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Abstract
An experiment with a multiple-cue judgment task tested
the hypothesis that humans can only abstract explicit rep-
resentations of cue-criterion relations when the cues are
related to the criterion by an additive function. It is pro-
posed that the sequential and capacity-constrained nature
of controlled, explicit thought can only induce and exe-
cute linear additive cue integration; non-additive envi-
ronments require exemplar memory. The results showed
that an additive task induced processes of cue abstraction
and cue integration, while a multiplicative task induced
exemplar processes. The results suggest flexible interplay
between distinct representation-levels, a preference to
abstract explicit “rules” whenever possible, although this
capacity is constrained to additive cue-criterion relations.

Introduction

In this article we make three general claims about the
cognitive processes involved in multiple-cue judgment:
a) the cognitive system has multiple qualitatively dis-
tinct representations that “race” to control the judg-
ments in a specific task (e.g., Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Erickson & Kruschke, 1998;
Juslin, H. Olsson, & A-C. Olsson, 2003); b) humans
prefer to abstract explicit “rule-based” knowledge when
the task feedback and the task structure allows for it
(see also Ashby et al., 1998; Juslin et al., 2003); and c)
because the sequential and capacity-constrained nature
of explicit thought processes only allows induction and
execution of additive cue integration, human’s are only
capable of abstracting explicit cue-criterion representa-
tions when cues are related to the criterion by an addi-
tive function. These claims—and the last one, in par-
ticular—are tested in an experiment that relies on a task
that allows us to identify whether cue abstraction has
been successfully achieved (Juslin et al., 2003).

Linear, additive models often fit judgment data well
in research on multiple-cue judgment (Brehmer, 1988;
Cooksey, 1996). The issue of whether humans integrate
information in an additive manner is, however, a core
topic also in other fields of psychology, such as devel-
opmental psychology and perception. A main claim by
Andersson’s (1981) Information Integration Theory is
that humans integrate information with an additive rule.
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It is likewise suggested that perception of depth is en-
abled by adding the cues (Bruno & Cutting,1988).

We propose that the results from multiple-cue judg-
ment reflect a general architectural property of the
controlled and explicit thought processes of the human
mind. The idea is that the sequential, real-time consid-
eration of multiple cues is a process of successive ad-
justment of the judgment, a process structurally com-
patible with a linear, additive cue-integration rule (Ein-
horn, Kleinmuntz, & Kleinmuntz, 1979). This hypothe-
sis suggests that explicit and controlled thought proc-
esses are particularly apt at performing cue-integration
in tasks where the cue-criterion relations are additive.
By contrast, a task that involves non-linear or multipli-
cative cue-criterion relations requires the capitalization
on some more implicit process, such as exemplar mem-
ory (Medin & Schaffer, 1978; Nosofsky & Johansen,
2000). Exemplar memory makes no computational
commitments to a particular task structure (linear or
otherwise).

In this study, we test this hypothesis in the context of
two additional assumptions. First, because abstract and
explicit knowledge is more general, useable in a more
flexible and controlled manner, and more easily verbal-
ized and communicated to others, as soon as the envi-
ronment and task feedback allows for it humans have a
preference to abstract explicit knowledge (Ashby et al.,
1998; Juslin et al, 2003). Second: when people are
unable to abstract explicit cue-criterion relations they
retreat to exemplar memory (Juslin et al, 2003). There-
fore, we predict that we can induce a shift between
qualitatively distinct cognitive processes by manipulat-
ing the deep-lying structural properties of the task envi-
ronment: additive cue-criterion relations should pro-
mote explicit cue abstraction and multiplicative cue-
criterion relations should promote exemplar memory.

Judgment Task and Cognitive Models

The task requires participants to use four binary cues to
infer a continuous criterion. (Juslin et al., 2003). The
judgments involve the toxicity of subspecies of a ficti-
tious bug. The different subspecies vary in concentra-
tion of poison from 50 ppm (harmless) to 60 ppm (le-



thal). The toxicity can be inferred from four binary
visual cues (C;, C,, C;, and Cy) of the subspecies (e.g.,
the length of their legs, color of their back, the length of
their nose and spots or no spots on the foreback). The
cue structure is shown in Table 1. There are two condi-
tions, one additive and one multiplicative.

