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Abstract

On the task of predicting the range of possible next
words in a sentence, many networks (e.g. Elman, 1990)
that have been proposed are capable of displaying a
certain degree of systematicity, but fail in recognizing
grammatically correct but semantically anomalous
sentences. Based on an expansion of Hadley’s model
(Hadley et al, 2001), I present a competitive network,
which employs two sub-networks that discern coarse-
grained and fine-grained categories respectively, by
being trained via different parameter settings. Hence, one
of the sub-networks will have a greater capacity for
recognizing the syntactic structure of the preceding
words, while the other will have a greater capacity for
recognizing the semantic structure. This corresponds to
the recent suggestion about specialization of the two
hemispheres in the human brain (Beeman, 1998). Also, a
mechanism to switch attention between the predictions
from the two sub-networks is employed in order to make
the global network more closely approximate human
behavior. The results show that the network is able to

deal with grammatically correct but semantically
anomalous sentences.

Introduction
Since 1990, several cognitive scientists have

concentrated on the capacity of connectionist networks
to display systematicity in the task of predicting the
range of possible next words in a sentence (e.g. Elman,
1990, 1998; Christiansen and Chater, 1994; Hadley,
1994a, 1994b, 2001; Marcus, 1998; Phillips, 2000)1.
Some also proposed networks which are able to
discover hierarchical semantic categories and predict
according to the semantic constraints they have
acquired from contexts (e.g. Elman, 1990). However,
the issue of the networks’ response to semantically
anomalous sentences was barely addressed. By
definition, semantic constraints are the semantic
patterns we habitually encounter, and a semantically
anomalous sentence is a sentence containing semantic
patterns that violate the semantic nature of these
semantic constraints. An example of semantically
anomalous sentences is “boys eat rocks”, which violates
the semantic constraint that the word following “eat”

" Or rather, we could say that the task of the network is to
“anticipate” the range of possible next words in a sentence.
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should be an edible noun. The task here is to deal with a
subset of such sentences.

Ideally, the connectionist network is expected to
make syntactic predictions, instead of semantic
predictions, for grammatically correct but semantically
anomalous sentences. If we train the network to
generalize the input words more and recognize fewer
subcategories, it may not have the capacity to discover
all the semantic constraints. On the other hand, if we
train the network to recognize more subcategories, it
will lose the information about general categories to
make syntactic predictions. Therefore, to train the
network with suitable parameters, which will enable the
network to handle both situations well, is a challenging
task.

Based on an expansion of Hadley’s work (2001), a
more challenging training corpus is created according to
a set of semantic constraints. It is believed that humans
require both semantic and syntactic information to deal
with semantic anomalies. So that when we encounter a
semantically anomalous sentence such as “boys eat
rocks”, we can still recognize it as a grammatical
sentence. Hence, a mechanism to learn information
from both general categories (e.g., noun) and
subcategories (e.g., human noun) is required in the
network design. A way to achieve this is to use two
sub-networks which respectively learn information
about categories and subcategories, by using different
training parameter settings. It is assumed that a network
can recognize a grammatical sentence if a period is
predicted at the right place and if it can make
predictions according to correct English grammar. A
failure to make substantial semantic predictions
suggests that current input contains a novel semantic
pattern that the network does not habitually encounter
during training, i.e., a semantically anomalous sentence.
Moreover, during testing, a mechanism to coordinate
the information exchange between the two sub-
networks is used in the hope that it will help the
network make predictions close to human behavior.

System Overview

The task of the network proposed here is to learn to
predict semantic features of the next word, given a prior
sequence of words. Words are taken from a pool of
sentences generated according to a simple syntax
displayed in Figure 1.



S->NPVNP.

NP >N |NRC|N PP

N -> NOUN-HUM | NOUN-ANIM | NOUN-INANIM |
NOUN-FOOD

V > VERB-EAT | VERB-PERC | VERB-TRAN |
VERB-STREN | VERB-HIT

RC -> that V NP

RC > that N V

PP -> PREP NP

Figure 1: The grammar for generating training and test
sentences.

