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Abstract

This article advances computational cognitive modeling of
visual search, and the synergistic relationship between
cognitive modeling and eye tracking. The paper presents
cognitive models of the perceptual, cognitive, and motor
processing involved in the visual search of a hierarchical
layout. Two types of visual layouts are searched: unlabeled
layouts in which words are arranged in groups but with no
hierarchical organization, and labeled layouts in which
each group is given a heading that guides the search. The
two types of layouts motivate fundamentally different
search strategies. The models are post hoc explanatory
models of the search time data and a priori predictive
models of the eye movement data. The models are
evaluated here based on the eye movement data. The
research demonstrates a methodology and provides
guidance for predictive cognitive modeling of visual
search.

Introduction

Cognitive modeling is useful to the field of human-
computer interaction because it reveals patterns of human
performance at a level of detail not otherwise available to
analysts and designers (as in Gray, John & Atwood, 1993).
The ultimate promise for cognitive modeling in human-
computer interaction is that it provides the science base
needed for predictive analysis tools and methodologies (Card,
Moran & Newell, 1983). This article reveals patterns of
human performance in visual search, and contributes to
predictive analysis of visual search.

We recognize that cognitive modeling occurs in two
distinct modes: (1) explanatory and (2) predictive. In the
explanatory (or exploratory) mode, models are constructed to
explain empirical data that have already been collected and
analyzed. In the predictive mode, models are constructed to
make a priori predictions of user performance; that is,
predictions before human data has been collected and
analyzed. Predictive models can reused in an exploratory
mode when they are modified to provide a better fit with
observed data. Note that in both modes the output from the
model is referred to as a “prediction.”

In this article, post hoc explanatory models of search time
data are used to make a priori predictions of newly collected
eye movement data. Based on what is learned here, the
original models can now be updated and improved.

The work is presented in chronological order: The
experiment was designed. Search times were observed.
Models were built. Eye movements were observed. The
models were evaluated based on this new data.

Eye tracking and cognitive modeling have much to offer
each other, especially when eye tracking is used to identify

the cognitive strategy used for a task (as in Salvucci &
Anderson, 2001). This article further develops the synergy
between eye tracking and cognitive modeling.

The Visual Search Experiment

The visual task studied here is finding a known target in a
hierarchically-organized visual layout. Layout items are
grouped, and sometimes the groups have useful headings.
The task is somewhat analogous to looking for a piece of
information on a web page or a product brochure, which is
sometimes organized in a useful manner with groups and
group headings, and sometimes arranged with no clear and
useful organization. The task is specifically designed to
reveal the core strategic components involved in a
hierarchical search.

Experimental Procedure

Figure 1 shows a sample layout from the experiment. The
layout has six groups of items, and each group is “labeled”
with a heading of XnX, where n is a single numerical digit.
In the figure, the groups are annotated with the letters A
through F, though these letters did not appear in the
experiment.
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Figure 1. A “6-group labeled” layout. The precue,
in the top left, would have disappeared when the
layout appeared. The target is in group F. The gray
text did not appear during the experiment.

Participants searched eight different screen layouts for a
precued target object. Each layout contained one, two, four,
or six groups. Each group contained five objects. One-
group layouts used group A. Two-group layouts used groups
A and B. Four-group layouts used groups A through D. The
groups always appeared at the same physical locations on the
screen. In each trial, the entire layout was displayed at the
same moment, permitting any search order.

Layouts were either labeled or unlabeled. In unlabeled
layouts, the XnX group labels did not appear. Each unique
layout (such as “6-group labeled”) was presented in a separate



block of trials.

Target and distractor items were three-letter words or
pseudo-words, randomly selected for each trial. Group labels
were randomly reordered for each trial. The target position
was randomly selected for each trial.

Participants were precued with the target object and, for
labeled layouts, the label of the group that would contain
the target.

Each trial proceeded as follows: The participant studied
and clicked on the precue; the precue disappeared and the
layout appeared; the participant found the target, moved the
mouse to the target, and clicked on the target; the layout
disappeared and the next precue appeared.

Sixteen experienced computer users with no visual
impairments completed the experiment. Search time was
separated from mouse movement time by using a point-
completion deadline (Hornof, 2001).

Eye Tracking Procedure

Eye movements were recorded using the LC Technologies
Eyegaze System, a 60 Hz eye tracker that tracks eye
movements using the pupil-center and corneal-reflection. A
chinrest maintained an eye-to-screen distance of 56 cm, such
that 1° of visual angle subtended 38.4 pixels. The precue
always appeared at the same location, level with the
participant’s eyes.

