- b. Object initial orders are harder to process than subject

=% : h initial orders.
tence is infrequent, then this sentence will lead to strong ¢ Orders in which non-pronouns precede pronouns are

processing difficulty. o i harder to process than orders in which pronouns pre-
In this paper, we test prediction with respect to word cede non-pronouns.

order variation in German, a phenomenon for which . ]

global processing difficulty can be observed. The papef here is a range of experimental results that were ob-
is structured as follows. We first give an overview of tained using different paradigms that confirm these pro-
the two experimental data sets that our modeling studcessing preferences. This includes eye-movement and
ies are based on. Then the relationship between freself-paced reading data (Bader & Meng, 1999; Scheep-
quency and processing difficult is discussed and a par<ers, 1997), and a range of other comprehension and pro-
ing model based on probabilistic context-free grammargluction paradigms (Pechmann, Uszkoreit, Engelkamp, &
is proposed. We train and test the model on a standarderbst, 1994).

corpus and demonstrate that it achieves broad covera%%( .

and good parsing accuracy on an unseen test set. Then thePeriment 2

model is evaluated by correlating its predictions with theKeller (2000b, Experiment 6) extends these results to di-
two experimental data sets. The model makes predictionsansitive verbs such agorstellen‘introduce’ that can
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take three animate arguments. Six word order patterns S
were tested: SIOV, SOIV, ISQV, IOSV, OSIV, OISV, ei-
ther with three full NPs or with two full NPs and one
pronominalized NP (‘O’ denotes the direct object, ‘I’ the

indirect object). Again, the word order was presented as KOUS NP-SB NP-OA -HD
a subordinate clause. (3) gives an example for the order
SOV with e full Nps © P ddss AﬂN ART RN Kt
(3) Ich weil3, dassder Managerdem  Projektleiter der  Vater d|en Wa'gen

I know that the[nom] managerthe[dat] project leader .

den  Mitarbeiter vorstellt. Figure 1: Example of a Negra tree

the[acc]staff membeintroduces

‘| know that the manager is introducing the staff member

to the project leader.’ Verb Total 1O order OI order

. L geben ‘give’ 560 16 0
ME judgments were elicited for 24 orders; each order vorstellen ‘present’ 38 0 3
was presented in eight lexicalizations, yielding an overall ~ zur Verfligung stellen 24 0 3

set of 192 stimuli. Twenty-five native speakers were used _‘make available’

as subjects. The results support claims (2b) and (2c¢), and

yield the additional finding in (4) (verb initial orders were Table 1: Word order frequencies for full NPs in Negra
notincluded, hence the resultin (2a) could not be tested)eported by Kurz (2000)

(4) Orders in which the direct object precedes the indirect ob-
ject are harder to process than orders in which the indirect
object precedes the direct object.
We extract all instances of a given structure from the cor-
We will use the data sets from Experiments 1 and 2 tgous and then correlate the resulting frequencies with a
test a model of global processing difficulty. The under-measure of processing difficulty.

lying assumption is that the ME score of a sentence can _, . . . :
Serve as a measure of processing difficulty: the harder g_1 NS naive approach, however, is not feasible due to
ta sparsenessnany of the word orders tested in Ex-

sentence is to process, the more unacceptable it is in periments 1 and 2 are rare in the corpus, which makes
ME judgment task. Evidence for this assumption is POt difficult to obtain reliable frequency counts for these

vided by Bard, Frenck-Mestre, Kelly, Killborn, and So- ;

race’s ()1/999) study which shows thgt ME data are correSIructures. As an example consider the frequency data

lated with data from self-paced reading and eye-trackingn@t Kurz (2000) extracted from Negra. Kurz (2000) in-
estigated the word order patterns of certain ditransi-

experiments. tive verbs, such ageberfgive’ vorstellen‘present’, and
. aep zur Verfiigung stellerimake available’. All instances of

