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Abstract

Training protocols that involve working with a human
partner have been shown to be beneficial for learning
complex tasks. In this paper, we explore emulating the
function of the partner with an intelligent agent. Given
a cognitive task analysis, the task can be decomposed
into cognitive components, and these behaviors can be
independently automated using agent-programming tech-
nigues. Then a trainee and the agent can work together to
solve practice problems, each taking responsibility for a
different function. We argue that it is desirable not only
for the agent to produce correct and consistent behavior
(e.g. demonstrating the optimal strategy), but also to ap-
pear realistic (human-like, including errors), and we show
how this can be achieved by introducing randomness in
an agent’s decisions. We implemented a Partner Agent
for Space Fortress, a laboratory task designed to be repre-
sentative of complex tasks, and found that trainees who
swapped roles with this agent during training achieved
significantly higher performance scores asymptotically
than those who trained using a standard (whole-task)
training protocol. We also simulated 3 different levels
of expertise and found that trainees who worked with an
“expert-level” agent received the most benefit.

sures to do more with fewer resources. In the com-
mercial/manufacturing world, workers constantly need
re-training to operate new models of machines as they
are developed, or shift processes/jobs as the market de-
mands. The military, too, is filled with jobs involving
operation of complex, technological equipment, which
people (typically young adults with little prior experi-
ence) must be trained rapidly to operate safely and effec-
tively. In all these environments, the transition between
textbook knowledge and practical skill must be achieved
efficiently and effectively, minimizing both training re-
sources (need for instructors, dedicated training equip-
ment, simulators, etc.) and time.

Complex tasks present a fundamental challenge for
the development of training systems. On the one hand,
whole-task training (e.g. immersion, on-the-job training)
is ineffective because the novice is usually over-whelmed
by the complexity of the task. They fail at first, but they
are often unable to comprehend why or make incremen-
tal improvements. On the other hand, part-task training
(such as learning to steer a car and operate the pedals sep-
arately) can be less effective because novices do not get
a chance to experience the inter-play between the parts.

, Introdqcnon _Part-task training does not allow trainees to practice per-
In the modern industrialized and technology-driven forming the sub-tasks together, which often requires sig-
world, there is a great need for development of new train-njficant additional effort to manage shared cognitive re-
ing methods for complex tasks. By complex tasks, wesgyrces, such as dividing or shifting attention.
mean tasks that have a cognitive dimension of difficulty, ope interesting training protocol that has shown
such as demands on rea_soning, attention, memory, an_d $romise for complex tasks artner-based trainingfor
on, not just a physical skill based on strength or dextentyexampb, the AIM (Active Interlocked Modeling) pro-
(though they may include these). Examples of complexioco| (Shebilske et al., 1992). AIM involves groups of
tasks include driving vehicles, piloting aircraft, operating trainees working together to solve a problem (e.g. oper-
machinery, etc. Such tasks require extensive training foting a device within a simulated scenario). In the case
operators to learn the necessary details of how a devicgg AIM-Dyad, there are two trainees acting as partners.
works, modes of operation, procedures for controlling it, Each trainee performs part of the task while his partner
rggulations and limitations, sigpals for error/failure con- qoes the other part, and later they switch roles. This po-
ditions, and means for recovering from them. Operatorsentially solves the dilemma of complex-task training be-
must not only learn this information by memory, butalso ¢4 se it reduces their individual demands, allowing them
be able to apply it in practice, often under real-time con-t5 focus on automating one cognitive component at a
straints with competing demands on perception, meéMyime which is more tractable, while maintaining the con-
ory, etc. Schneider (Schneider, 1985) gives a characterigayt of the whole task.
zation of complex tasks and discusses issues for training. |t has been shown that the AIM protocol of partner-
The need for new training systems is morevaent  pased training can improve performance over standard
today than ever before, especially given economic presingividual practice (e.g. whole-task training) for the

