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Abstract 

We present a race model for forced-choice data that provides 
a unified account of both latency and accuracy. The model is 
applied in the domain of short-term priming, but could 
characterize many other response tasks. A series of perceptual 
identification experiments found systematic bias changes as a 
function of prime duration. Notably, reaction times (RTs) 
were observed to change along with response bias. 
Furthermore, correct RTs changed in an opposite manner to 
error RTs. These results are explained by assuming a race 
between choice alternatives. The theory provides an 
alternative to signal detection theory, with faster finish times, 
rather than greater signal strength, determining both accuracy 
and RT. 

Short-term priming 
For more than 30 years it has been known that presenting 
related words results in facilitated processing. For instance, 
Meyer and Schvaneveldt (1971) observed that lexical 
decisions (deciding whether a letter string is a valid word) to 
target words were faster in the presence of an associated 
prime word (e.g., “doctor - nurse”), as compared to an 
unrelated prime word. Many additional experiments using 
lexical decision and other tasks, have observed similar 
facilitations for semantic priming, orthographic-phonemic 
priming, and repetition priming. 

Prime identification and response bias 
A question of theoretical interest is whether priming 

facilitations result from enhanced perceptual processing 
(i.e., more information extracted more quickly from the 
target) or from an item-specific bias such that participants 
are more likely to respond with primed words. Such a bias 
can be assessed using a forced-choice procedure in which 
incorrect foil words are also primed. For the perceptual 
identification task shown in Figure 1, where the task is to 
identify which of the final two words appeared as the target 
flash, a bias for primed words results in higher accuracy 
when the target is primed, and lower accuracy when the foil 
is primed, revealing a pattern of costs and benefits with 
priming.  
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Figure 1: sequence of events on a trial in the forced-choice 
perceptual identification task, with repetition priming. Half 
the trials were target primed and half foil primed. The task 
was to choose which of the words in the test display 
appeared as the briefly flashed target. Target flash durations 
were determined separately for each participant, such that 
performance was near 75%. Mask durations were set equal 
to 500 ms minus the target flash duration. Participants were 
instructed that the prime was irrelevant to their task, 
considering that the incorrect foil and correct target were 
primed just as often. In addition, feedback at the end of each 
trial provided further evidence there was no effective 
strategy in relation to which choice word was primed. 

Mean RT, accuracy, and a neural race model 
Using the paradigm seen in Figure 1, Huber (in preparation) 
found that prime duration had a dramatic effect on bias, as 
indexed by accuracy (see Figure 2). After reaching a 
maximum bias to choose repeated words at 50 ms (i.e., 
target primed performance was better, and foil primed 
worse), further increases in prime duration caused a switch 
to a bias against repeated words (i.e., target primed 
performance was worse, and foil primed better). 

In addition, there were equally dramatic reaction time 
(RT) effects as a function of prime duration. The prime 
duration at which accuracy changed was also the prime 
duration at which RT changed. However, the pattern was 
opposite for correct versus error trials (the middle and lower 
panels of Figure 2). 
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Figure 2: short-term repetition priming experiment (Huber, 
in preparation), using the paradigm seen in Figure 1. Prime 
durations occurred at 17, 50, 150, 400, and 2000 ms. 

 
The neural network theory proposed by Huber and 

O’Reilly (2003) quantitatively captures these accuracy and 
mean RT data. In that model, processing of the choice 
words occurs in parallel, and the decision results from a race 
between the target and foil. The choice word identified first 
is chosen (i.e., accuracy), and the finish time of the winner 
determines RT. Residual activation from the target flash 
speeds target identification, which is the basis of accurate 
performance. However, residual activation from 
presentation of the prime likewise speeds identification of 
primed words, resulting in a bias. When the target is primed, 
this speeds target processing which boosts accuracy and 
results in faster correct RTs (i.e., trials where the target wins 
the race). When the foil is primed, this speeds foil 
processing which harms accuracy and results in faster error 
RTs (i.e., trials where the foil wins the race). Due to an 
accommodative process, long prime durations affect the 
primed racer in an opposite manner, causing sluggish, rather 
than speeded processing. In their model, accommodation 
results from transient synaptic depression, although the 

authors also consider an abstract version of the theory, 
relating accommodation to the Bayesian concept of 
“explaining away” observances in the face of known causes. 