In our corpora, the vocabulary contains 16 nouns, 16
verbs, and 2 prepositions. All words have been
previously assigned semantic feature vectors with 60
features taking binary values. A unit in the encoding of
a word is set to one if the word exhibits the feature, and
zero otherwise. Among the 60 features, 23 features are
assigned to nouns, 21 are to verbs, and the remaining 16
features are reserved for the words (1) “that”, (2) “with”,
(3) “from”, and (4) the period *“.”, which do not have
straightforward semantic information. These 16 features
are divided equally and assigned to the four words
above. They might be viewed as syntactic
representations (Hadley et al, 2001), since these four
words serve as function words, which are semantically
light and used to signal structure. The creation of
semantic features here is admittedly somewhat arbitrary.
However, it has conveyed the general approach adopted
here. That is, if semantic features do exist in the human
language acquisition mechanism, the proposed network
is able to provide a possible computational model for
dealing with semantic anomalies.

The sentences in the training corpus are generated
according to a set of semantic constraints: all the simple
sentences and all clauses of complex sentences must
fall into one of the semantic structures defined in the
semantic constraints. See Figure 2 for some examples.

NOUN-HUM VERB-EAT NOUN-FOOD
NOUN-HUM VERB-EAT NOUN-FOOD with NOUN-
HUMAN

NOUN-HUM VERB-PERCEPT NOUN-INANIM
NOUN-HUM VERB-TRAN NOUN-HUM

Figure 2: Examples of semantic constraints

Figure 3 shows the network architecture. The arrows
in the figure represent entire sets of links between two
layers. Dotted arrows indicate trainable links. The
training of the network involves only the portion inside
the dotted square, referred to as the training network.
The training network consists of four layers: an input
layer, a first hidden layer (HL1), a second hidden layer
(HL2), and an output layer. In short, two of Hadley’s
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Hebbian-competitive networks (Hadley et al, 2001) are
put together side by side, sharing the same input layer,
and train them independently. Different parameter
settings are used in the two sub-networks to make the
left sub-network recognize general categories (e.g. the
correct usage of English grammar) and the right sub-
network recognize sub-categories (e.g. human or
inanimate nouns). This also corresponds with the recent
suggestion that the two hemispheres in the human brain
activate different breadth of semantic fields® (Beeman,
1998).

Vocabulary  Presentation layer Vocabulary
buffers | buffers
e

Gating nod
Left-buffer

Figure 3: Network architecture.

Training Phase The training corpus contains 10,000
sentences. Half of the sentences in the training corpus
are simple sentences with the form NOUN VERB
NOUN. 25% of the sentences contain a single
prepositional phrase. The rest sentences contain one or
two relative clauses. During the training phase, 50,000
sentences were randomly selected from the training
corpus and presented to the network. The two sub-
networks are trained with the same algorithm and
winner selection rules as used in Hadley’s networks
(see Hadley et al, 2001), except that the links from HL2
to the output layer are trained via a reverse competitive
learning algorithm, described below. In short, area A
has a post-training role of categorizing the input feature
vectors into semantic groups. Area B and C store the
previous successive contents of area A. The role of HL2
is to be a higher order pattern recognizer to categorize
the ternary patterns that appear in the three areas of
HL1. The output layer receives activation from HL2
and is trained to make semantic predictions of the next
word.

Also, the sum of the weights on all the links from
each node in HL2 to the output layer is set to one, so

2 Taken from Beeman’s explanation, “the subset of semantic
information activated in response to an input word is termed
the semantic field, a projective field comprising the set of
internal representational units (semantic features) that are
activated by an external input (a word)”.



that the total activation predicted in the output layer will
also sum to one. Before training, the weights are
distributed evenly on the outgoing links from each node
in HL2. The weight modification equation is:

Cik
Aw; =g n W

where i is the index of the output layer; j is the
current active node in HL2; #n; is the number of active
nodes in the output layer; c; is equal to one if node i in
the output layer is active and 0 otherwise; g is the
learning rate. Notice that the modification equation
resembles the one in the original competitive learning
algorithm (von der Malsburg, 1973). It is actually a
reverse competitive learning algorithm since the input
layer and the competitive cluster have been put upside
down with respect to the original algorithm.

The basic idea of this algorithm is that it takes a small
amount of weight, decided by the learning rate, from all
links connected to inactive nodes in the output layer,
and then redistributes the weight to the links connected
to active nodes (see Figure 4). With this method, we
can strengthen the links between two active nodes and
weaken those between an active and an inactive node,
while keeping the sum of weights from any given node
in HL2 to the output layer to be equal to one. This
method actually preserves the basic idea of Hebbian
learning (Hebb, 1949). One of the advantages of using
this algorithm over the simple Hebbian increment
model is that the sum of activation presented in the
output layer will be restricted to one, instead of being
incremented without a limit. The assumption of this
design is that prior to training, every semantic feature
will be equally weakly predicted. If a node in HL2
never wins during training, the weights on the links
from this node to the output layer will never be changed.
Thus, every semantic feature in the output layer will
still have been equally weakly predicted.

