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Abstract

We present a race model for forced-choice data that provides
a unified account of both latency and accuracy. The model is
applied in the domain of short-term priming, but could
characterize many other response tasks. A series of perceptual
identification experiments found systematic bias changes as a
function of prime duration. Notably, reaction times (RTs)
were observed to change along with response bias.
Furthermore, correct RTs changed in an opposite manner to
error RTs. These results are explained by assuming a race
between choice alternatives. The theory provides an
alternative to signal detection theory, with faster finish times,
rather than greater signal strength, determining both accuracy
and RT.

Short-term priming

For more than 30 years it has been known that presenting
related words results in facilitated processing. For instance,
Meyer and Schvaneveldt (1971) observed that lexical
decisions (deciding whether a letter string is a valid word) to
target words were faster in the presence of an associated
prime word (e.g., “doctor - nurse”), as compared to an
unrelated prime word. Many additional experiments using
lexical decision and other tasks, have observed similar
facilitations for semantic priming, orthographic-phonemic
priming, and repetition priming,

Prime identification and response bias

A question of theoretical interest is whether priming
facilitations result from enhanced perceptual processing
(i.e., more information extracted more quickly from the
target) or from an item-specific bias such that participants
are more likely to respond with primed words. Such a bias
can be assessed using a forced-choice procedure in which
incorrect foil words are also primed. For the perceptual
identification task shown in Figure 1, where the task is to
identify which of the final two words appeared as the target
flash, a bias for primed words results in higher accuracy
when the target is primed, and lower accuracy when the foil
is primed, revealing a pattern of costs and benefits with
priming.
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Figure 1: sequence of events on a trial in the forced-choice
perceptual identification task, with repetition priming. Half
the trials were target primed and half foil primed. The task
was to choose which of the words in the test display
appeared as the briefly flashed target. Target flash durations
were determined separately for each participant, such that
performance was near 75%. Mask durations were set equal
to 500 ms minus the target flash duration. Participants were
instructed that the prime was irrelevant to their task,
considering that the incorrect foil and correct target were
primed just as often. In addition, feedback at the end of each
trial provided further evidence there was no effective
strategy in relation to which choice word was primed.

Mean RT, accuracy, and a neural race model

Using the paradigm seen in Figure 1, Huber (in preparation)
found that prime duration had a dramatic effect on bias, as
indexed by accuracy (see Figure 2). After reaching a
maximum bias to choose repeated words at 50 ms (i.e.,
target primed performance was better, and foil primed
worse), further increases in prime duration caused a switch
to a bias against repeated words (i.e., target primed
performance was worse, and foil primed better).

In addition, there were equally dramatic reaction time
(RT) effects as a function of prime duration. The prime
duration at which accuracy changed was also the prime
duration at which RT changed. However, the pattern was
opposite for correct versus error trials (the middle and lower
panels of Figure 2).
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Figure 2: short-term repetition priming experiment (Huber,
in preparation), using the paradigm seen in Figure 1. Prime
durations occurred at 17, 50, 150, 400, and 2000 ms.

The neural network theory proposed by Huber and
O’Reilly (2003) quantitatively captures these accuracy and
mean RT data. In that model, processing of the choice
words occurs in parallel, and the decision results from a race
between the target and foil. The choice word identified first
is chosen (i.e., accuracy), and the finish time of the winner
determines RT. Residual activation from the target flash
speeds target identification, which is the basis of accurate
performance.  However, residual activation from
presentation of the prime likewise speeds identification of
primed words, resulting in a bias. When the target is primed,
this speeds target processing which boosts accuracy and
results in faster correct RTs (i.e., trials where the target wins
the race). When the foil is primed, this speeds foil
processing which harms accuracy and results in faster error
RTs (i.e., trials where the foil wins the race). Due to an
accommodative process, long prime durations affect the
primed racer in an opposite manner, causing sluggish, rather
than speeded processing. In their model, accommodation
results from transient synaptic depression, although the
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authors also consider an abstract version of the theory,
relating accommodation to the Bayesian concept of
“explaining away” observances in the face of known causes.
The race model of Huber and O’Reilly (2003) is
deterministic, and they left specification of the noise process
to future work. Critical to the development of appropriate
forms of noise is the shape of the RT distribution. In this
paper we model RT distributions with a generic version of
the race model. Analysis of the best-fitting parameters will
guide future development of appropriate noise mechanisms.

Generic race model

As outlined above, it is assumed that the target and foil race
in parallel with the winner determining both the chosen
response as well as the RT of that response. In order to
quantitatively specify the theory, it is necessary to consider
position and variability in the finish times of the target and
foil; assuming specific finish time distributions (i.e.,
assuming a particular form of variability) allows calculation
of the correct and error RT distributions.

Inverse signal detection theory

In signal detection theory, there is a distribution of signal
strength for target present trials and another distribution for
target absent trials (i.e., foil trials). The distribution for
target present trials is typically shifted to the right, by some
fixed amount, due to the extra evidence from the target.
Assuming specific distributions (e.g., identical independent
Gaussians, with shifted means), forced-choice accuracy can
be calculated and is related to the area of overlap between
the distributions.

