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Abstract 

A new categorical time-series analysis method (which has a 
connectionist model interpretation) called KDC (Knowledge 
Digraph Contribution) analysis was used to investigate 
differences in recall and summarization production data as a 
function of reproductive and semantic coherence relations. 
The results provided support for the hypothesis that 
reproductive memory contributions play a dominant role in 
characterizing differences between recall and summarization. 
Moreover, the methodology and results described here 
illustrate the usage and application of KDC analysis. 

Text Coherence and Comprehension 
Semantic coherence relations, which indicate how 

specific clauses in a text are semantically related, play a 
major role in theories of human text comprehension (e.g., 
Kintsch, 1998), automatic text summarization (e.g., Mani, 
2001; Mani and Maybury, 1991), and text linguistics (e.g., 
Longacre, 1979; Mann and Thompson, 1988) .  In addition, 
considerable research in the field of experimental 
psychology has established that the organization of 
propositional information in the text (i.e., “textbase 
coherence relations”) influences memory for text (e.g., 
Britton et al., 1980; Einstein et al., 1984; Golden, 1998; 
Hasher & Griffin, 1978; Kintsch & van Dijk, 1978; Kintsch, 
1998).  Moreover, it has been established that semantic 
coherence relations among ideas referenced within a text 
may be revealed through recall and summarization 
production data (e.g., Golden, 1998; Goldman & 
Varnhagen, 1986; Mandler & DeForest, 1979; Rumelhart, 
1977; Stein & Glenn, 1979; Trabasso & Magliano, 1996). 
These observations suggest that it would be advantageous to 
develop a statistical methodology for the detection of local 
semantic coherence relations in human production data. 
Such a statistical methodology could be used not only for 
testing theories of human text comprehension but also for 
obtaining useful information for the purposes of informing 
the design of automatic summarization systems and refining 
theories of text linguistics. Towards this end, this paper 

presents an extension of work previously presented in 
Golden (1998) and applies the extended statistical modeling 
methodology to the analysis of some recall and 
summarization data which we have collected for the 
purposes of exploring differences and similarities between 
recall and summarization protocol data.  

The Behavioral Experiment 

Participants 
Participants for this experiment were 24 undergraduate 
psychology students at University of Texas at Dallas who 
received research credit for participation.  All participants 
were fluent English speaking students.  Participants were 
randomly assigned to six conditions.  Four participants were 
in each condition.  The six conditions were comprised of 
different presentation orders of the three instruction 
conditions, recall, detailed summary and concise summary.   

 
Table 1: The Czar and his Daughters  
[Reprinted from Rumelhart, 1977]. 

  
“There was once a Czar who had three lovely 
daughters.  One day, the three daughters went walking 
in the woods.  They were enjoying themselves so much 
that they forgot the time and stayed too long.  A dragon 
kidnapped the three daughters.  As they were being 
dragged off they called for help.  Three heroes heard the 
cries and set off to rescue the daughters.  The heroes 
came and fought the dragon.  They defeated the dragon 
and rescued the maidens.  The heroes returned the 
daughters safely to their palace.  When the Czar heard 
of the rescue he rewarded the heroes handsomely.” 

Materials 
Two simple narrative texts, “The Dog and his Shadow” and 
“The Czar and his Daughters”, taken from Rumelhart (1977) 
were used as practice and experimental stimuli for the study 
respectively. The experimental text consisted of nine 
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sentences and 16 complex propositions. The practice text 
was of similar length and complexity. The experimental text 
is provided in Table 1. 