Output Output
Layer Layer
HL2 HL2

Stage 1 Stage 2

Figure 4: Weight modification in the reverse
competitive learning algorithm.

The two sub-networks in the proposed network are
trained independently with different parameter settings,
i.e. the learning rate and the constant ¢ in the winner
selection rule (see Hadley et al, 2001). They then
develop different weight configurations. A larger
learning rate, 0.5, and a larger constant ¢, 1.0, are used
in the area A of the left sub-network, to make it form
groups of general categories, and a smaller learning rate,
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0.02, and a smaller constant ¢, 0.6, in the area A of the
right sub-network, to make it form groups of sub-
categories. (See Hadley et al, 2001 for the influence of
adopting different values for the parameters.)

Test Phase During testing, the two sub-networks take
the same input, go through the same process as training,
except that no weight modification occurs, and input
words are presented only in the input layer. Sentences
involving an anomalous combination of the agent, the
action, or the patient, are created to examine the
capacity of the network to deal with semantic anomalies.
An example of sentences with an anomalous
combination of the agent and the action is “rocks eat
cookies”. Sentences such as “boys eat tables” involve
an anomalous combination of the action and the
patient.’

During the test phase, another mechanism to
orchestrate the interaction between the predictions from
both sub-networks is placed on top of the original
network (see Figure 1). Besides the training network,
the test network also contains vocabulary buffers to
store the semantic vectors of each word in the
network’s vocabulary, a left-buffer to store a copy of
the left output layer, a right-buffer to store a copy of the
right output layer, a presentation layer to store the final
semantic predictions, and a competitive cluster of two
gating nodes to gate the activation from the output
layers to the presentation layer. The two sub-networks
will make predictions respectively and compete with
each other to present a result to the presentation layer
through the competitive gating-node cluster.

Presentation layer

Vocabulary buffer Vocabulary buffer
Lieft-buffer Right-puffer
etifive gati
cluster
Left output layer ~ Right output layer

Figure 5: The detailed structure on the top of the two
output layers.

In the left sub-network, links from the left output
layer to the left-buffer, and from the left-buffer to the
vocabulary buffer are all one-to-one copy links and

? Notice that a semantic anomaly, specifically defined in the
models proposed here, is any sentence that violates the
semantic constraints used for generating the training corpus.
For experimental purposes, the semantic constraints contain
some simplifying assumptions that admittedly are not always
in compliance with English semantics.



have weights of +1. On the other hand, links from the
left-buffer to the left gating node, and from the left
gating node to the links between the right output layer
and the presentation layer, are fully connected. The
same applies to the links in the right sub-network. The
vocabulary buffers, the left-buffer, the right-buffer, and
the presentation layer all have the same size as the
output layers. Each node in the presentation layer is
connected to the corresponding nodes in the output
layers of the two sub-networks, forming a ternary
structure (see Figure 5). The left and right gating nodes
receive activation from the left-buffer and the right-
buffer, respectively. Each outgoing link of a gating
node serves as a modifier link to inhibit the activation
in the output layer of the opposite sub-network from
going up to presentation layer.

When predictions from both sub-networks are
activated in the lowest output layers, the two sub-
networks will compete with each other according to
their coherence with the network’s vocabulary.
Coherence is a measure of similarity between the
predicted vector and the various semantic vectors in the
network’s vocabulary. The more the predicted vector
resembles the preassigned semantic features of a certain
word in the network’s vocabulary, the greater the
degree of coherence it has. In other words, if the
predicted vector covers a broad range of semantic
features, and it is hard to tell which word the vector is
predicting, then that predicted vector will have less
coherence. The activation level of the predicted vectors
in the two output layers are boosted according to their
degree of coherence. The one with greater coherence
will be activated in the presentation layer. This process
is called coherence reinforcement process, and is
explained in detail below.

