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Abstract

A new categorical time-series analysis method (which has a
connectionist model interpretation) called KDC (Knowledge
Digraph Contribution) analysis was used to investigate
differences in recall and summarization production data as a
function of reproductive and semantic coherence relations.
The results provided support for the hypothesis that
reproductive memory contributions play a dominant role in
characterizing differences between recall and summarization.
Moreover, the methodology and results described here
illustrate the usage and application of KDC analysis.

Text Coherence and Comprehension

Semantic coherence relations, which indicate how
specific clauses in a text are semantically related, play a
major role in theories of human text comprehension (e.g.,
Kintsch, 1998), automatic text summarization (e.g., Mani,
2001; Mani and Maybury, 1991), and text linguistics (e.g.,
Longacre, 1979; Mann and Thompson, 1988) . In addition,
considerable research in the field of experimental
psychology has established that the organization of
propositional information in the text (i.e., “textbase
coherence relations”) influences memory for text (e.g.,
Britton et al., 1980; Einstein et al., 1984; Golden, 1998;
Hasher & Griffin, 1978; Kintsch & van Dijk, 1978; Kintsch,
1998). Moreover, it has been established that semantic
coherence relations among ideas referenced within a text
may be revealed through recall and summarization
production data (e.g., Golden, 1998; Goldman &
Varnhagen, 1986; Mandler & DeForest, 1979; Rumelhart,
1977; Stein & Glenn, 1979; Trabasso & Magliano, 1996).
These observations suggest that it would be advantageous to
develop a statistical methodology for the detection of local
semantic coherence relations in human production data.
Such a statistical methodology could be used not only for
testing theories of human text comprehension but also for
obtaining useful information for the purposes of informing
the design of automatic summarization systems and refining
theories of text linguistics. Towards this end, this paper
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presents an extension of work previously presented in
Golden (1998) and applies the extended statistical modeling
methodology to the analysis of some recall and
summarization data which we have collected for the
purposes of exploring differences and similarities between
recall and summarization protocol data.

The Behavioral Experiment

Participants

Participants for this experiment were 24 undergraduate
psychology students at University of Texas at Dallas who
received research credit for participation. All participants
were fluent English speaking students. Participants were
randomly assigned to six conditions. Four participants were
in each condition. The six conditions were comprised of
different presentation orders of the three instruction
conditions, recall, detailed summary and concise summary.

Table 1: The Czar and his Daughters
[Reprinted from Rumelhart, 1977].

“There was once a Czar who had three lovely
daughters. One day, the three daughters went walking
in the woods. They were enjoying themselves so much
that they forgot the time and stayed too long. A dragon
kidnapped the three daughters. As they were being
dragged off they called for help. Three heroes heard the
cries and set off to rescue the daughters. The heroes
came and fought the dragon. They defeated the dragon
and rescued the maidens. The heroes returned the
daughters safely to their palace. When the Czar heard
of the rescue he rewarded the heroes handsomely.”

Materials

Two simple narrative texts, “The Dog and his Shadow” and
“The Czar and his Daughters”, taken from Rumelhart (1977)
were used as practice and experimental stimuli for the study
respectively. The experimental text consisted of nine



sentences and 16 complex propositions. The practice text
was of similar length and complexity. The experimental text
is provided in Table 1.

Procedure

Text Presentation. A HyperCard program presented the
practice text “The Dog and his Shadow” followed by the
experimental text “The Czar and His Daughters” one
sentence at a time using a self-paced reading task.
Participants were instructed to read the instructions
carefully and told they would be asked questions about the
stories at a later time period in the experiment. To view each
sentence, participants used an arrow in the corner of the
screen. When the arrow was clicked, the present sentence
disappeared and the next sentence appeared. After the
experimental text was presented, participants participated in
an intervening distractor task which took several minutes to
complete.

Production Task. In the production task, participants were
asked to summarize, give a detailed summary, and recall the
story. The order of the instruction tasks were counter
balanced across participants. Participants in the “concise
summary” condition were instructed to construct a story
summary consisting of no more than three sentences.
Participants in the “detailed summary” condition were
instructed to construct a story summary consisting of at least
three sentences. Participants in the “recall” condition were
instructed to recall the story by explicitly recalling the exact
wording of each sentence and recalling the sentences
according to their original order of presentation. Participants
typed their responses for both the practice text and the
experimental text into the HyperCard program.

Coding of Protocol Data

The recall and summarization protocol data for each
individual participant in the study was then coded as an
ordered sequence of complex propositions with the aid of
the AUTOCODER computer program (Durbin, Earwood,
and Golden, 2000). This computer program may be
downloaded for research purposes only by visiting the web
site: www. ut dal | as. edu/ ~gol den/ aut ocoder .