Frequency and Processing Difficulty these verbs were extracted from Negra and then classi-
The aim of the present study is to test the Tuning Hy-fied with respect to the order of their objects. The result-
pothesis, i.e., the claim that there is a correlation betweeing frequencies are given in Table 1. The column headed
the frequency of a structure in the linguistic environmentTotal lists the overall frequency of a given verb in the cor-
and global processing difficulty, as measured by magnipus; the 10 column contains the number of cases where
tude estimation studies. Before we can test this claimthe indirect object (dative NP) precedes the direct object
we have to find a way of approximating the linguistic (accusative NP), the OI column lists the counts for the
environment of a speaker, i.e., we need a sample of thiaverse order. The frequencies in these two columns only
linguistic input that the speaker is exposed to. Such samtake into account cases in which both objects are realized
ples are readily available for a number of languages in thas full NPs; Kurz (2000) does not report data on pronom-
form of corpora, large computerized collections of text inalized word orders.
or speech. In the remainder of the paper, we will assume L L
that the frequency distributions in the linguistic environ- T In principle, we could now correlate the frequencies in

; IS - Table 1 with the results of Experiment 2, in which it was
?ggﬁpcfsn be approximated by frequency distributions "ound that Ol orders are harder to process than 10 orders

. . . : (see (4)). However, as the corpus counts are too sparse
For German, a suitable corpus is available in the formfor such a comparison: three out of six counts are zero,

of Negra (Skut, Krenn, Brants, & Uszkoreit, 1997), a ;
' ' ' ! ' “and also the other three orders are very rare. This means
350,000 word corpus of newspaper text. Negra IS ang, s g reliable claims can be derived from these counts.

notated with (a) part of speech labels (e.g., KOUS for
complementizer, ART for article, NN for count noun, This example indicates that data sparseness makes it
and VVFIN for finite verb); (b) syntactic information in impossible to directly correlate corpus frequency and
the form of syntactic trees and phrase structure labelprocessing difficulty, at least for the particular syntactic
(e.g., NP for noun phrase, S for sentence); (c) grammateonstruction we are interested in here, and for the cor-
ical function labels (e.g., HD for head, SB for subject, pus we are using. In cognitive terms, this means that it
OA for accusative object). Figure 1 shows a Negra-stylas implausible to assume that the human parser directly
structure for the sentence in (1) (subordinate clause onlykeeps track of structural frequencies in its environment
a subset of the Negra function labels is displayed). to determine word order preferences; it simply does not

A corpus annotated with syntactic structure affords aencounter the relevant structures often enough to derive
straightforward way of testing the Tuning Hypothesis: reliable statistics.
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S — KOUSNPNPVVFIN 9 S[kauft]
S — KOUSNP VVFIN A
NP — ARTNN 1.0
VVFIN —  kauft 1.0
KOUS — dass 1.0
ART — der 8 KOUS NP[Vater] NP[Wagen] VVFIN
ART den 2
NN —  Vater 6 dass ART NN AR RN Kalt
NN — Wagen A4 | | | |
der Vater den Wagen
Figure 2: Example of a PCFG Figure 4: Example of tree generated by a lexicalized
PCFG
So
dressed by incorporatingrammatical function informa-
tion into the grammar. For example, the noun phrase la-
KOUS,0 l{ ﬁ{ VVFIN 10 bel NP can be split up into the labels NP-SB, NP-OA,
dass ARTgNNg ART,> NNg4 ka'uft and NP-DA for subjects, direct objects, and indirect ob-
| | | | jects, respectively. Grammatical functions are marked up
der Vater den Wagen in the Negra corpus, as illustrated in Figure 1. We can

P(t)=.9-1.0-1.0-1.0-1.0-.8-.6-.2-.4 = .03456
Figure 3: Example of tree generated by a PCFG

use this information to replace a PCFG rule such as S
KOUS NP NP VVFIN with a set of rules incorporat-
ing grammatical function labels, e.g.,-S KOUS NP-

SB NP-OA VVFIN-HD, and S— KOUS NP-OA NP-
SB VVFIN-HD. The resulting grammar is more adequate
for modeling processing differences that arise from dif-

Probabilistic Context-Free Grammars . . :
. ferences in the order of subjects and objects (as they were
In the last section, we argued that data sparseness makg§sonstrated by Experiments 1 and 2).

it implausible that the human parser directly records An alternative way of improving the adequacy of a

structural frequencies. We will therefore pursue an al- CEG i : A ; "