Procedure 
Text Presentation. A HyperCard program presented the 
practice text “The Dog and his Shadow” followed by the 
experimental text “The Czar and His Daughters” one 
sentence at a time using a self-paced reading task. 
Participants were instructed to read the instructions 
carefully and told they would be asked questions about the 
stories at a later time period in the experiment. To view each 
sentence, participants used an arrow in the corner of the 
screen.  When the arrow was clicked, the present sentence 
disappeared and the next sentence appeared. After the 
experimental text was presented,  participants participated in 
an intervening distractor task which took several minutes to 
complete.    
Production Task. In the production task, participants were 
asked to summarize, give a detailed summary, and recall the 
story. The order of the instruction tasks were counter 
balanced across participants. Participants in the “concise 
summary” condition were instructed to construct a story 
summary consisting of no more than three sentences. 
Participants in the “detailed summary” condition were 
instructed to construct a story summary consisting of at least 
three sentences. Participants in the “recall” condition were 
instructed to recall the story by explicitly recalling the exact 
wording of each sentence and recalling the sentences 
according to their original order of presentation. Participants 
typed their responses for both the practice text and the 
experimental text into the HyperCard program. 

Coding of Protocol Data 
The recall and summarization protocol data for each 
individual participant in the study was then coded as an 
ordered sequence of complex propositions with the aid of 
the AUTOCODER computer program (Durbin, Earwood, 
and Golden, 2000). This computer program may be 
downloaded for research purposes only by visiting the web 
site: www.utdallas.edu/~golden/autocoder. 

Proposed Situation Model 
The proposed situation model is assumed to consist of two 
components: (1) a “reproductive memory” representation of 
the order in which the ideas in the text were presented, and 
(2) a “semantic local coherence” representation. These two 
semantic representations are formally expressed as directed 
graphs or  “knowledge digraphs” which depict relations 
among a set of complex propositions. The complex 
propositions used in the proposed situation model are listed 
in Table 2. They were derived from Rumelhart’s (1977) 
analysis of the “Czar and the Daughters” text. The 
proposition node number 17 refers to the initial mental state 
of the participant which arises from a request for the 
participant to recall or summarize the text. The proposition  

node 18 refers to the final mental state of the participant 
which arises when the participant’s response is completed.  

Reproductive Memory Knowledge Digraph 
The reproductive memory knowledge digraph is the 
component of the situation model which refers to the 
original sequence of ideas which were presented to the 
reader. A formal representation of this knowledge digraph is 
specified by the arcs in Figure 1 which depict the order in 
which the complex propositions in Table 2 are presented in 
the original text. The reproductive memory knowledge 
digraph is intended to instantiate the behavioral hypothesis 
that production order is influenced by the original ordering 
of propositions in the text. 
 
Table 2:  Complex Propositions Used in Simulation Study 

(C=Czar, P=Princesses, D=Dragon, H=Heros) 
 

Node 
Id # 

Complex Proposition 

1 SETTING(INTRODUCE,C) 
2 SETTING(POSSESS(C,P) 
3 METHOD(GO(P,WOODS)) 
4 CONSEQUENCE(POSSESS(P,JOY)) 
5 CONSEQUENCE(REMAIN(P,IN-WOODS) 
6 METHOD(CAPTURE(D,P)) 
7 METHOD(TRANSFER(D,P)) 
8 CONSEQUENCE(SCREAM(P)) 
9 EVENT(HEAR(H,P)) 
10 METHOD(GO,H) 
11 SETTING(INTRODUCE,H) 
12 METHOD(KILL(H,D)) 
13 METHOD(RESCUE(H,P)) 
14 METHOD(TRANSFER(H,P)) 
15 EVENT(HEAR(C,NEWS)) 
16 OUTCOME(REWARD(C,H)) 
17 INITIAL-CONTEXT 
18 FINAL-CONTEXT 

Semantic Coherence Knowledge Digraph Based 
Upon Rumelhart’s (1977) Story Grammar 
The semantic coherence knowledge digraph is intended to 
model the predictions of Rumelhart’s (1977) theory for 
predicting the order in which experimental participants will 
generate sequences of propositions when they were asked to 
summarize the experimental text.  According to Rumelhart’s 
semantic analysis of the experimental text, episodes in the 
story are hierarchically organized with the “lower-level” 
episodes describing the achievement of the subgoals for the 
“higher-level” episodes. Rumelhart’s (1977) model makes 
predictions about the levels of summarization for this story. 
Rumelhart’s (1977) predictions regarding Level 0, Level 1 
and Level 2 summaries for “The Czar and his Daughters” 
are summarized in Figure 2.  A concise summary from 
Rumelhart’s model would be modeled by the arcs  in Figure 
2 as the path: 17, 6, 13, 16, 18 While more detailed 
summaries would be modeled by other paths through the 
network presented in Figure 2 (e.g., 17, 6, 8, 13, 16, 18). 