The race model of Huber and O’Reilly (2003) is 
deterministic, and they left specification of the noise process 
to future work. Critical to the development of appropriate 
forms of noise is the shape of the RT distribution. In this 
paper we model RT distributions with a generic version of 
the race model. Analysis of the best-fitting parameters will 
guide future development of appropriate noise mechanisms. 

Generic race model 
As outlined above, it is assumed that the target and foil race 
in parallel with the winner determining both the chosen 
response as well as the RT of that response. In order to 
quantitatively specify the theory, it is necessary to consider 
position and variability in the finish times of the target and 
foil; assuming specific finish time distributions (i.e., 
assuming a particular form of variability) allows calculation 
of the correct and error RT distributions. 

Inverse signal detection theory 
In signal detection theory, there is a distribution of signal 
strength for target present trials and another distribution for 
target absent trials (i.e., foil trials). The distribution for 
target present trials is typically shifted to the right, by some 
fixed amount, due to the extra evidence from the target. 
Assuming specific distributions (e.g., identical independent 
Gaussians, with shifted means), forced-choice accuracy can 
be calculated and is related to the area of overlap between 
the distributions. 

A race between two racers is similar to forced-choice 
signal detection theory except that the target present 
distribution is shifted to the left (faster), and the 
distributions are finish times rather than signal strength (see 
Figure 3a). Slowing the target finish time, or speeding the 
foil finish time, results in greater overlap and therefore 
accuracy decreases (i.e., the gray area in Figure 3a becomes 
larger). 

Figure 3a also provides an indication of RT distributions. 
Correct RTs occur when the target wins the race. Therefore, 
the vertical hatched area is indicative of correct RTs (i.e., 
RTs at which it is more likely that the target will win). Error 
RTs occur when the foil wins the race. Therefore, the 
horizontal hatched area is indicative of error RTs (i.e., RTs 
at which it is more likely that the foil will win). In order to 
precisely determine correct and error RTs, the probability of 
one racer finishing at a given time is multiplied by the 
probability of the other racer not finishing by that time 
(assuming processing independence between the racers). 
Equations 1 and 2 provide the correct (pC) and error (pE) RT 
probability functions (which equal the correct and error 
rates when integrated). 

 pC(t) = fT(t) [1 – FF(t)] (1) 

 pE(t) = fF(t) [1 – FT(t)] (2)
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Figure 3: a) hypothetical finish time density functions for the target (fT) and foil (fF) racers, which have the 
corresponding target (FT) and foil (FF) cumulative distributions (see Equations 3 and 4 for the Weibull density 
function and cumulative distribution, and Equations 1 and 2 for the RT probability functions necessary to determine 
accuracy and RT distributions). The vertically hatched area is indicative of correct RTs and the horizontally area is 
indicative of error RTs. As in standard signal detection theory, the overlapping gray area is inversely related to 
accuracy. b) graphical representation of the Weibull parameters (onset-ξ, scale-α, and shape-k). 
 