Table 1: The 16 exemplars with their cues and criteria
prior to addition of random error for both the additive
(Add) and the multiplicative (Mult) condition. E =
Extrapolation exemplar, 7 = Training exemplar, O =
Old comparison exemplar presented in training,
matched on the criterion to one of the new exemplars, N
= New comparison exemplar presented at test.

Exemplar Cues Criteria Role

# Cy Cy Gy Cy Add Mult

1 1 1 1 1 60 72.75 E
2 1 1 1 0 59 59.00 T
3 1 1 0 1 58 53.94 T
4 1 1 0 0 57 52.08 o
5 1 0 1 1 57 52.08 N
6 1 0 1 0 56 51.40 N
7 1 0 0 1 55 51.15 N
8 1 0 0 0 54 51.15 T
9 0 1 1 1 56 51.40 o
10 0 1 1 0 55 51.14 o
11 0 1 0 1 54 51.05 T
12 0 1 0 0 53 51.02 T
13 0 0 1 1 53 51.02 T
14 0 0 1 0 52 51.00 T
15 0 0 0 1 51 51.00 T
16 0 0 0 0 50 51.00 E

In the additive condition the toxicity ¢ of a subspecies

is a linear, additive function of the cue values:

c=50+4-C,+3-C,+2-C, +1-C, (D
C, is the most important cue with coefficient 4 (i.e., a
relative weight .4), C, is the second to most important
with coefficient 3, and so forth. A subspecies with fea-
ture vector (0, 0, 0, 0) thus has poison concentration 50
ppm; a subspecies with feature vector (1, 1, 1, 1) has 60
ppm. In the multiplicative condition the toxicity ¢ of a
subspecies is a multiplicative function of the four cue
values (the criterion values are shown in Table 1):
¢ =51+0.0009875 - ¢+ C2 32l )

with the same coefficients as in the additive task (Eq.
1). The additive and multiplicative task environments
are construed to produce equal training ranges for the
two conditions (all training exemplars have a toxicity
between 51 and 59). Moreover, the criteria in the multi-
plicative condition are a simple exponential function of
the criteria presented in the additive condition. In both
the additive and the multiplicative condition a random
error is added to the criterion values, implying a prob-
abilistic relation between cues and criteria (R.=.9).

We use two models to derive predictions for the two
conditions, a cue-abstraction and an exemplar model.
The cue-abstraction model assumes that the partici-
pants abstract explicit cue-criterion relations in training,
which are mentally integrated at the time of judgment.
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When presented with a probe the participants retrieve
rules connecting cues to the criterion from memory
(e.g., “Green back goes with being poisonous”). The
rules specify the sign of the relation and the importance
of each cue with a cue weight. For example, after train-
ing the rule for cue C; may specify that C;=1 goes with
a large increase in the toxicity of a subspecies.

Cue abstraction with additive cue integration implies
that the participants compute an estimate of the con-
tinuous criterion ¢. For each cue, the appropriate rule is
retrieved and the estimate of ¢ is adjusted according to
the cue weight @,, (i=1...4). The final estimate éc , of
c is a linear additive function of the cue values C;,

4
b=kt Y, -C o )
i=1

where  k=50+5.10-Yw,) I 0,4 0,73,
o,,=2, and @,,=1, EqQ’s"l and 3 are identical and the
model produce perfect judgments. The intercept k con-
strains the function relating judgments to criteria to be
regressive around the midpoint (55) of the interval [50,
60] specified by the task instructions.

As outlined in the introduction, our hypothesis is that
explicit cue abstraction is essentially constrained to the
linear additive form in Eq. 3. However, when the mod-
els are fitted to data below, we also consider the possi-
bility that the participants have correctly abstracted the
multiplicative cue-criterion relations by fitting a multi-
plicative cue-abstraction model to the data:

s
w;,-C;
¢=51+0.0009875-¢7 " (4)
where @,,, are the best fitting subjective cue weights in
the multiplicative cue abstraction model.