Proposed Situation Model

The proposed situation model is assumed to consist of two
components: (1) a “reproductive memory” representation of
the order in which the ideas in the text were presented, and
(2) a “semantic local coherence” representation. These two
semantic representations are formally expressed as directed
graphs or “knowledge digraphs” which depict relations
among a set of complex propositions. The complex
propositions used in the proposed situation model are listed
in Table 2. They were derived from Rumelhart’s (1977)
analysis of the “Czar and the Daughters” text. The
proposition node number 17 refers to the initial mental state
of the participant which arises from a request for the
participant to recall or summarize the text. The proposition
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node 18 refers to the final mental state of the participant
which arises when the participant’s response is completed.

Reproductive Memory Knowledge Digraph

The reproductive memory knowledge digraph is the
component of the situation model which refers to the
original sequence of ideas which were presented to the
reader. A formal representation of this knowledge digraph is
specified by the arcs in Figure 1 which depict the order in
which the complex propositions in Table 2 are presented in
the original text. The reproductive memory knowledge
digraph is intended to instantiate the behavioral hypothesis
that production order is influenced by the original ordering
of propositions in the text.

Table 2: Complex Propositions Used in Simulation Study
(C=Czar, P=Princesses, D=Dragon, H=Heros)

Node Complex Proposition

Id #

1 SETTING(INTRODUCE,C)

2 SETTING(POSSESS(C,P)

3 METHOD(GO(P,WOODS))

4 CONSEQUENCE(POSSESS(P,JOY))
5 CONSEQUENCE(REMAIN(P,IN-WOODS)
6 METHOD(CAPTURE(D,P))

7 METHOD(TRANSFER(D,P))

8 CONSEQUENCE(SCREAM(P))

9 EVENT(HEAR(H,P))

10 METHOD(GO,H)
11 SETTING(INTRODUCE,H)
12 METHOD(KILL(H,D))

13 METHOD(RESCUE(H,P))

14 METHOD(TRANSFER(H,P))
15 EVENT(HEAR(C,NEWS))
16 OUTCOME(REWARD(C,H))
17 INITIAL-CONTEXT

18 FINAL-CONTEXT

Semantic Coherence Knowledge Digraph Based
Upon Rumelhart’s (1977) Story Grammar

The semantic coherence knowledge digraph is intended to
model the predictions of Rumelhart’s (1977) theory for
predicting the order in which experimental participants will
generate sequences of propositions when they were asked to
summarize the experimental text. According to Rumelhart’s
semantic analysis of the experimental text, episodes in the
story are hierarchically organized with the “lower-level”
episodes describing the achievement of the subgoals for the
“higher-level” episodes. Rumelhart’s (1977) model makes
predictions about the levels of summarization for this story.
Rumelhart’s (1977) predictions regarding Level 0, Level 1
and Level 2 summaries for “The Czar and his Daughters”
are summarized in Figure 2. A concise summary from
Rumelhart’s model would be modeled by the arcs in Figure
2 as the path: 17, 6, 13, 16, 18 While more detailed
summaries would be modeled by other paths through the
network presented in Figure 2 (e.g., 17, 6, 8, 13, 16, 18).



Figure 1: Reproductive Memory Knowledge Digraph. Each
arc indicates the order in which a proposition in Table 1
follows another in the original text.

Knowledge Digraph Contribution Analysis

Overview

Knowledge Digraph Contribution (KDC) analysis is a
special type of categorical time-series analysis which is
specifically intended to identify evidence for different types
of knowledge digraphs through the analysis of ordered
sequences of propositions in production data. More
specificially, KDC theory is based upon a specialized type
of multinomial logistic regression time-series analysis
where individual beta weights in the model correspond to
the influence of different knowledge digraphs. . The KDC
software used here may be downloaded (for research
purposes only) from the web site:
www. ut dal | as. edu/ ~gol den/ kdc. Earlier versions
of KDC theory (e.g., Golden, 1994, 1995, 1998) based the
sample size on the number of participants in the experiment
instead of the number of propositions mentioned by the
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participants. By reworking the mathematics such that the
sample size is based upon the number of propositions
mentioned following the method of Golden (in press), the
statistical power of the KDC theory is dramatically
improved.

Figure 2: Rumelhart Summarization Knowledge Digraph.
Each arc indicates the order in which a proposition in Table
1 is expected to follow another in a story summary based
upon a story grammar causal network analysis.