A race between two racers is similar to forced-choice
signal detection theory except that the target present
distribution is shifited to the left (faster), and the
distributions are finish times rather than signal strength (see
Figure 3a). Slowing the target finish time, or speeding the
foil finish time, results in greater overlap and therefore
accuracy decreases (i.c., the gray area in Figure 3a becomes
larger).

Figure 3a also provides an indication of RT distributions.
Correct RTs occur when the target wins the race. Therefore,
the vertical hatched area is indicative of correct RTs (i.e.,
RTs at which it is more likely that the target will win). Error
RTs occur when the foil wins the race. Therefore, the
horizontal hatched area is indicative of error RTs (i.e., RTs
at which it is more likely that the foil will win). In order to
precisely determine correct and error RTs, the probability of
one racer finishing at a given time is multiplied by the
probability of the other racer not finishing by that time
(assuming processing independence between the racers).
Equations 1 and 2 provide the correct (pc) and error (pg) RT
probability functions (which equal the correct and error
rates when integrated).

Pc(t) = fo(0) [1 - Fr(t)]
Pe(t) = fr(®) [1 = Fi(1)]

(1)
2)
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Figure 3: a) hypothetical finish time density functions for the target (fr) and foil (ff) racers, which have the
corresponding target (Fr) and foil (Fr) cumulative distributions (see Equations 3 and 4 for the Weibull density
function and cumulative distribution, and Equations 1 and 2 for the RT probability functions necessary to determine
accuracy and RT distributions). The vertically hatched area is indicative of correct RTs and the horizontally area is
indicative of error RTs. As in standard signal detection theory, the overlapping gray area is inversely related to
accuracy. b) graphical representation of the Weibull parameters (onset-&, scale-a, and shape-k).

The Weibull distribution

There are many positively skewed finish time distributions
that could be substituted into Equations 1 and 2. We
selected the Weibull because it is the distribution of the
winning time when there is a large number of similarly
behaved racers.! In the current context, the finish time of
each of the two choice word racers can be viewed as
resulting from a race between a large number of perceptual
features (Cousineau, submitted). For instance, assume a
pool of features that uniquely identifies the target and
another pool that uniquely identifies the foil. If any one of
these features is accessed, then the identity of the
corresponding word is known. Furthermore, since the two
pools of features identify different words, the properties of
the racers in each pool could be different, as modeled by
different Weibull distributions for each pool. These
properties relate to the Weibull’s three parameters: onset
(&), scale (), and shape (k), which provide a readily
interpretable description of the finish time distribution for
each choice word (see Figure 3b). Equations 3 and 4 provide
the Weibull density function and cumulative distribution.

f0= E[%jkle{% ©

(24

" The original theorem assumed independent and identically
distributed racers. Cousineau, Goodman, and Shiffrin
(2002) recently demonstrated that non-identical racers
nevertheless produce Weibull finish times and avoid
degeneration (Colonius, 1995).
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A similar model was proposed by Logan (1988), in
which racers were assumed to be memorized instances of
presented items. Because the racers are internal in that
model, it was not immediately obvious how it should be
applied to the effect of externally presented choice
alternatives, such as in the forced-choice procedure.

Fitting reaction time data

Huber, Curran, O’Reilly, and Woroch (submitted) ran a
follow up study using the same paradigm as Huber (in
preparation). They selected the 150 ms (short) and 2000 ms
(long) prime durations, and recorded event-related potentials
(ERPs) while participants performed the task. Because
ERPs require a large number of trials per condition for each
participant, these data are adequate for RT distribution
modeling,

Empirical data

Figure 4 shows the observed correct and error RT
distributions, averaged over participants, for the four
conditions contained in Huber et al.’s (submitted) study.
Consistent with a race model, the correct and error
distributions are highly overlapping in the low accuracy
conditions (i.e., the short foil-primed and long target-primed
conditions). Also consistent with a race model, the correct
distribution is faster than the error distributions in the high
accuracy conditions (i.e., the short target-primed and long
foil-primed conditions).



0.004

short, target-primed: p(c) = .89|—

0.003 A

0.002 -

| long, target-primed: p(c) =.71 I—

0.001 o

0.000

density

0.003 1

0.002 A

0.001 A

0.000 '
0 500

1000 1500

0 500 1000

1500

2000

Reaction Time (ms)

Figure 4: Huber, Curran, O’Reilly, and Woroch’s (submitted) RT distributions. Solid lines indicate correct responses
and dashed lines indicate error responses. Results with the best-fitting race model parameters are shown in the upper
right-hand inset for each of the four conditions. The race model was applied separately to the data of each participant,
although the results of these separate fits are combined in producing these aggregate plots.