The exemplar model implies that the participants
make judgments by retrieving similar exemplars (sub-
species) from long-term memory. When the exemplar
model is applied to judgments of a continuous criterion
variable, the estimate ¢, of the criterion c is a weighted
average of the criteria ¢; stored for the J exemplars,
where the similarities S(p,x;) are the weights:

J
ZS(Pax,')'C,'
PO :

Cp =

&)
ZS(p,xj)

p is the probe to be judged, x; is exemplar j (j= 1...J),
and S(p,x;) is the similiarity between probe p and exem-
plar x;. Eq. 5 is the original context model (Medin &
Schaffer, 1978) applied to a continuum (see DeLosh,
Busemeyer & McDaniel., 1997; Juslin et al., 2003).

The similarity between probe p and exemplar x; is
computed according to the multiplicative similarity rule
of the context model (Medin & Schaffer, 1978):

Spx) =14, )

where d, is an index that takes value 1 if the cue values
on cue dimension i coincide (i.e., both are 0 or both are
1), and s; if they deviate (i.e., one is 0, the other is 1). s;



are four parameters in the interval [0, 1] that capture the
impact of deviating cues values (features) on the overall
perceived similarity S(p,x)). A value of s; close to 1
implies that a deviating feature on this cue dimension
has no impact on the perceived similarity and is consid-
ered irrelevant. A value of s; close to 0 means that the
similarity S(p,x;) is close to 0 if this feature is deviating,
thus assigning crucial importance to the feature. For
low s;, only identical exemplars have a profound effect
on the judgments; with s; close to 1 all exemplars re-
ceive the same weight, regardless of their features.

In the experiment five of the subspecies in the test
phase are not included in the training phase (Exemplars
1, 5,6, 7, & 16 in Table 1). This makes it possible to
distinguish between the models as they provide differ-
ent predictions (see Figure 1). In the training phase, all
exemplars have toxicity between 51 and 59. If the par-
ticipants have estimated the correct cue weight for each
cue there should be no problem to compute the most
extreme judgments for the extreme exemplars that are
left out in the training phase (i.e., Exemplars 1 & 16).
More specifically, whenever the participants have cor-
rectly identified the sign of the impact of each cue (i.e.,
whether it increases or decreases toxicity) they should
always make the most extreme judgments for Exem-
plars 1 (all cues present) and 16 (all cues absent), as
illustrated on the left-side of Figure 1. (This holds both
for the additive and the multiplicative cue-abstraction
models). By contrast, the exemplar model computes a
weighted average of the stored exemplars with toxicity
between 51 and 59 and this can never produce a value
outside of the observed range (DeLosh et al., 1997,
Erickson & Krusckhe, 1998). Moreover, because of the
multiplicative similarity rule in Eq. 6, the most extreme
judgments are made for the second to most extreme
exemplars (Exemplars 2 & 15). For these exemplars the
judgment is dominated by retrieval of identical stored
exemplars and these identical exemplars are the most
extreme that have been encountered in training. These
predictions are illustrated on the right side of Figure 1.

When the new exemplars in the mid range of toxicity
(Exemplars 5, 6, & 7) are judged, cue abstraction sug-
gests no systematic difference between these three new
exemplars and three old exemplars matched in toxicity
(Exemplars 4, 9, & 10): the cognitive process is the
same regardless of whether a specific exemplar has
been encountered before or not. The exemplar model,
however, predicts more precise judgments for the old
exemplars because for these exemplars the participants
can benefit from previous identical exemplars with the
correct criterion c¢. In addition, with most similarity
parameters s; these new exemplars have a high overall
similarity to exemplars with a lower criterion than the
correct value. Therefore, in general the exemplar model
will predict that the new exemplars are underestimated.