: . is addindexical information This approach has
ternative hypothesis: that the parser keeps track of th een pursued gxtensively in the computg?ional linguis-
fre'\cjlléfgc;eseg%%;alllmmv\?er r\l/JvliﬁSéssume that alobal pro- tics literature (e.g., Carroll & Rooth, 1998) and has been

. pe Ys . 9 Pro- shown to dramatically improve parsing performance.
cessing difficulty can be modeled using a probabilistic) oicalization means that the set of category labels is

context-free grammar (PCFG). Models of syntactic dis-gytended by incorporating information about the head of
ambiguation (i.e., of local processing difficulty) based ony, o categories. For example, the category NP is split up

PCFGs have been proposed by a variety of authors angly, Np[vater] and NP[Wagen] for noun phrases headed

have been shown to account for experimental finding y the lexical itemsvater father' and Wagen‘car’, re-

ocn hEm%‘Bd'Satmbz'%%%t,'oHn |prezf86?nc\$\/s (J'lﬁraf?kya%r?.g 'pectively. This is illustrated in Figure 4, which contains
roc erht raln E P ale, d'ff'). IteWI exten d'ithe lexicalized version of the tree in Figure 3. As with

approach to globai processing difficulty as measured byy-ammatical functions, this leads to an extension of the

magnitude estimation studies. Sl
A PCFG consists of a set of context-free rules, Wherqieg&;tgjrl]e,ib{ﬁggg] r\l;{?é”i@h as S[kaufy KOUS

each ruleLHS — RHSis annotated with a probability Lexicalization can be seen as a wa :

. . e y of approximat-
P(RHSLHS). This probability represents the likelihood ,4'jinguistic information that is not explicit in the cor-
of expanding the categotyHSto the categorieBRHS In pus (and in the grammar). An exampleni®rphologi-
OLqu'r to Pbtallln almathehmﬁtlcally scf”f’,:ﬁ mgde(lj, ”;]e Probeal information the label NP[Vater] implicitly contains
abilities for all rules with the same lefthand side have 0y jnrformation that the NP is nominative, third person,
sum to one. The probability of a parse trees defined 54 singular, i.e., the morphological features \@ter
as the product of the probabilities of all rules applied in¢5ihar | exicalization is also a way of incorporating
generating . We will assume that this probability is cor- ~J_occurrence informatiointo the grammar. The rule

related with processing difficulty, i.e., that improbable S[kauft] — KOUS NP[Vater] NP[Wagen] VVFIN con-
structures are harder to process than probable ones.  5ing the information that the vekauft'buys’ co-occurs
An example for a PCFG is given in Figure 2. This yith the nounsVater ‘father’ and Wagen ‘car’, thus

grammar contains all the rules required to generate (1)-antyring the semantic relationship between these three
Figure 3 displays the parse tree for this sentence, anngssrds. There is evidence in the psycholinguistic litera-

tated with rule probabilities. The overall probability of {, e showing that the human parser makes use of mor-
the parse is also listed; it is computed as the product o hological information (e.g., Trueswell, 1996) and se-

all the rule probabilities. mantic plausibility (e.g., Garnsey, Pearlmutter, Myers, &
A simple PCFG such as the one in Figure2hasanum|-_otockﬁ 1997). v (9. Y VYT,

ber of obvious limitations; the linguistics distinctions it
makes are not fine-grained enough. For instance, all noun :
phrases are assigned the category NP, even though the Modeling Broad Coverage

relative order of subjects, direct objects, and indirect ob\We developed three models of global processing diffi-
jects was shown to trigger differences in processing beeulty, as outlined in the previous section: (apaseline
havior in Experiments 1 and 2. This problem can be adimodelusing a standard PCFG, the (Heaicalized model
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using a lexicalized PCFG, and (c)fanctional model LR LP_ F-score
based on a PCFG that includes grammatical function la- ngi?:grlliged g752 gé—g gég
bels. In all three cases both the grammar rules and the Functional 719 700 709

probabilities were derived from the Negra corpus.