Application of the race model

Assuming separate Weibull finish times for the target and
foil racers, we modeled the data of Figure 4. This was done
at the level of individual participants using the maximum
likelihood method (Cousineau & Larochelle, 1997). This
method attempts to maximize the probability of observing
the particular sample of RTs given candidate correct and
error RT probability functions. With 100 data points per
condition for 33 participants, it is difficult to visualize the
distributions of a typical participant. Instead, Figure 4
aggregates the separate individual best-fitting race model
distributions. Because the race model was fit to individual
data this allowed application of inferential statistics on the
separate parameters for each participant (see Figure 5).
Using separate target onset, target scale, foil onset, and
foil scale parameters for each condition and each
participant, none of the individual predicted probability
correct values was greater than .025 different than the
observed values and only a few were greater than .01
different. Little was gained by allowing the shape parameter
to freely vary and it was therefore fixed at 1.2 for all
distributions. To produce the correct and error distributions
in Figure 4, the best-fitting correct and error RT probability
functions of each participant were averaged and then
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normalized by the predicted group accuracy values. The
apparent noise in the model fits of Figure 4 result from
individual differences and does not indicate variability in
the simulation process.

Figure 5 depicts the best-fitting onset and scale
parameters for the target and foil finish time distributions in
each of the four conditions, as averaged across participants.
For both the onset and scale parameters, in both the target-
and foil-primed conditions, there was a highly significant
interaction between prime duration and target versus foil
racer (i.e., the lines in each panel are not parallel). In
addition, all the parameters significantly changed between
the short and long prime duration, except for the foil onset
parameter in the target-primed condition.

As seen in Figure 5, the target and foil finish time
parameters were conversely affected by prime duration.
This occurred for both the onset (left panels) and scale (right
panels) parameters. Increasing prime duration caused the
finish time distributions to converge in the target-primed
conditions, yet diverge in the foil-primed conditions. In
other words, prime-induced changes in the finish time
distributions were opposite, and roughly equal, for the target
versus the foil finish times, and, furthermore, these effects
were opposite for target versus foil priming.
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Figure 5: average best-fitting onset and scale parameters for the separate target and foil finish time distributions, for each of
the four conditions shown in Figure 4. Error bars show the standard error of the mean, for variability of the parameters across
participants. In moving from the short to the long prime duration, the primed racer is slowed down and the unprimed racer
sped up, producing an opposite pattern of results for the target primed condition compared to the foil primed condition.

In summary, the short prime duration resulted in a speed
up of the primed alternative and a slow down of the
unprimed alternative. In contrast, the long prime duration
resulted in a slow down of the primed alternative and a
speed up of the unprimed alternative. These changes
affected both the onset and scale in a similar manner (i.e.,
later finish time onsets corresponded to greater finish time
variability).

Discussion

In this paper we present a generic, descriptive form of the
race model, as applied to forced choice data from a
perceptual identification task. Similar to applications of
signal detection theory, we use the race model as a tool for
describing accuracy and latency data under the assumption
that the response alternatives accrue information in parallel.
Other researchers have used race models to describe RT
distributions, but such applications are few. More
specifically, the Poisson race model has been applied in
several domains, including perceptual identification (e.g.,
Van Zandt, Colonius, & Proctor, 2000). However, the
Poisson race model assumes that the finish times for each
racer are distributed as Gammas, as results from a Poisson
accumulation process. Our assumption that finish times are
distributed as Weibulls provides an interpretation in terms
of a race between separate pools of racers for each response
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alternative. Because the Weibull itself is the distribution that
results from a race process, we are essentially assuming a
“race-race” process, placing into a final competition the
fastest racers from separate pools of racers.

Future work will contrast this interpretation of these data
with that provided by more traditional single accumulator
models, such as a random walk or diffusion process (e.g.,
Ratcliff, 1978). A random walk does not describe the data in
terms of the offsetting effects of the target versus the foil,
but might, for instance, describe the data in terms of
changes in the decision boundaries or starting point bias. In
order to distinguish between these closely related
explanations, we are currently employing other
experimental techniques, such as Receiver Operating
Characteristic (ROC) and signal to respond analyses.

Consideration of the best-fitting parameters demonstrates
that priming one of the alternatives affected the other
alternative in an opposite manner. This suggests a “rich get
richer” interaction that could be realized through various
mechanisms such as lateral inhibition or capacity
limitations. For example, if the primed word is identified
more rapidly, it may attract attention, removing processing
capacities from the other word. It is not clear at this time
whether such interactions imply processing dependence
between the finish time distributions, but it is crucial to
answer this question since it may be the main distinction



between a race process and a random walk process. Indeed,
a race between perfectly negatively correlated racers is
identical to a random walk. However, it is important to
realize that observing opposite effects upon the race
parameters does not imply a negative processing
dependency. For instance, it may be that priming affects the
properties of the two racers in an opposite manner, but,
nevertheless, the race proceeds in an independent fashion
once those properties have been established.

Discerning the nature of the competitive interaction
observed in Figure 5 is an ongoing subject of research and
understanding the relationship between accuracy and
latency in these tasks will guide the development of
mechanistic process models. In particular, Huber and
O’Reilly (2003) proposed a detailed race model, based upon
neural mechanisms. The current results with a descriptive
race model will aid the extension of their model to include
appropriate forms of variability.
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