636

Cue-Abstraction Model Exemplar-Model

60 Additive conditior 60 Additive condition
[ ]
58 L] 58 [ ]
. [ ]
- -
S 56 S 56
£ £ "4
-§’ 54 -§’ 54 -
S n S LI
52 . 52 M
[ ]
50 50 [= =1
50 52 54 56 58 60 50 52 54 56 58 60
Criterion Criterion
Cx D
72 Multiplicative condition 72 Multiplicative condition
70 70
68 68
66 66
£ 64 E 64
g 62 “E’ 62
5 60 o 60
T . " g 4
o 561 o = 56
saf 1 saf o .
52 : 52 -
= Noise w s=1
% o L=
48 48
4850 52 54 56 58 60 62 64 66 68 707274 4850 52 54 56 58 60 62 64 66 68 70 7274
Criterion Criterion
EZ
72 Multiplicative condition
70
68
66
E 64
62
E 60
1
S 58
= 56
54 [
L]
L

48
48 50 5254 56 58 60 62 64 66 68 70 7274
Criterion

Figure 1: Panel A: Cue-abstraction model (CAM(A))
with noise' in the additive condition. Panel B: Exem-
plar model with similarity parameters s~=.17 in the addi-
tive condition. Panel C: Cue-abstraction model (CAM
(A)) with noise in the multiplicative condition. Panel D:
Exemplar model with similarity parameter s=.1 in the
multiplicative condition. Panel E: Cue-abstraction
model (CAM(M)) for the multiplicative condition.

The Experiment

In the experiment we manipulated whether participants
were confronted with a task that involved additive or
multiplicative cue-criterion relations. For reasons out-
lined in the introduction, we predicted that the additive
task (Eq. 1) should promote explicit cue abstraction
with additive cue integration (Eq. 3). A multiplicative
task (Eq. 2) should cause a shift to a qualitatively dif-
ferent process, that is, to exemplar memory (Eq. 5).

We also examined an alternative way to induce shifts
between cognitive processes. Because working memory
is more involved in the integration of explicitly ab-

! The optimal parameters are multiplied by 0.8 to yield func-
tions that are more descriptive of the noise in data.

2 When the predictions by the exemplar-based model are
illustrated in Figure 1 the similarity parameters s; have been
arbitrary set to 0.1. When the model is applied to data below,
s; are free parameters fitted to data.



stracted cues, we hypothesized that a distracter of the
working memory in the test phase should affect cue
abstraction more than exemplar processes. Therefore,
introduction of a working memory distraction task
should promote a shift towards more exemplar proc-
esses, in particular, in the additive task where cue ab-
straction is expected.

Method

Participants

Eighty undergraduate students volunteered, receiving a
payment of 60-99 SKr, depending on their perform-
ance. Thirty-nine participants were men and 41 were
women. They were all between 20 and 37 years old.

Materials and Procedure

The participant judged the toxicity of the subspecies in
a training phase, followed by two test phases. The sub-
species were presented to the participant on a computer
screen as visual pictures, one at a time, and the partici-
pant controlled the time of exposure. The subspecies
varied in terms of four binary cues; short, blue or long,
green legs; short, darkblue or long, grey nose; spots or
no spots on the fore back; and brown or geen buttock.
In the training phase, 11 different subspecies were
shown 20 times each, requiring a total of 220 judg-
ments. Subspecies nr 1, 5, 6, 7 and 16 were left out, as
imposed by the task design (see Table 1). The subspe-
cies were shown in random order for every participant.
The cue weights were also randomized, so that what
was the most important cue differed across participants.
With each subspecies, a question in written text on the
screen was to be answered, asking for “how poisonous
is this subspecies?” In the training phase, feedback was
given on the correct criterion after each judgment
(“This subspecies has toxicity 57 ppm”).

There were two test phases. One had an additional
working memory distracter task. This task was to listen
to a recorded voice reading Swedish words at a rate of
1 s., and simultaneously perform the judgments, while
remembering the number of words heard that denotes
something alive (for example the word “dog”). It was
outbalanced so that half of the participants had the
undistracted test phase first and the distracted test phase
last, and vice versa. Each test phase consisted of 16
different subspecies. The subspecies were shown two
times each, requiring a total of 32 judgments for one
test phase. Subspecies nr 1, 5, 6, 7 and 16 were intro-
duced, as imposed by the task design. In the test phases,
no feedback was given on the correct criterion.