'This work was supported in part by MURI grant #F49620- Same amount of time. For example, in Space Fortress,
00-1-0326 from DoD and AFOSR. a computer-based laboratory task designed to emulate
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characteristics of a complex task (specifically, flying awith errors), the trainee will not be able to learn cor-
fighter jet), AIM-Dyad was implemented by alternatively rect behaviors, while if the agent’s actions are too pre-
having one trainee operate the joystick while the othercise (i.e. expert), this might be incomprehensible to the
trainee operated the mouse. Over a total of 10 hours ohovice, effectively setting an unattainable goal. There-
practice, trainees using this partner-based protocol perfore, we ran a second experiment where we actively ma-
formed as well at the task as individuals who had beemipulated the level of expertise simulated by the partner
trained using whole-task training. That is, they reachedagent, and we evaluated whether there was any differ-
the same scores (individually) as a control group trainedence in training with the different agents. The results
by simply giving them instructions and letting them try show that training in Space Fortress with a partner agent
to maximize their score over the same amount of timethat simulates a human expert provides the most benefit.
(Shebilske et al., 1992; Arthur et al., 1997). Thus AIM- _

Dyad produces an increase in efficiency over the stan- Partner Agent Design

dard (individual) training protocol by reducing the time, There are a wide variety of ways in which intelli-
equipment, and trainers needed for each group in half. gent agents could be used within a computer-based
The fact that AIM can provide training that is equal to training system, ranging from automated opponents to
an individualized training method is somewhat surpris- coaches (Rickel and Johnson, 1999) to performance sup-
ing, given that each trainee experiences only half of theport. Intelligent agents are software programs that have
hands-on experience on average. The proposed explanghe following characteristics: 1) they agoal-oriented
tion for this is that, while trainees are performing their (proactive, seeking to achieve goals given to them),
own part of the task, they are “modeling” the behavior of 2) they arereactive (situated within a dynamic envi-
their partner. In fact, the magnitude of performance im-ronment in which they need to take actions to change
provement has been shown to correlate with intelligencehe state to achieve their goals), and 3) they aue
measures of one’s partner (Shebilske et al., 1999), sugtonomougcan make decisions without human interven-
gesting that they are learning from each other more thanjon) (Wooldridge and Jennings, 1995). In addition,
just their own part of the task (Bandura, 1986). agents may have other common characteristics, such as
However, this benefit of training with a partner does beingadaptive(learning from their experiences) oo-
not intrinsically require interaction between the partners.operative(interacting with other agents or humans).
In a previous study, the role of social variables (ranging Intelligent agents have a potential for training that
from verbal communication to visual cues such as bodygoes beyond traditional intelligent tutoring systems
language) were investigated by having the dyad perform(ITS’s) (Anderson et al., 1990). ITS’s are systems de-
the task in physically-separated cubicles with connectedigned for training based on Al techniques, especially
consoles. Still, they reached the same level of proficiencyexpert systems and case-based reasoning. The trainee
after training (Shebilske et al., 1999). Furthermore, thisis usually presented with a problem to solve, and the ITS
effect held even when trainees were told that the othemonitors the actions taken. If the problem was not solved
part of the task was being performed by a computer.  correctly, an analysis of the actions is made to identify
This observation makes an important suggestion: thagaps in the trainee’s knowledge, to be remediated by fur-
the role of a partner in training could be automated by ther instruction focussed in that area. The main chal-
using an intelligent agentAgents are software programs lenge of an ITS is to interpret the actions the trainee
that can autonomously make decisions and act to achievtakes and construct plausible explanations of the miss-
goals in a dynamic (real-time) environment. There areing/incorrect knowledge that led to those actions. This is
many possible roles that agents could play in a trainingoften called “user modeling,” and can be performed by
system. In this paper, we describe a principled approachechniques ranging from abduction (proof completion)
to incorporating agents in training, called the Partnerto plan recognition to probabilistic inference (e.g. with
Agent protocol, based on the arguments for cognitiveBayesian belief nets).
benefits given above. We discuss a number of design While intelligent agents may incorporate user-
criteria and implementation issues in developing partnemodeling capabilities too, they go beyond ITS’s by being
agents. To test our hypothesis about the effectiveness afble to dynamically interact with the problem-solving
this new protocol, we implemented partner agents for theenvironment, and thus to drive (alter) the scenario, or
Space Fortress task, and we show that trainees were abdgtively participate with the trainee in solving the prob-
to out-perform (reach higher scores than) those trainedem. An agent can be given goals that involve helping
with the standard control (whole-task) protocol. (facilitating) the trainee, correcting mistakes, remind-
The success of our first experiment led to an interesting, off-loading tasks (performance support), providing
ing follow-up question:Does the level of expertise sim- advice on or explaining correct actions (decision aid),
ulated by the partner agent affect the magnitude of per-demonstrating correct behavior, adapting the scenario to
formance improvement by the trairkeBecause trainees the trainee’s skill level (modifying events to be more
are believed to “model” the behavior of their partners, it or less challenging), making the scenario more realis-
might be expected that different behaviors by the agentic by simulating elements in the scenario reacting to the
will influence trainees differently. More specifically, if trainee’s actions (more flexible than scripted scenarios),
the agent’s performance is similar to a novice (i.e. ladenand even creating challenges by intentionally preventing
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the trainee from succeeding by easy means and forcingub-function of the task, representing cognitively distinct
them to apply deeper knowledge (e.g. a tactical enemyparts of the overall task (this would have to be based on
that is difficult to defeat in a combat simulation). These a formal cognitive task analysis). Then, during training,
all require agent techniques such as planning and inferthe agent would perform one part of the task while the
ence to be able to decide which actions to take to achievérainee performs the other.
their goals, given the current state of scenario (including Although agents can be used to satisfy the correctness
user’s prior actions). and consistency criteria, something else must be added
Our approach, based on cognitive principles describedo introduce realism and exploratio®ur approach to
above, is to use agents as active partners for trainees iadding realism to an agent’s behavior is to artificially
solving problems. The advantage of using agents folimit the speed and/or accuracy of responses by intro-
creating virtual partners is that agents can be used talucing stochastic errors For example, random delays
demonstrate correct behavior by giving them knowledgecould be added to response times, a small percentage
of the optimal strategy. Furthermore, agents will apply of incorrect classifications could be added to a judge-
this knowledge consistently without getting tired, giving ment/recognition task, or a small amount of imprecision
trainees a stable target behavior to model. This assumesould be added to a motor control component. The mag-
that: a) sufficient inputs (perceptions) are available fromnitude and frequency of mistakes made by the agent can
the simulation environment to determine the correct be-be calibrated to measurements of human levels. These
havior, b) the correct action depends on a quantifiableerrors produce a variance in the agent’'s behavior that is
judgement (i.e. not nebulous “intuition”), and c) the de- important for bottrealism(humans often make mistakes,
cision can be made within the time available (i.e. the up-especially under high task-load) aaxploration(allow-
date cycle-time of the simulation). ing trainees to experience different parts of the problem
The use of agents as active partners places several cogpace and practice recovering from errors).
straints on the design of the agent. To be effective as a
partner for training humans, an agent should have the fol- Experiments
lowing qualities:
Space Fortress
e Correctness- In order for the agent to relate the tar- To test our hypotheses, we implemented a partner agent
get strategy to the trainee, the agent must perform thgor training human subjects in Space Fortress. Space
strategy correctly. Fortress is a laboratory task that was designed by re-