After predictions are activated in the output layers,
the content of the left output layer is copied into the
left-buffer, and the content of the right output layer is
copied into the right-buffer. Each word in the network’s
vocabulary will be presented in the vocabulary buffer in
turn. For each pair of nodes between the left-buffer and
the vocabulary buffer, if either member of the pair has a
value below a predetermined reinforcement threshold, a
boost of activation will not occur. However, if both of
them have values above the threshold, a boost of
activation, which is proportional to the square of the
activation value of the node in the left-buffer, will be
added to the node in the left-buffer. Each word in the
vocabulary will be activated in the vocabulary buffer in
turn and go through the same process®. The same
applies to the right-buffer in the right sub-network.
After reinforcement is complete, the sub-network

*If there is indeed a process in the brain similar to the
coherence reinforcement process proposed here, this process
would be expected to occur in parallel.
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whose predicted vector has greater coherence with the
network’s vocabulary will be the one that has greater
activation in total in its output layer buffer.

Recall that prior to training, every outgoing link from
a node in HL2 to the output layer is given an equal
fractional weight. This equal fractional weight, if not
incremented during training, will later not be able to
generate activation above the reinforcement threshold
and hence will not be reinforced. In other words, if any
node that has never been selected as a winning node
during training is later selected as the winner in HL2,
none of the features in the subsequently predicted
semantic vector will be reinforced. So, if the predictions
from the other sub-network have gained some
reinforcement, they will be eventually activated in the
presentation layer.

The competitive gating-node cluster manages
predictions that will eventually be activated in the
presentation layer between the two sub-networks. In the
initial state, the two gating nodes have the same high-
level activation and inhibit the predictions from being
activated in the presentation layer. Since the two sub-
networks have been trained with different parameter
settings, the predictions in the output layers are also
different. After the coherence reinforcement process is
performed, the two gating nodes will also receive
different activation values. Hence, the gating node that
initially received less activation will cease its inhibition,
and the predictions in the other output layer will be
activated in the presentation layer. Notice that during
the coherence reinforcement process, only the
activation in the left-buffer and the right-buffer is
reinforced. The original activation values in the output
layers are still intact. Therefore, it is the original
activation in the output layer of the winning network
that is spread up to the presentation layer.

The predictions are evaluated by calculating the
cosine value of the angle between the predicted
semantic vector and the semantic vector of each word in
the vocabulary. The greater the cosine value is, the
closer the two vectors are, or in other words, the more
strongly the given word is predicted.

Experimental Results

In the predictions of the right sub-network following an
anomalous combination of agent, action, or patient in a
sentence, all features have equally weak activation as
their initial state. This suggests that a novel semantic-
syntactic pattern that has never been seen during
training is formed in HL1. Consequently, a node that
has never won during training is selected as the winner
in HL2, and the links from the winner to the output
layer have never been trained. The equally weak
activation on each feature reveals the network’s
inability to make semantic predictions for the given



input sentence. On the other hand, the left sub-network
is still able to make predictions. Figure 6 shows
predictions from the left sub-network following an
anomalous sentence. It has the same distribution of
predictions as the predictions for normal sentences with
a pattern “Noun Verb Noun”. The same predictions can
also be found in the presentation layer. This indicates
that the left sub-network wins the competition after the
coherence reinforcement process.
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Figure 6: The predictions following a sequence of
words “boys eat rocks” for the left sub-network and the
presentation layer.
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Figure 7: The predictions when the current input
sentence is a normal sentence “boys eat cookies”.

For example, when the current input sentence is a
normal sentence, such as “boys eat cookies”, (see
Figure 7), and the current input word is “cookies”, the
category information of the first two words, “boys” and
“eat”, have been respectively stored in area C and B of
HL1. The left sub-network recognizes “boys” as a Noun,
and “eat” as a Verb, while the right sub-network
recognizes “boys” as a Noun-Human and “Eat” as a
Verb-Eat. When the word “cookies” comes into the
input layer, the left sub-network will recognize
“cookies” as a Noun, since it is trained to recognize
general categories. On the other hand, the right sub-
network will recognize ‘“cookies” as a Noun-Food,
since it is trained to recognize sub-categories. A winner
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in HL2 is then selected in each sub-network.
Theoretically, these patterns should have been seen
during training, so a period will be predicted by both

sub-networks. Thus, for normal sentences, both
networks should give good predictions.
Output Layer
I LA O
HL2
LTI | | I] |
HL1 T N ——
Noun- || Verb [,| Noun
| Noun H Verb H Noun | Inanim || -Eat -Hum
—_
Input Layer | Rocks |

Figure 8: The predictions when the current sentence is
the semantically anomalous sentence, “boys eat rocks”.