Dependent Measures

The measure of performance is Root Mean Square
Error (RMSE) of the judgments (i.e., between judg-
ments and criteria). Measures of model fit are the coef-
ficient of determination (+*) and Root Mean Square
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Deviation (RMSD) between predictions and data com-
puted on the basis of the data from the test phase. The
exemplar index, AE, is a measure of to what extent the
judgments are dominated by an exemplar-based proc-
ess. AE is the sum of two measures; old-new difference
and extrapolation. The old-new difference is computed
as the difference between the absolute deviation be-
tween judgments and criteria for the old exemplars and
the absolute deviation between judgments and criteria
for the matched new exemplars (denoted “O” and “E”
in Table 1). Extrapolation is computed as the absolute
deviation from the judgment predicted by linear regres-
sion of the judgments for training exemplars on the
criterion. When this measure equals zero, the partici-
pants extrapolate appropriately for the extreme exem-
plars. The old-new difference and the extrapolation
measure will be added for every participant, yielding a
single measure of exemplar effects, the exemplar index
AE:

AE = Y. AON + Exirap. (M
>

A negative AE is predicted when the participant makes
systematically poorer judgments for new exemplars
compared with old exemplars. A cue-abstraction model
predicts no systematic differences between judgments
on old and new exemplars (see Juslin et al, 2003, for a
further discussion of the AE measure).

Results

A two-way ANOVA with environment (additive or
multiplicative) as between-subject factor and the two
test phases (undistracted and distracted) as within-
subject factor, shows two main effects on RMSE (Table
2).

First, there is significantly better performance (lower
RMSE) for the additive condition (F(1.78)=160.69;
MSE=2.032; p=0.000). Second, there is a significant
effect on performance of the working memory distrac-
ter. The RMSE is better in the undistracted test phase
(F(1.78)=5.9112; MSE=0.5982; p=0.017).

Table 2. Judgment performance in the experiment as
measured by the Root Mean Square Error (RMSE)
between judgment and criterion.

Condition
Test Index Add. Mult. Mean
Undistracted RMSE 2.55 5.30 3.92
Distracted RMSE 2.74 5.70 4.22
Mean RMSE 2.64 5.50

A more negative exemplar index AE was hypothe-
sized for the multiplicative condition. AE was moreover
hypothesized to be more negative in the additive condi-
tion with the introduction of a working memory distrac-
ter. A two-way ANOVA with environment (additive or



multiplicative) as between-subjects factor and the two
test phases (undistracted and distracted) as within-
subjects factor showed one main effect and one signifi-
cant interaction. First, AE is significantly lower in the
multiplicative condition, suggesting more reliance on
exemplar-memory (F(1,782) = 43,12; MSE = 33,74;
p<0,000). Second, the significant interaction between
environment and test (F(1,782) = 9,19; MSE = 6,03,
p<0,0025, Figure 2) suggests that the effect of a work-
ing memory distracter was different in the two condi-
tions; in the Additive condition less strong reliance on
cue abstraction was induced, while in the multiplicative
condition less strong reliance on exemplar memory was
the result.

0,5
0,0 O- Distracted

-0,5
-1,0
-1,5
-2,0
-2,5
-3,0

Delta E

Additive Multiplicative
Condition

Figure 2. Exemplar index, AE in the Additive and
Multiplicative conditions over the two test phases (un-
distracted and distracted).

Although significant, because the difference between
the two test-phases was small and difficult to discern
from visual inspection of data, and the aim of this paper
is to investigate how the learning task affects cognitive
processes, the mean judgments in the additive and
multiplicative conditions were collapsed over the two
test phases. The mean judgments are shown in Figure 3.
In the additive condition, the judgments are a linear
function of the criterion. Although there is some noise,
there are no visible extra- or interpolation effects. In the
multiplicative condition, the judgments do not follow
the optimal line, nor the best fitting regression line.
Although the judgments are a positive function of the
criteria in the training range (51-59), the inability to
extrapolate is striking. Notably, the judgments for c=72
is significantly lower than for ¢=59. In sum, these re-
sults show no signs of exemplar-processes in the addi-
tive condition, but clear signs of exemplar processes in
the multiplicative condition.

Model fits were obtained by fitting the models de-
scribed in the introduction with Mean Square Error
between predictions and data as the error function. The
models were further applied through a method of pro-
jective fit (Juslin et al., 2003). The models were thus
fitted to data from the latter half of the training phase
(i.e., based on 11 subspecies) and then applied with the
parameters fitted to this data set to the data with all 16
subspecies in the fest phase. This implies cross-
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validation for the 11 exemplars that were presented in
training and genuine predictions for the new exemplars.
Both the exemplar model and the cue-abstraction model
were fitted to the data collapsed over the two test
phases, as well as the multiplicative version of the cue
abstraction model. Table 3 shows the fit for the models.