The Weibull distribution 
There are many positively skewed finish time distributions 
that could be substituted into Equations 1 and 2. We 
selected the Weibull because it is the distribution of the 
winning time when there is a large number of similarly 
behaved racers.1 In the current context, the finish time of 
each of the two choice word racers can be viewed as 
resulting from a race between a large number of perceptual 
features (Cousineau, submitted). For instance, assume a 
pool of features that uniquely identifies the target and 
another pool that uniquely identifies the foil. If any one of 
these features is accessed, then the identity of the 
corresponding word is known. Furthermore, since the two 
pools of features identify different words, the properties of 
the racers in each pool could be different, as modeled by 
different Weibull distributions for each pool. These 
properties relate to the Weibull’s three parameters: onset 
(ξ), scale (α), and shape (k), which provide a readily 
interpretable description of the finish time distribution for 
each choice word (see Figure 3b). Equations 3 and 4 provide 
the Weibull density function and cumulative distribution. 
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1 The original theorem assumed independent and identically 
distributed racers. Cousineau, Goodman, and Shiffrin 
(2002) recently demonstrated that non-identical racers 
nevertheless produce Weibull finish times and avoid 
degeneration (Colonius, 1995). 
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 A similar model was proposed by Logan (1988), in 
which racers were assumed to be memorized instances of 
presented items. Because the racers are internal in that 
model, it was not immediately obvious how it should be 
applied to the effect of externally presented choice 
alternatives, such as in the forced-choice procedure.  

Fitting reaction time data 
Huber, Curran, O’Reilly, and Woroch (submitted) ran a 
follow up study using the same paradigm as Huber (in 
preparation). They selected the 150 ms (short) and 2000 ms 
(long) prime durations, and recorded event-related potentials 
(ERPs) while participants performed the task. Because 
ERPs require a large number of trials per condition for each 
participant, these data are adequate for RT distribution 
modeling. 

Empirical data  
Figure 4 shows the observed correct and error RT 
distributions, averaged over participants, for the four 
conditions contained in Huber et al.’s (submitted) study. 
Consistent with a race model, the correct and error 
distributions are highly overlapping in the low accuracy 
conditions (i.e., the short foil-primed and long target-primed 
conditions). Also consistent with a race model, the correct 
distribution is faster than the error distributions in the high 
accuracy conditions (i.e., the short target-primed and long 
foil-primed conditions). 
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Figure 4: Huber, Curran, O’Reilly, and Woroch’s (submitted) RT distributions. Solid lines indicate correct responses 
and dashed lines indicate error responses. Results with the best-fitting race model parameters are shown in the upper 
right-hand inset for each of the four conditions. The race model was applied separately to the data of each participant, 
although the results of these separate fits are combined in producing these aggregate plots. 

Application of the race model 
Assuming separate Weibull finish times for the target and 
foil racers, we modeled the data of Figure 4. This was done 
at the level of individual participants using the maximum 
likelihood method (Cousineau & Larochelle, 1997). This 
method attempts to maximize the probability of observing 
the particular sample of RTs given candidate correct and 
error RT probability functions. With 100 data points per 
condition for 33 participants, it is difficult to visualize the 
distributions of a typical participant. Instead, Figure 4 
aggregates the separate individual best-fitting race model 
distributions. Because the race model was fit to individual 
data this allowed application of inferential statistics on the 
separate parameters for each participant (see Figure 5). 

Using separate target onset, target scale, foil onset, and 
foil scale parameters for each condition and each 
participant, none of the individual predicted probability 
correct values was greater than .025 different than the 
observed values and only a few were greater than .01 
different. Little was gained by allowing the shape parameter 
to freely vary and it was therefore fixed at 1.2 for all 
distributions. To produce the correct and error distributions 
in Figure 4, the best-fitting correct and error RT probability 
functions of each participant were averaged and then 

normalized by the predicted group accuracy values. The 
apparent noise in the model fits of Figure 4 result from 
individual differences and does not indicate variability in 
the simulation process. 

Figure 5 depicts the best-fitting onset and scale 
parameters for the target and foil finish time distributions in 
each of the four conditions, as averaged across participants. 
For both the onset and scale parameters, in both the target- 
and foil-primed conditions, there was a highly significant 
interaction between prime duration and target versus foil 
racer (i.e., the lines in each panel are not parallel). In 
addition, all the parameters significantly changed between 
the short and long prime duration, except for the foil onset 
parameter in the target-primed condition. 