617



 
 
 
 
Figure 1:  Reproductive Memory Knowledge Digraph. Each 
arc indicates the order in which a proposition in Table 1 
follows another in the original text. 
 

Knowledge Digraph Contribution Analysis 
Overview 
Knowledge Digraph Contribution (KDC) analysis is a 
special type of categorical time-series analysis which is 
specifically intended to identify evidence for different types 
of knowledge digraphs through the analysis of ordered 
sequences of propositions in production data. More 
specificially, KDC theory is based upon a specialized type 
of multinomial logistic regression time-series analysis 
where individual beta weights in the model correspond to 
the influence of different knowledge digraphs.  . The KDC 
software used here  may be downloaded (for research 
purposes only) from the web site: 
www.utdallas.edu/~golden/kdc. Earlier versions 
of KDC theory (e.g., Golden, 1994, 1995, 1998) based the 
sample size on the number of participants in the experiment 
instead of the number of propositions mentioned by the 

participants. By reworking the mathematics such that the 
sample size is based upon the number of propositions 
mentioned following the method of Golden (in press), the 
statistical power of the KDC theory is dramatically 
improved.  
 

 
 
Figure 2:  Rumelhart Summarization Knowledge Digraph. 
Each arc indicates the order in which a proposition in Table 
1 is expected to follow another in a story summary based 
upon a story grammar causal network analysis. 
 
 
Statistical Model 
Formally, let xi(t) indicate the tth proposition mentioned by 
the ith participant in the experiment within a particular 
experimental condition where the notation xi(t) denotes a d-
dimensional vector. If xi(t) refers to the kth proposition in 
the proposition dictionary, then xi(t)  is the kth column of a 
d-dimensional identity matrix. In such a situation, the vector  
x(t) defined as the kth column of a d-dimensional identity 
matrix would denote that the tth proposition mentioned by a 
particular participant within a particular experimental 
condition was the kth proposition in a dictionary of d 
propositions. Let p(x(t)=uk) denote the probability that the 
the tth proposition mentioned by the participant will be the 
kth proposition in the proposition dictionary. Let R be a 
matrix which specifies the reproductive memory knowledge 
digraph in Figure 1 such that the ijth element of R is equal 
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to one if the jth node in Figure 1 is connected to the ith node 
by an arc and a zero otherwise. Similarly, let C be a matrix 
which specifies the causal knowledge semantic coherence 
relation digraph in Figure 2 such that the the ith element of 
C is equal to one if the jth node in Figure 2 is connected to 
the ith node by an arc and a zero otherwise. Let βR and βC 
be the “contribution weights” indicating the respective 
influences of the d-dimensional square knowledge digraph 
matrices R and C. Then the specific KDC statistical model 
used here is specified by: 
 

p(x(t)=uk) = exp((uk)Thk)/∑m (uk)Thm             (1) 
 

for m = 1, …, d  and where:  
 

 hm= [ βR R + βCC ] x(t-1).                     (2) 
 

Figure 3:  Connectionist Interpretation of  KDC  Model. 
Only 3 of the 18 proposition nodes (propositions 14,15, and 
16 in Table 1) are shown. In this example, the model has 
just mentioned proposition 14 in Table 1 and the 
probabilities that the model will generate propositions 14, 
15, and 16 (denoted as p(14), p(15), and p(16)) are 
computed and returned as the output unit activations of the 
network. 
 