A

62

60

58

56

54

52

Mean Judgment

50

48
48 50 52 54 5 58 60 62

Additive criterion

48
48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
Multiplicative criterion

Figure 3. Mean judgments in the additive condition
(Panel A) and multiplicative condition (Panel B), with
the best-fitting regression line.

Table 3. Model fit: Root Mean Square Deviations
(RMSD) and #* for the additive and multiplicative cue-
abstraction models (CAM(A) and CAM(M)) and the
exemplar model (EBM) in the two conditions.

CAM(A) CAM(M) EBM
Cond. ” RMSD /7  RMSD ” RMSD
Add. 095 032 - - 090 043
Mult. 049 294 065 107 091 0.49

As predicted in the additive task condition the addi-
tive cue-abstraction model fits data better than the ex-
emplar model, while the reverse is very clearly true in
the multiplicative condition. In the multiplicative condi-
tion the multiplicative cue-abstraction model performs
somewhat better than the additive cue abstraction
model. This is probably an effect of its higher correla-
tion with the predictions by the exemplar model. Figure



3 provides no evidence for cue abstraction in the multi-
plicative condition. There were no clear differences
between the test phase with and without working mem-
ory distraction in regard to the model fits and the same
pattern as in Table 3 was observed in both conditions.

Discussion

The broad claim that essentially humans are only capa-
ble of extracting explicit cue-criterion relations from
training with outcome feedback when they are related
by an additive function is supported by the experiment.
The cue-abstraction model provided both a qualita-
tively and quantitatively better explanation of the data
in the Additive condition, while the exemplar model is
a better explanation in the Multiplicative condition.
That the exemplar-based model produces a relatively
good fit to data in the additive condition as well could
be interpreted in terms of quasi-rationality (e.g. Breh-
mer, 1994; Cooksey, 1996; Hammond, 1996; Juslin et
al, 2003); the additive task might have induced exem-
plar-memory for some participants.

What might be seen as a clear and simple mathe-
mathical manipulation of the task structure is sufficient
to induce qualitatively different cognitive processes.
These results suggests that: a) By manipulating the cue-
criterion relations one can induce shifts between cogni-
tive processes; b) the shift arises when the preference
for explicit representations (i.e. abstract knowledge of
cue-criterion relations) can not be met because of cog-
nitive limitations, and people turn to the back-up proc-
ess of exemplar memory; and ¢) the reason for this
cognitive limitation is an architectural constraint on
explicit and controlled thought processes only allowing
for abstraction and integration in a sequential, additive
manner. The results in regard to the manipulation of
working memory load were less clear. Both visual in-
spection of data and the model fits indicate little differ-
ence between the conditions. The performance suggests
that working memory distraction affected performance
in a negative manner, but with no clear signs of a repre-
sentational shift (i.e., the significant interaction is diffi-
cult to interpret).

It may be objected that the stimuli vary in few di-
mensions which may have promoted exemplar memory
(see Smith & Minda, 2000, for a discussion). However,
it remains the fact that qualitatively and quantitatively
different results were obtained over the two conditions,
with the same stimuli. The criteria in the multiplicative
condition are concentrated around the low fifties. This
could possibly have imposed a simple learning rule like
“I always guess on 51”. However, the results show a
significantly positive regression-line suggesting that the
participants have learned the positive relation, yet both
the inability to extrapolate and the model fits suggest
that the knowledge is in form of exemplars. If some
kind of additive rule was used the judgments on the
extreme exemplar #1 (¢=72) would not be expected to
be lower than the judgments on exemplar #2 (c=59).
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The aspects proposed in this paper needs to be fur-
ther addressed. A comparision between how the cue-
abstraction model and exemplar-models augmented
with linear extra-polation (for example £XAM, DeLosh
et al, 1997) describe data would be particularly valu-
able. Taken together, the results in the paper suggest
that the type of cue-criterion relations has a powerful
effect on cognitive processes.
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