As seen in Figure 5, the target and foil finish time 
parameters were conversely affected by prime duration. 
This occurred for both the onset (left panels) and scale (right 
panels) parameters. Increasing prime duration caused the 
finish time distributions to converge in the target-primed 
conditions, yet diverge in the foil-primed conditions. In 
other words, prime-induced changes in the finish time 
distributions were opposite, and roughly equal, for the target 
versus the foil finish times, and, furthermore, these effects 
were opposite for target versus foil priming. 
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Figure 5: average best-fitting onset and scale parameters for the separate target and foil finish time distributions, for each of 
the four conditions shown in Figure 4. Error bars show the standard error of the mean, for variability of the parameters across 
participants. In moving from the short to the long prime duration, the primed racer is slowed down and the unprimed racer 
sped up, producing an opposite pattern of results for the target primed condition compared to the foil primed condition. 
 

In summary, the short prime duration resulted in a speed 
up of the primed alternative and a slow down of the 
unprimed alternative. In contrast, the long prime duration 
resulted in a slow down of the primed alternative and a 
speed up of the unprimed alternative. These changes 
affected both the onset and scale in a similar manner (i.e., 
later finish time onsets corresponded to greater finish time 
variability).  

Discussion 
In this paper we present a generic, descriptive form of the 

race model, as applied to forced choice data from a 
perceptual identification task. Similar to applications of 
signal detection theory, we use the race model as a tool for 
describing accuracy and latency data under the assumption 
that the response alternatives accrue information in parallel. 
Other researchers have used race models to describe RT 
distributions, but such applications are few. More 
specifically, the Poisson race model has been applied in 
several domains, including perceptual identification (e.g., 
Van Zandt, Colonius, & Proctor, 2000). However, the 
Poisson race model assumes that the finish times for each 
racer are distributed as Gammas, as results from a Poisson 
accumulation process. Our assumption that finish times are 
distributed as Weibulls provides an interpretation in terms 
of a race between separate pools of racers for each response 

alternative. Because the Weibull itself is the distribution that 
results from a race process, we are essentially assuming a 
“race-race” process, placing into a final competition the 
fastest racers from separate pools of racers. 

Future work will contrast this interpretation of these data 
with that provided by more traditional single accumulator 
models, such as a random walk or diffusion process (e.g., 
Ratcliff, 1978). A random walk does not describe the data in 
terms of the offsetting effects of the target versus the foil, 
but might, for instance, describe the data in terms of 
changes in the decision boundaries or starting point bias. In 
order to distinguish between these closely related 
explanations, we are currently employing other 
experimental techniques, such as Receiver Operating 
Characteristic (ROC) and signal to respond analyses. 

Consideration of the best-fitting parameters demonstrates 
that priming one of the alternatives affected the other 
alternative in an opposite manner. This suggests a “rich get 
richer” interaction that could be realized through various 
mechanisms such as lateral inhibition or capacity 
limitations. For example, if the primed word is identified 
more rapidly, it may attract attention, removing processing 
capacities from the other word. It is not clear at this time 
whether such interactions imply processing dependence 
between the finish time distributions, but it is crucial to 
answer this question since it may be the main distinction 
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between a race process and a random walk process. Indeed, 
a race between perfectly negatively correlated racers is 
identical to a random walk. However, it is important to 
realize that observing opposite effects upon the race 
parameters does not imply a negative processing 
dependency. For instance, it may be that priming affects the 
properties of the two racers in an opposite manner, but, 
nevertheless, the race proceeds in an independent fashion 
once those properties have been established.  

Discerning the nature of the competitive interaction 
observed in Figure 5 is an ongoing subject of research and 
understanding the relationship between accuracy and 
latency in these tasks will guide the development of 
mechanistic process models. In particular, Huber and 
O’Reilly (2003) proposed a detailed race model, based upon 
neural mechanisms. The current results with a descriptive 
race model will aid the extension of their model to include 
appropriate forms of variability. 
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