sistent in its overall behavior. Inconsistency makes the’€Presentative of complex tasks for experiments with hu-
. ) “space ship” on a computer screen (see Figure 1). The
* Realism- Relative to humans, agents have the poten-shin may be rotated using a joystick, and it can move
tial to perform certain actions, make decisions, and re<onyard (in whatever direction it is pointing) by pressing
spond with unnatural speed and accuracy, which is ofqnyard on the joystick to fire a thruster. The ship can
less benefit for the purposes of demonstration. Itis desq fire “missles’ by pressing a button on the joystick.
sirable for agents to exhibit more human-like behavior There js g “fortress” in the center of the screen that can-
so that the performance appears auhble to trainees. ot move, but can rotate and fire shells back at the ship
e Exploration - Exploration refers to how many differ- to defend itself. The primary goal of the task is to de-
ent “situations” the agent gets the human into. Withoutstroy the fortress (as quickly as possible) without being
exploration, the trainee cannot make a proper mentaflestroyed. It takes ten single-shots (no faster than 250ms
model or, for example, learn how to recover from er- apart) followed by a double-shot (within 250ms) to de-
rors simply because he has not experienced them.  stroy the fortress.
In addition to the fortress, another hazard in this en-
How can a partner agent be designed to meet these d&ironment consists of mines that appear randomly and
sired criteria? There are a number of intelligent agentfloat through the space, attracted toward the ship. When
architectures that could be used to implement intelligenta mine appears, the subject must make a judgement about
behaviors and decision-making within a simulated en-whether it is a friend or enemy mine before shooting at
vironment, including SOAR, PRS/dMARS, RETSINA, it (IFF: identify friend-or-foe). This is determined by
etc. Each architecture has a different approach to repASCII characters that appear on screen. Prior to the task,
resenting goals, domain knowledge, and actions. Eaclthe subject is given three characters to remember. When
architecture defines a different mechanism for determin-one of the letters in the memory-set appears on screen
ing which sequence of actions it could take that wouldwith a mine, the mine is a foe; for all other characters, the
lead to accomplishing its goals by transforming the statemine is a friend. The subject must double-click the right
of the world. Decision-making mechanisms range from mouse-button within certain time constraints to indicate
reactive rule-based systems, to logical theorem-proversa foe, and then shoot the mine. If the subject makes the
to complex planning algorithms. In our approach, the wrong choice (or does not respond quickly enough), the
appropriate knowledge is given to the agent for eachmine becomes indestructible and will continue to pursue
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Implementation of the Partner Agent
Sgssi on 999 sssion999  \We implemented an intelligent agent within the Space
ore Tore Fortress game that could control various parts of the
game autonomously. The function-decomposition was
based on a cognitive task analysis by Frederikson and
White (Frederiksen and White, 1989), who analyzed the
cognitive components of the overall task (e.g. navigation,
aiming and firing, dealing with mines, managing missle
resources). These tend to involve either the mouse or the
joystick, without much interaction, so they can be easily
separated. The agent was made able to control the direc-