Table 2: Testing the coverage of the models using labeled
Method bracketing scores

Negra was split into three subsets: the first 90% of the —z5q parses: constant removed
corpus were used as training set, the remainder was di- r p N r p N
vided into a 5% test set and a 5% development set (for—gaseline 393 000 128 489 000 100
parameter tuning). Sentences with more than 40 words | exicalized .512 .000 128 .636 .000 109

were removed (to increase parsing efficiency). Functional .137 .123 128 .374 .002 68
The baseline model was realized using the proba- . )
bilistic left-corner parser Lopar (Schmid, 2000), run- Table 3: Modeling results for Experiment 1

ning in unlexicalized mode. A grammar and a lexicon
were read off the Negra training set, after empty cate-
gories and function labels had been removed from the Modeling Global Processing Difficulty

corpus. The lexicalized model was also realized using, .|| that the aim of this study is to test the hypoth-

Lopar, which in lexicalized mode implements Carroll __: ; :
and Rooth’s (1998) model. Lexicalization requires thatESS that there is a correlation between the frequency

: . .of a structure in the linguistic environment and global
h rule in rammar h ne of th ri ni . o

(raigﬁthaung : dae %r?nota?e d 22 ?heehoe a;[d ?F%artﬁ?g cgfe(g)] Origéocessmg difficulty. We have argued that structural fre-
S, VP, AP, and AVP, the head is marked in Negra. For th enc%/ canndot be rr]neasrL]Jred dgeﬁtly ?]ue to gaf)al_spa]rcse—
other categories, we used rules to heuristically determin t?ﬁiiup:t:as éovr\;]e u%’gdo E) eg'é%FtGa}St ae [r)g()jicatolr 'g]f Oroa_l
the head. The functional model was implemented by in- ina difficul b hi yal his h b hesis will E
ducing a new grammar from the training set: the functionCs oo Citicy ty. In this section, this hypothesis will be
labels SB, OA. and DA were kept, but all other function tested against the data sets from Experiments 1 and 2.
labels were removed. The model was again implemente
by running Lopar in unlexicalized mode.

The parameters for all three models were estimate
using maximum likelihood estimation. This means that

Experiment 1

e tested each of the models (baseline, lexicalized, and
unctional) against the experimental data as follows. The
Y sentences used as experimental materials was parsed by
.P(LHt.S —>th"|3§,) t[\ﬁsprobélglllty_og Ir_u|_||eSI_HSR—|>_| RHNS the model, and the probability of the most probable parse
is estimated a®(LHS — RHY = f(LHS — RHS/N, 55 computed. This probability was normalized by sen-
where f(LHS — RHS is the number of times the rule tence length (measured as the number of words in the
occurs in the training data, aridlis the overall number  gentence). This is necessary as a PCFG assigns lower
of rules in the training data. Various smoothing schemeg,rgpabilities to longer sentences (all other factors being
are implemented in Lopar to address data sparseness, ual), as longer sentences involve more rule applica-

Schmid (2000) for details. tions.
To compare the models, we conducted a set of corre-
Results lation analyses: we correlated the log of the probability

predicted by the model for each sentence with the log of
All models were evaluated by running them on the testhe mean magnitude estimation score for this sentence.
corpus, which had remained unseen during model devell he parser failed on some sentences, i.e., it did not find a
opment. As is standard in the computational linguisticsparse. There are two ways of dealing with this problem:
literature, we measured labeled bracketing: to score a hifa) setting the probability of a failed parse to a small,
the parser has to predict both the bracket (the beginningonstant probability, and (b) removing the failed parses
or end of a phrase) and the category label correctly. Wdrom the data. Table 3 lists the correlation coefficients for
report labeled recall (LR), i.e., the number of correct la-all three models and for both ways of dealing with failed
beled brackets found by the parser divided by the totaparses. ) o
number of labeled brackets in the test corpus, and labeled The results show that the baseline and lexicalized
precision (LP), i.e., the number of correct labeled brack-mnodels obtain significant correlations with the ME data.
ets found by the parser divided by the total number ofThe functional model only achieves a correlation once
labeled brackets found by the parser. We also list the Fthe failed parses are removed; however, there are a lot
score, which is defined asF2-LP-LR/(LP+LR). of failed parses here (only 78 data points remain), so