When the current input is the word “rocks” in a
semantically anomalous but grammatically correct
sentence, such as “boys eat rocks”, (see Figure 8), the
left sub-network still recognizes “rocks” as a Noun, but
the right sub-network recognizes it as a Noun-Inanim.
Thus, in the right sub-network, an entirely new triadic
pattern is formed in HLI1, and a new winner will
consequently be picked in HL2. Since this winner has
never won during training, the weights on the links
from the winner in HL2 to the output layer have never
been adjusted. Hence, the right sub-network only
generates an equal fractional prediction for every
feature. These unsubstantial predictions indicate a
semantic anomaly. On the other hand, the left sub-
network still predicts a period, indicating its capacity
for recognizing a grammatical sentence.

As revealed in Figure 7 and 8, when encountering a
semantically anomalous sentence, the network fails to
make semantic predictions, but still recognizes that it is
a grammatical sentence and makes predictions
accordingly. This suggests that some mechanism
similar to this network might be found within a larger
language acquisition system to explain how humans
deal with semantically anomalies.

Discussion and Conclusion

I have presented a connectionist network which is able
to deal with semantic anomalies. More specifically, for
semantically anomalous but grammatically correct
sentences, it fails to predict according to the anomalous
semantic pattern, but it is able to predict according to
their syntactic structures instead. It is the employment
of two identical sub-networks, which are trained via
different parameter settings during training to recognize
different fineness of grains of categorization, that
provides the network with the capacity for dealing with
semantic anomalies. This also corresponds with the



anatomical and psychological evidence that both

hemispheres are necessary for full sentence
comprehension (Beeman, 1998).
Also, the network employs a coherence

reinforcement mechanism on top of the two sub-
networks to enable an information switch between them.
In a separate examination, it has been found that with
this mechanism, for normal sentences, most predictions
from the global network are closer to what is actually
presented in the test corpus, than those from any of the
sub-networks alone. Thus, the network has provided a
possible computational model to simulate human
behavior on predicting the range of possible next words
in either a normal sentence or a semantically anomalous
sentence.

It is believed that making predictions for the next
word in a sentence not only requires syntactic
information, but also semantic information. Most
previous works on the issue of systematicity have
focused on the syntactic category that the network
predicts (Christiansen and Chater, 1994; Elman, 1998).
The authors usually trained the networks, with certain
parameter settings, to be sensitive to only the syntactic
structures of input patterns. However, it is probable that
humans switch back and forth between semantic and
syntactic information to make good predictions. For
example, we require semantic information for “eat” to
predict a food noun after it. On the other hand, we
require syntactic information to predict the appearance
of function words such as prepositions. The proposed
network here is intended to draw attention to the issue
of the interaction between syntactic and semantic
information, and possibly between the two hemispheres,
in cognitive modeling. Taking a suggestion from
Hadley, the two sub-networks have been successfully
trained to be sensitive to different semantic-syntactic
structures, by adjusting the parameters in the winner
selection rule. Also, the coherence reinforcement
process successfully switches the attention between the
two sub-networks. Hence, the network can more closely
simulate human behavior, especially when encountering
semantically anomalies.

We can further compare the network’s behavior with
that of human subjects through psychological
experiments. However, the human brain is like a “black
box” — it is difficult to understand how cognitive
processes happen in the brain directly. The main source
for cognitive psychologists to understand human
cognition is to explore the brain indirectly through the
understanding of deficient cognition. The same applies
to verifications of computational models, since any
computational model of human cognitive processes is
useless if it cannot address psychological phenomena.
Thus, to further verify and challenge the proposed
network, we can examine whether it can address
phenomena or explain causes of deficits in language
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acquisition, such as language deficits in aphasia or
dyslexia.

The proposed model here is not claimed to provide a
general language acquisition mechanism. The lack of
biological evidence also means that we cannot be
certain of a true computational model for human
language acquisition processes in the brain. However,
with the employment of both syntactic and semantic
information, or rather, information about both fine-
grained and  coarse-grained  syntactic-semantic
categories, the proposed network has successfully
provided a possible framework to deal with a subset of
semantic anomalies within a connectionist network and
raised the issue of the interaction between syntactic and
semantic information.
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