The two free parameters in the model are the contribution 
weights βR and βC which indicate the respective predictive 
influence of knowledge digraphs R and C. Using the large 
sample methods of Golden (in press; also see White, 1994) 
maximum likelihood estimates of the contribution weights 
can be estimated in conjunction with their standard errors. 
In addition, statistical tests can be constructed for providing 
insights regarding how the beta weights change as a 
function of the instruction condition in the experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Connectionist Model Interpretation 
Finally, note that as shown in Golden (1998), the 
probabilistic model in KDC theory has a dual interpretation 
as a particular type of highly structured connectionist 
network. Figure 3 shows a portion of the connectionist 
network interpretation of Equations (1) and (2). The 
activation levels of the input units are denoted by x14, x15, 
and x16 and only x14 is activated indicating that proposition 
14 was most recently mentioned by the model. The next 
layer of connection strengths which connect the input units 
to the hidden units are specified by the knowledge digraphs 
in Figure 1 and Figure 2. Only two parameters βR and βC are 
estimated in order to obtain the complete mapping from 
input units to hidden units. The activation levels of the 
hidden units are specified by Equation (2) in the text. The 
output layer of connection strengths is a forward lateral 
inhibition mapping which is constant and implements the 
“softmax” nonlinearity described by Bridle (1990). The 
output activations are probabilities which are always 
positive and sum to one and are specified by Equation (1) in 
the text. 

Computing maximum likelihood estimates using KDC 
theory is formally equivalent to having the connectionist 
network learn to recall or summarize texts using human 
production data as training data. Production data can be 
generated from the connectionist network by sampling from 
the KDC probability model. 

 
Parametric Bootstrapping 

In order to check the validity of the large sample 
approximations, three such connectionist networks were 
constructed for each of the three experimental conditions. 
Then, each of these three networks was used to generate 
three simulated response data sets where each data set 
consisted of the responses from 24 simulated subjects. The 
generation algorithm consisted of simply sampling  from the 
KDC probability model described by Equations (1) and (2) 
to generate three additional “simulated” data sets. Then for 
each simulated response data set  the contribution weights 
were estimated. Since there were three  parameter 
estimations for each of the three experimental conditions 
involving both the reproductive memory and semantic 
coherence contribution weights, 18 additional contribution 
weights were estimated. These additional 18 contribution 
weights will be referred to as “bootstrap contribution weight 
estimates”. If the large sample approximations are correct, 
then the standard errors estimated by the theory should 
approximately contain the bootstrap contribution weights 
estimated/learned from the simulated data. 

Results 
Qualitative Overview 
The results of applying KDC theory to the data in this study 
are reported in Figure 4. As can be seen from Figure 4, the 
influence of the Reproductive Memory Knowledge Digraph 
Contribution Weight βR has the greatest influence when 
participants are asked to recall a text, a moderate influence 

βR + βC

 x14   x15    x16 

βR 

 p(14) p(15) p(16) 
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for the detailed summary condition, and the least influence 
in the concise summary condition. In contrast, the influence 
of the Semantic Coherence Knowledge Digraph 
Contribution Weight βC has the greatest influence in the 
concise summary condition and shows a tendency to 
decrease in the detailed summary condition and decrease 
further in the recall condition.  
 
Statistical Test Results 
Within-Group KDC Statistical Tests As previously noted 
in Figure 4, the  βR and βC contribution weights were 
estimated using each of the three data sets yielding six beta 
weight estimates. KDC theory was then used to estimate the 
standard errors for each of the six beta weights. These 
standard errors are plotted as confidence intervals in Figure 
2 as well. All six beta weight coefficients were significantly 
positive (p < 0.0001) indicating a statistically significant 
contribution of all knowledge digraphs.   
 