Enphasi ze Enphasi ze
B - i s s - - tion and velocity of the ship and fire missles, as a human
could do with the joystick, and the agent is able to man-
Figure 1: Space Fortress display. age IFF and select bonuses, as a human could do with the

mouse. These functions can be decoupled and controlled
independently, so the agent can act as a partner to the hu-

the ship until it hits it (causing loss of points, and some- 2N by controlling one device-function while the human
manipulates the other.

times destruction of the ship) or times out and disappears. The agent was implemented by modifying the Space-

Formally, the goal of the game is to maximize the To- Fortress source code (written in the C language) to mimic
tal score. The_ Total score is the sum of_foqr sub-scoresgnd over-ride inputs from the physical controls (joystick
Points, Velocity, Control, and Speed (indicated at thegng mouse). The game is designed to run on a 46 ms
bottom of the scrgen'for instant feedback). Ppints re-update cycle, during which: a) inputs from the devices
flects the overt objectives of the game; the Points scorgre sampled, b) state parameters (e.g. velocity, orienta-
increases for shooting and destroying the fortress angion) of objects are modified, c) the positions of objects
mines, and decreases for getting hit by or destroyecyn the screen are updated, and d) the game scores are
by them. Velocity scores are awarded for keeping thereyised. During an update, the actions available to the
ship below a certain speed threshold. Control points argygent are: turn the ship, thrust, fire a missle, identify
awarded for keeping the ship within the corridor betweenmines as friend or foe, or make a bonus selection. The
the two hexagons on screen (as opposed to flying a linagent implements a decision-making procedure that in-
ear trajectory and wrapping around the screen). Speegolves evaluating a number of conditions, such as speed,
reflects the timing of IFF judgements. In addition, sub- gistance from fortress, appearance of mines, time since
jects must maintain awareness of their supply of ammuyast putton-press, number of missles left, etc., to deter-

appear (which the subjects must learn to recognize) angjjen time.