Statistical Model

Formally, let x;(t) indicate the #th proposition mentioned by
the ith participant in the experiment within a particular
experimental condition where the notation x;(t) denotes a d-
dimensional vector. If x;(t) refers to the Ath proposition in
the proposition dictionary, then x;(t) is the Ath column of a
d-dimensional identity matrix. In such a situation, the vector
x(t) defined as the kth column of a d-dimensional identity
matrix would denote that the 7th proposition mentioned by a
particular participant within a particular experimental
condition was the kth proposition in a dictionary of d
propositions. Let p(x(t)=uy) denote the probability that the
the 7th proposition mentioned by the participant will be the
kth proposition in the proposition dictionary. Let R be a
matrix which specifies the reproductive memory knowledge
digraph in Figure 1 such that the ijth element of R is equal



to one if the jth node in Figure 1 is connected to the ith node
by an arc and a zero otherwise. Similarly, let C be a matrix
which specifies the causal knowledge semantic coherence
relation digraph in Figure 2 such that the the ith element of
C is equal to one if the jth node in Figure 2 is connected to
the ith node by an arc and a zero otherwise. Let Br and B¢
be the “contribution weights” indicating the respective
influences of the d-dimensional square knowledge digraph
matrices R and C. Then the specific KDC statistical model
used here is specified by:

p(x(t)=w) = exp((w) h)/ L (w) by, (M

form =1, ..., d and where:
h,=[ Br R+ BcC ] x(t-1). (2)

Figure 3: Connectionist Interpretation of KDC Model.
Only 3 of the 18 proposition nodes (propositions 14,15, and
16 in Table 1) are shown. In this example, the model has
just mentioned proposition 14 in Table 1 and the
probabilities that the model will generate propositions 14,
15, and 16 (denoted as p(14), p(15), and p(16)) are
computed and returned as the output unit activations of the
network.

The two free parameters in the model are the contribution
weights Br and B¢ which indicate the respective predictive
influence of knowledge digraphs R and C. Using the large
sample methods of Golden (in press; also see White, 1994)
maximum likelihood estimates of the contribution weights
can be estimated in conjunction with their standard errors.
In addition, statistical tests can be constructed for providing
insights regarding how the beta weights change as a
function of the instruction condition in the experiment.

p(14) p(19) p(16)

X15

X16
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Connectionist Model Interpretation

Finally, note that as shown in Golden (1998), the
probabilistic model in KDC theory has a dual interpretation
as a particular type of highly structured connectionist
network. Figure 3 shows a portion of the connectionist
network interpretation of Equations (1) and (2). The
activation levels of the input units are denoted by X4, X;3,
and X6 and only x4 is activated indicating that proposition
14 was most recently mentioned by the model. The next
layer of connection strengths which connect the input units
to the hidden units are specified by the knowledge digraphs
in Figure 1 and Figure 2. Only two parameters Bz and 3¢ are
estimated in order to obtain the complete mapping from
input units to hidden units. The activation levels of the
hidden units are specified by Equation (2) in the text. The
output layer of connection strengths is a forward lateral
inhibition mapping which is constant and implements the
“softmax” nonlinearity described by Bridle (1990). The
output activations are probabilities which are always
positive and sum to one and are specified by Equation (1) in
the text.

Computing maximum likelihood estimates using KDC
theory is formally equivalent to having the connectionist
network learn to recall or summarize texts using human
production data as training data. Production data can be
generated from the connectionist network by sampling from
the KDC probability model.

Parametric Bootstrapping

In order to check the validity of the large sample
approximations, three such connectionist networks were
constructed for each of the three experimental conditions.
Then, each of these three networks was used to generate
three simulated response data sets where each data set
consisted of the responses from 24 simulated subjects. The
generation algorithm consisted of simply sampling from the
KDC probability model described by Equations (1) and (2)
to generate three additional “simulated” data sets. Then for
each simulated response data set the contribution weights
were estimated. Since there were three  parameter
estimations for each of the three experimental conditions
involving both the reproductive memory and semantic
coherence contribution weights, 18 additional contribution
weights were estimated. These additional 18 contribution
weights will be referred to as “bootstrap contribution weight
estimates”. If the large sample approximations are correct,
then the standard errors estimated by the theory should
approximately contain the bootstrap contribution weights
estimated/learned from the simulated data.

Results

Qualitative Overview

The results of applying KDC theory to the data in this study
are reported in Figure 4. As can be seen from Figure 4, the
influence of the Reproductive Memory Knowledge Digraph
Contribution Weight Br has the greatest influence when
participants are asked to recall a text, a moderate influence



for the detailed summary condition, and the least influence
in the concise summary condition. In contrast, the influence
of the Semantic Coherence Knowledge Digraph
Contribution Weight B¢ has the greatest influence in the
concise summary condition and shows a tendency to
decrease in the detailed summary condition and decrease
further in the recall condition.