The results are given in Table 2. The baseline mode}his result has to be interpreted with caution. We per-
achieves an F-score of 71.9%, while the functional mode[0Med at-test to compare the correlation coefficients
performs slightly worse with an F-score of 70.9%. The achieved by the baseline model and the lexicalized model

inali ; +(failed parses removed). The correlation of the lexical-
f:'giggirgf gse Ig%zrforms worse than the baseline Wlth|(zed model was significantly highet(L09) = 2.454,

p < .05). The fact that the lexicalized model outperforms
the unlexicalized baseline model points to the important
1For a detailed analysis of why standard lexicalized parsingrole that morphological and semantic information (plau-
models perform do not perform well for German, see DubeysSibility) plays for global processing difficulty. Such in-
and Keller (2003). formation is approximated in the lexicalized model, but
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T T ‘ Failed parses: constant removed
% 8 . : ° r p N r p N
g e LS Ly Baseline 154 033 192 167 .022 190
= IR, Lexicalized .208 .004 192 .230 .001 190
= -101 Tee L - Functional .441 .000 192 .019 .910 39
s |, © L a eo ¢ . |
o o 0 O89g o . .
S ol 7 ee 8%, e . | Table 5: Modeling results for Experiment 2
° Ogoo
2 e
© T T T
£ o’ oo ° o
L D” 0% B s verb initial sentences | g’ ° 4. W e e Wl .
| Y I O 2 .u.'"_: . -'.. * .
04 02 0 02 04 06 08 38 0. ve e ® mete e o]
mean magnitude estimation score (logs) g . KISEPLI IV ......" < et o
= ¢ o o e%o 6 % ° ¢ 4,0 ° N
Figure 5: Correlation for the lexicalized model (failed -9 2. sefewles ®s "o% ¢ -
parses removed) for Experiment 1 s Soe LT .
c LIy . .. .
5 -10- d 7
Failed parses: constant removed < | -~
r p N r p N
verb final 06 04 02 0 02 04

Baseline .219 .082 64 057 .690 52
Lexicalized .233 .064 64 .067 .637 52

mean magnitude estimation score (logs)

Functional .155 -220b ?4| 296 .094 33 Figure 6: Correlation for the lexicalized model (failed
verp Inital :
Baselne 109 392 64 070 605 57 parses removed) for Experiment 2

Lexicalized .123 .333 64 .089 .510 57
Functional .044 .733 64 .011 .951 35

_ _ ~ Experiment 2
Table 4: Modeling results for Experiment 1, separationtpe modeling results for the data from Experiment 1

of verb final and verb initial items showed that our models are able to distinguish between
verb final and verb initial orders. However, the results
also indicated that the models failed to reliably predict
not in the baseline model. processing difficulty if the two word orders are consid-
An inspection of the data shows the following inter- ered separately. In the following, we will further inves-
esting pattern. The models generate plausible analysdigate the behavior of the models for verb final orders
for verb final sentences and assign them high probabilibased on the data from Experiment 2 (which only dealt
ties. No plausible analyses are found for verb initial senwith verb final sentences). Experiment 2 also provides
tences, and they are assigned low probabilities. This finda larger amount of data, viz., 192 items (compared to
ing makes an interesting prediction with respect to pro-the 64 verb final items from Experiment 1). Furthermore,
cessing difficulty as recorded by the ME judgments task Experiment 2 provides a test of the generality of the mod-
verb initial orders are predicted to receive low ME scoreseling results, as it included ditransitive verbs, giving rise
(recall that they are generally considered ungrammatito additional word orders not included in Experiment 1.
cal in the theoretical literature), while verb final orders We used the same modeling procedure as for the data
should be assigned high ME scores. This prediction idrom Experiment 1. The results for all three models and
borne out, as illustrated in Figure 5, which plots sentencdor the two ways of treating failed parses (set to a con-
probabilities against ME scores for the lexicalized modelstant or remove) are listed in Table 5. We observe signif-
(with failed parses removed). We observe a clear sepdeant correlations for the baseline model and the lexical-
ration of verb final and verb initial sentences. (The plotsized model for both ways of treating failed parses. Note
for the other two models show a similar pattern.) that the lexicalized model again achieves higher corre-
The distinction between verb final and verb initial or- lation coefficients than the baseline model. However, a
ders is captured successfully by our model. Howeverf-test shows that this difference is not significant.
this raises the guestion if the model is able to predict For the functional model, we find a high correlation
processing difficulty also ibnly verb final or verb ini- if failed parses are set to a constant; however, this cor-
tial orders are tested. We investigated this by performingelation disappears if the failed parses are removed from
separate correlation analyses for the two subsets of thine data set, leaving only 39 items. In other words, the
data. The results are given in Table 4. For the verb finafunctional model fails to assign a parse in most of the
sentences, we failed to find any significant correlationscases; this is probably due to data sparseness: there are
between probabilities and ME scores. The only excephot enough instances of ditransitive verbs in the corpus
tions were the baseline and the lexicalized models (failedo acquire realistic probabilities for the functional model.
parses set to a constant). Here a marginal correlation is Figure 6 plots the magnitude estimation scores of Ex-
obtained. (The correlation for the functional model with periment 2 against the probabilities predicted by the lex-
failed parses removed was also marginal, but includedcalized model (failed parses removed). The graph shows
only 33 data points.) For verb initial sentences, the corthat this time all sentences behave in the same way; there
relation coefficients were even lower and non-significants no split into two sentence types (such as the verb fi-
across the board. nal/verb initial split in the model of Experiment 1).
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Conclusions linguistic anomaly. (Unpubl. ms., Human Communication