a decision must be made whether to add missiles to thé Tne injtial implementation of this decision-making

ammunition supply or add points to the score. procedure created an agent whose performance was so
Space Fortress represents a challenging task, both igood that it did better than even the best-trained humans
terms of motor control as well as cognitive demands.(scores around 8000, demonstrating a perfect strategy).
Subjects must learn motor skills such as “tapping” theHowever, we wanted to simulate a more natural level
joystick to orient the ship (e.g. for accurate aiming), of expertise. The basic strategy for accomplishing this
timed responses on button presses (e.qg. for firing misslesyas to add a degree of randomness to the agent’s sim-
IFF). In addition, Space Fortress has cognitive com-ulated control inputs. For example, humans (especially
plexity involving memory, perception, attention, and novices) do not fire at the SF at exactly 250ms intervals.
decision-making. Examples include: a) following the Furthermore, they do not always thrust in the ideal direc-
rules of the game (different responses for friend vs. foetion or for the perfect amount of time to properly control
mines; 10 shots followed by a double shot to destroytheir trajectory. Thus, the decision procedure was mod-
the fortress, etc.), b) memorizing characters that indicatdfied by adding randomness to following aspealsiay
friend mines, c) keeping track of shots and missles, ando identify mines random between 0.2s and 1.0s (uni-
d) deciding how to make bonus selections (for details,form); delay in firing - follows a Poisson distribution
see (Mane and Donchin, 1989)). Furthermore, positionwith a mean of-1s;variance in thrust appliedrange of
trajectory, and velocity are manipulated through acceler-1-3 cycles, with mean of 2 (80mg)recision of aiming
ation (thrust) only, making it second-order control, which rotations within+5° of desired.
requires complex mental (spatial) calculations of vectors. The behavior produced by this second version of the
Because of all these demands, Space Fortress typicallggent was more realistic and can generate scores at the
takes on the order of 10 hours to learn. Novices typi-level that the best humans (i.e. “experts”) can achieve
cally score around -2000 in their first trials, and can reachafter training (around 5000 points, mean total score of
scores as high as 5000-6000 (experts) asymptotically aftop 5% of humans after 100 games by the standard train-
ter training. ing protocol). The agent appears to take essentially the
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correct actions, with small but believable imperfections 4000 .
in navigation and firing; it takes a little longer for the N
agent to destroy the fortress, but it still usually destroys 3000 [ . 1
the fortress before making one complete cycle around the » AT

hexagon. 2000 1

Design of the Initial Experiment 1000

In this experiment, the hypothesis we were testing is:
Does training with a Partner Agent provide increased
performance over training with other types of (individ-
ual) training? For comparison, we evaluated the effects
of training with the Partner Agent with a standard con-  -2000 - 4
trol training protocol, in which trainees simply practiced
the whole task by themselves, trying to maximize To-  -3000 0 T 3 . 5 6 . 8 9 1‘0 "
tal score All trainees received the same standard instruc- Sessi on

tions (written and on video tape) and two initial practice

sessions for exposure, followed by an opportunity to ask
guestions. Then all trainees performed the task for 10
3-hour sessions spread over 4 days, where each session

als, interspersed with rest breaks. Trainees following thetwith standard errors in parentheses).

Contr ol
-1000 - Partner Agent --—--——-

Space Fortress Scor

Figure 2: Results from the first experiment.

Partner Agent protocol were randomly assigned to start Control Protocol| Partner Agent
with either the joystick or the mouse, and thereafter al- Velocity 29.7 (215.7) 709.1(136.6)
ternated roles with the agent on each trial. As subjects, gontrgl Zgg.g ggg.% 160379759(2%061))
pee . . . .

40 .male studenps from the Department of Psychology at ohinte 7502 (174.4) | 1143.5 (189 8)
Wright State University were selected who played video

. Total 2141.4 (435.0) | 3570.0 (351.3)
games less than 20 hours per week; 20 subjects were as-
signed randomly to each protocol.
Results Partner Agent affect the magnitude of performance im-