 
 
Figure 4:  Reproductive Memory and Causal Knowledge 
Digraphs. Reproductive memory knowledge digraph is 
depicted by the solid arcs. Rumelhart’s semantic local 
coherence causal knowledge digraph is depicted by the 
dashed arcs. Smaller circles and triangles denote bootstrap 
contribution weight estimates (see text for details). 
 
Between Group KDC Statistical Tests As shown in Figure 
4, a between-group planned comparison KDC statistical test 
revealed the βR  and  βC contribution weights estimated in 
the concise instruction condition differed reliably from the 
contribution weights estimated in the recall instruction 
condition, W(2) = 10.3, p = 0.006. Post-hoc analyses 
showed this reliable difference appeared to arise from a 
smaller reproductive memory contribution βR  weight 
(Z=3.1, p = 0.002) in the concise relative to the recall 
instruction conditions.  Although the  βC  weight  was larger 
in the concise instruction relative to the recall condition as 
shown in Figure 2, this difference was not statistically 
significant (Z=1.0,  p = 0.3). 

A second KDC between-group planned comparison test 
showed only a marginally significant change in the pattern 

of beta weights between the detailed summary and recall 
instruction conditions, W(2) = 4.7, p = 0.10 (please see 
Figure 4). Post-hoc analyses showed this marginally 
significant difference appeared to arise from a smaller 
reproductive memory contribution βR  weight (Z=2.1, p = 
0.03) in the detailed summary relative to the recall 
instruction conditions.  Although the semantic coherence βC  
weight was larger in the detailed summary instruction 
relative to the recall condition as shown in Figure 4, this 
difference was not statistically significant (Z=0.04,  p = 
0.97). 

A third KDC between-group planned comparison test 
showed no significant change in the pattern of beta weights 
between the detailed summary and concise summary 
instruction conditions, W(2) = 2.1, p = 0.35 (despite the 
clear trends in the data depicted in Figure 4).   
 
Reliability of the Asymptotic Statistical Inferences 

The reliability of the estimated variance-covariance 
matrix of the parameter estimates is indirectly checked by 
seeing if the bootstrap contribution weights lie 
approximately within the estimated confidence intervals. 
Inspection of Figure 4 shows the bootstrap contribution 
weights (identified by the small circles and small triangles) 
tended to lie within the estimated confidence intervals with 
the sole exception of one bootstrap reproductive memory 
contribution weight estimate in the concise summary 
condition. These observations supports the appropriateness 
of the large sample approximations used in this paper. 

General Discussion and Summary 
Qualitative trends obtained from the KDC data analysis 

showed that semantic knowledge components of the 
situation model are more dominant than reproductive 
memory situation model components for summarization 
data. Moreover, the reverse pattern tends to hold for recall 
protocol data. KDC statistical analyses indicated that the 
semantic knowledge components of the situation model 
provide influence production data in a similar way in both 
recall and summarization. On the other hand, the 
reproductive memory knowledge digraph had a greater 
influence in the recall condition relative to the 
summarization conditions. Simulation studies supported the 
reliability of the large sample statistical inferences which 
only revealed a reliable difference in the pattern of beta 
weights between the concise-instruction and recall-
instruction experimental conditions.  

Because of the clear trends in the data shown in Figure 4, 
a likely interpretation of the obtained results is that the lack 
of reliable differences between the detailed summary 
instruction condition and the other recall and concise 
summary instruction conditions is simply due to a lack of 
statistical power associated with the KDC analysis. An 
alternative interpretation is that the lack of reliable 
differences might simply not be present indicating that 
differences in recall and summarization performance arise 
primarily due to reproductive memory processes.  
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In summary, a new categorical time-series analysis 
method called KDC analysis was applied to the analysis of 
previously unpublished recall and summarization protocol 
data. In addition to providing some new insights into the 
relationship between recall and summarization data, the 
methodology and results described in this paper provided an 
example of the usage of KDC analysis within the context of 
a practical cognitive modeling problem and illustrated how 
the large sample approximations could be checked using a 
connectionist model for parametric bootstrapping simulated 
data generation. 
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