; ; ; _ Research Centre, University of Edinburgh)
e e el 00 G, Roberison, . & Sorace A (1096, Magnuce
nitude estimation. TWo experi tal dat t d estimation of linguistic acceptabilitf-anguage 72(1), 32—

_ on. perimental data sets were used, gg.

both dealing with word order variation in German- We Brysbaert, M., & Mitchell, D. C. (1996). Modifier attachment
argued that data sparseness makes it implausible that thein sentence parsing: Evidence from DutQuaterly Journal
human parser directly records structural frequencies; in- of Experimental Psycholog$9A(3), 664—695. _
stead, we assumed that it keeps track of rule frequencie€arroll, G., & Rooth, M. (1998). Valence induction with a
We implemented this hypothesis in a series of models head-lexicalized PCFG. IRroceedings of the Conference
based on probabilistic context free grammars. Sentence 91 argf'r(g?r%"n'\gggho"s in Natural Language Process{pg.
probabilities predicted by these models were shown t —I) . . )

be significantly correlated with the ME scores obtained""9%ke": M. (1999). Mechanisms for sentence processing. In

experimentally. We also showed that our models make fﬁ&?&?gfggﬂg 'E'(‘j,'fg{;r'}? (Eds J-anguage processingsy-

predictions with respect to the differential processing ofcrocker, M. W., & Brants, T. (2000). Wide-coverage prob-
verb final and verb initial sentences. These predictions apilistic sentence processinglournal of Psycholinguistic
were borne out in the ME data. Research29(6), 647-669.

Three different probabilistic models were tested, eactbubey, A., & Keller, F. (2003). Probabilistic parsing for Ger-
incorporating different types of linguistic information. ~ man using sister-head dependenciesPioceedings of the
The baseline model was based on a standard PCFG; it 41st A”.r‘ua's'\"ee“”g of the Association for Computational
achieved a significant correlation with ME data for both _Linguistics. Sapporo.

- - . arnsey, S. M., Pearlmutter, N. J., Myers, E. M., & Lotocky,
experiments. However, a model that Incorporates IeXIcaP M. A.y(1997). The contributions of vgrb bias and plausibilit))//
information into the category labels achieved a better fit y,'tho"comprehension of temporarily ambiguous sentences.
with the experimental data than the baseline model. This  55ymal of Memory and Languaga7(1), 58-93.
indicates that the information that is approximated byHale, J. (2001). A probabilistic earley parser as a psycholin-
the lexical model, viz., morphological information and  guistic model. InProceedings of the 2nd Conference of the
semantic plausibility, plays a role in determining global North American Chapter of the Association for Computa-
processing difficulty. We also investigated the behavior tional Linguistics.Pittsburgh, PA. )
of a functional model, in which the categories of the Jurafsky, D. (1996). A probabilistic model of lexical and syn-
grammar incorporate grammatical function labels (sub- tactic access and disambiguatiorCognitive Science20,
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