The results of the experiment are shown in Figure 2. TheProvementwith training®Ve hypothesized that it would,
graph shows the average scores for the two test trialased on evidence that trainees model the behavior of
at the end of each session (the baseline is the score f¢P€ir partners, and the performance improvement is cor-
the practice trials before the first session; indicated agelated with the intelligence of their partner. To test this
Session 0 in the graph). The scores are averaged ovélyPothesis, we created three variants of the agent, sim-
the 20 subjects in each group, with error bars indicating“'at'r_‘g three different levels of expertise: novice, inter-
standard error for each measurement. It is clear that thé'ediate, and expert. These behaviors were defined oper-
Partner Agent protocol led to a higher asymptotic Ioer_atlonfdly interms of the following refere_nce groups: “ex-
formance after 10 sessions of training that the standard®rts” were defined as those who achieved scores in the
control protocol. The final difference in performance be- 0P 5% after 10 sessions of training, “novices” were the
tween the two groups is significant at the< 0.05 level baseline scores of these subj_ects prior to training (equiv-
by paired T-test(= 2.23 > 2.04, df = 38). alent to the whole pool of trainees, since thos_e who bg-
When performance is decomposed into sub-score§ame experts were not dls.tlngwshable), and “intermedi-
(Table 1), trainees with the Partner Agent were found to@t€s” were defined as trainees who had reached a To-
do better on each component after 10 sessions of traint@l score halfway between novice (baseline) and expert
ing than those who used the standard control protocol,(Wh'Ch could occur in any session). Novices tend to lack
although the differences were only statistically signifi- control, fly too fast, go outside the hexagon, and even
cant for the Velocity and Speed scores (lack of signifi- WraP aro_und, missing the fortress and mines W|th shots,
cance for Control and Points scores is potentially due to?nd getting destroyed more often than destroying the
the high variance and small sample sizes). The reasofPriress, whereas experts rarely get hit, navigate slowly
that the magnitude of improvement was greater for Some@lro.und the fortress with many mcremental thrusts, and
sub-scores than others may reflect differential impacts ofyPically destroy the fortress within one complete pass.
observation versus hands-on practice for sub-skills, de- The different behaviors of the Partner Agent were gen-
pending on the degree to which they rely on implicit or erated by adding different amounts of randomness to the
explicit processing during the approach to automaticityiming and precision of the agent’s actions. For exam-

(Goettl et al., 1997). ple, the time delay in identifying mines was varied from
. around 0.5s (for experts) up to around 4s (for novices;
Effect of Level of Expertise just at the boundary of when mines time-out). Aim-

The success of the first experiment led to a follow-uping accuracy ranged betweeh5° (experts) and+8°
guestion: Does the level of expertise simulated by the (novices). Thrust durations ranged from a mean of 80ms
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The methods for developing the Partner Agent used in

Table 2: Target skill levels for defining behaviors of a5 experiments could potentially be used for building

Novice, Intermediate, and Expert agents. intelligent training systems for complex tasks in other
agent | Points| Conirol | Velocity | Speed| Total domains too. The primary requirement is the avail-
Novice | -863 462 -388 21| -768 ability of a cognitive task analysis to define the sub-
Inter. 412 | 1072 673 | 490 2645 components of the task (at a cognitive level). These func-
Expert | 2314] 1229 1132] 958 5633 tions would then be automated through agent program-

ming, e.g. by building a knowledge base of goals and
actions for achieving them that could be used for making

Table S:f Resu!tg of i%cond .experlnjﬁn;, ShOWX]g TOtaIfiecisions. The behavior of the agent can be made more
scores after training (10 sessions) with Partner Agents o ealistic (human-like) by introducing artificial errors (in-

d'ﬁfrgﬂ.ﬂgggﬂ 'eveIT-Mean St Er | Paricipants| accuracy) and random time delays in actions taken by the
EXpert AGE 3611 ST 15p agent. While this was accomplished in this work by man-
Tntermed. Agt.| 2306 275 18 ually tuning internal parameters for randomness to match
Novice Agt. 2120 587 13 the performance of the agent to target human groups, it
Control 2034 467 19 might also be possible to use more automated methods to

capture human-like strategies and behaviors (including
errors) directly from transcripts of human-performance
(experts; shorter impulses create finer control) to 320mglata, such as by using reinforcement learning (Kaelbling
(novices). And the delay for bonus selection rangedet al., 1996).
from around 0.4s (expert) to around 9s (novices), with
intermediates making judgements at around 4s. No er- References
rors were introduced into the correctness of IFF judge-Anderson, J., Boyle, C., Corbett, A., and Lewis, M. (1990).
ments, as humans are rarely observed to make mistakes Cognitive mod_elllng and intelligent tutoring Artificial
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