Statistical Test Results

Within-Group KDC Statistical Tests As previously noted
in Figure 4, the g and B¢ contribution weights were
estimated using each of the three data sets yielding six beta
weight estimates. KDC theory was then used to estimate the
standard errors for each of the six beta weights. These
standard errors are plotted as confidence intervals in Figure
2 as well. All six beta weight coefficients were significantly
positive (p < 0.0001) indicating a statistically significant
contribution of all knowledge digraphs.

Contribution Weights V/s. Instruction Condition
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Figure 4: Reproductive Memory and Causal Knowledge
Digraphs. Reproductive memory knowledge digraph is
depicted by the solid arcs. Rumelhart’s semantic local
coherence causal knowledge digraph is depicted by the
dashed arcs. Smaller circles and triangles denote bootstrap
contribution weight estimates (see text for details).

Between Group KDC Statistical Tests As shown in Figure
4, a between-group planned comparison KDC statistical test
revealed the Br and [c contribution weights estimated in
the concise instruction condition differed reliably from the
contribution weights estimated in the recall instruction
condition, W(2) = 10.3, p = 0.006. Post-hoc analyses
showed this reliable difference appeared to arise from a
smaller reproductive memory contribution Br  weight
(Z=3.1, p = 0.002) in the concise relative to the recall
instruction conditions. Although the B¢ weight was larger
in the concise instruction relative to the recall condition as
shown in Figure 2, this difference was not statistically
significant (Z=1.0, p=0.3).

A second KDC between-group planned comparison test
showed only a marginally significant change in the pattern
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of beta weights between the detailed summary and recall
instruction conditions, W(2) = 4.7, p = 0.10 (please see
Figure 4). Post-hoc analyses showed this marginally
significant difference appeared to arise from a smaller
reproductive memory contribution Bg weight (Z=2.1, p =
0.03) in the detailed summary relative to the recall
instruction conditions. Although the semantic coherence B¢
weight was larger in the detailed summary instruction
relative to the recall condition as shown in Figure 4, this
difference was not statistically significant (Z=0.04, p =
0.97).

A third KDC between-group planned comparison test
showed no significant change in the pattern of beta weights
between the detailed summary and concise summary
instruction conditions, W(2) = 2.1, p = 0.35 (despite the
clear trends in the data depicted in Figure 4).

Reliability of the Asymptotic Statistical Inferences

The reliability of the estimated variance-covariance
matrix of the parameter estimates is indirectly checked by
seeing if the bootstrap contribution weights lie
approximately within the estimated confidence intervals.
Inspection of Figure 4 shows the bootstrap contribution
weights (identified by the small circles and small triangles)
tended to lie within the estimated confidence intervals with
the sole exception of one bootstrap reproductive memory
contribution weight estimate in the concise summary
condition. These observations supports the appropriateness
of the large sample approximations used in this paper.

General Discussion and Summary

Qualitative trends obtained from the KDC data analysis
showed that semantic knowledge components of the
situation model are more dominant than reproductive
memory situation model components for summarization
data. Moreover, the reverse pattern tends to hold for recall
protocol data. KDC statistical analyses indicated that the
semantic knowledge components of the situation model
provide influence production data in a similar way in both
recall and summarization. On the other hand, the
reproductive memory knowledge digraph had a greater
influence in the recall condition relative to the
summarization conditions. Simulation studies supported the
reliability of the large sample statistical inferences which
only revealed a reliable difference in the pattern of beta
weights between the concise-instruction and recall-
instruction experimental conditions.

Because of the clear trends in the data shown in Figure 4,
a likely interpretation of the obtained results is that the lack
of reliable differences between the detailed summary
instruction condition and the other recall and concise
summary instruction conditions is simply due to a lack of
statistical power associated with the KDC analysis. An
alternative interpretation is that the lack of reliable
differences might simply not be present indicating that
differences in recall and summarization performance arise
primarily due to reproductive memory processes.



In summary, a new categorical time-series analysis
method called KDC analysis was applied to the analysis of
previously unpublished recall and summarization protocol
data. In addition to providing some new insights into the
relationship between recall and summarization data, the
methodology and results described in this paper provided an
example of the usage of KDC analysis within the context of
a practical cognitive modeling problem and illustrated how
the large sample approximations could be checked using a
connectionist model for parametric bootstrapping simulated
data generation.
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