A dispersion-based algorithm determined the center of
fixations, using a minimum fixation duration of 100 ms and
a deviation threshold of 0.5° of visual angle. Systematic
error in the eye tracking data was reduced post hoc using
“required fixation locations” (Hornof & Halverson, 2002)."

Observed Search Times

Figure 2 shows the search times observed when the
experiment was run a second time, with eye tracking. There
were no meaningful differences in the search time data
between the two runs, though the models fit the data from
the first run slightly better.
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Figure 2. Mean search time for all sixteen
participants as a function of the target group, for
unlabeled (left) and labeled layouts (right). The
shaded area shows the number-of-groups effect.

The three most salient trends in the search time data are:
(a) Smaller layouts were faster. (b) Labeled layouts were
faster. (c) Unlabeled layouts had a larger number-of-groups
' The experimental software and eye tracking data are
downloadable at http://www.cs.uoregon.edu/~hornof.

effect. The number-of-groups effect is measured in the
distance between adjacent curves in a graph, and is shaded in
the figure. The effect measures how much longer it takes to
find an item in the same group as the layout gets bigger, and
suggests an element of noise or randomness in the search
process (Hornof, 2001).

Description of the Models

A number of computational cognitive models were built,
using the EPIC cognitive architecture (Executive Process-
Interactive Control, (Kieras & Meyer, 1997). EPIC captures
human perceptual, cognitive, and motor processing
constraints in a computational framework that is used to
build simulations of human information processing and task
execution. EPIC constrains the models that can be built,
and the predictions that can be made, based on fundamental
human processing capabilities and limitations.

As is required to use the architecture, we encoded into
EPIC (a) a reproduction of the task environment, (b) the
visual-perceptual features associated with each of the screen
objects and (c) the cognitive strategies that guide the visual
search. These components were specified based on task
analysis, human performance capabilities, previous visual
search models, and parsimony. The models are discussed in
more detail in Hornof (2002).

Visual-Perceptual Features

Simple visual-perceptual features were used. It should be
relatively straightforward to derive most of the features
(location, relative position to other objects, size, and text)
directly from the interface using an automated screen parser
such as VisMap (St.[Amant & Riedl, 2001). All feature
values were set a priori, and the same values were used across
all models. This approach emphasizes strategy over object
features.  Other approaches to modeling visual search
emphasize object features (such as Anderson, Matessa &
Lebiere, 1998; Fleetwood & Byrne, 2001).

The two visual features that we encoded with specific task
knowledge in mind include object-type, which represents
whether a screen object is a precue item, layout item, or
group label, and next-group, which determines the global
search order.

Cognitive Strategies

About eight different strategies were written to examine how
people searched unlabeled and labeled layouts. Each strategy
was encoded into EPIC, which executed the strategy and
generated predictions that were compared to the observed data.
Two strategies that provide a good fit with the search time
data are described here.

Noisy-Systematic Search
The noisy-systematic search strategy for unlabeled layouts
assumes that people attempt to make a “maximally-efficient
foveal sweep” (Hornof & Kieras, 1997), in which the eyes
move to capture everything in the high resolution foveal
vision, which is roughly 2° of visual angle in diameter, with
as few fixations as possible.

Noise is introduced into the strategy by having it
sometimes overestimate how far the eyes can move and still



foveate everything with successive fixations. If the target is
missed, another sweep will be required, substantially
increasing the search time for that trial.

To vary the noise in the strategy, it was run with eighty-
four different fixation distributions. In the model used here,
the first fixation is on the first or second item in group A.
Subsequent fixations are made to a randomly chosen item 3
to 7 items “down.”

The “down” direction assumes people searched down the
first column, down the second, down the third, back to the
first. This order attempts to maximize the foveal coverage
with as few eye movements as possible, and corresponds to
the slope in the search time data. This search order is
encoded into the next-group feature.

Mostly-Systematic Two-Tiered Search

The mostly-systematic two-tiered search strategy for labeled
layouts assumes that people search the group labels until
they find the target group, and then confine their search
within that group. The strategy was based on task analysis
and the significantly faster search times for labeled layouts.
It is “mostly” systematic because it searches the labels in
next-group order 75% of the time, and in random order
25% of the time.

Predicted Search Times

Figure 3 shows the search time predictions. The models
predict unlabeled layout search time with an average
absolute error (AAE) of 8%, and labeled layout search time
with an AAE of 6%.
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Figure 3. Search times observed (solid lines) and
predicted (dashed lines) by the noisy-systematic
model for unlabeled layouts (left) and the mostly-
systematic two-tiered search model for labeled

layouts (right).

The models demonstrate that different layouts will
motivate different search strategies. Predictive visual layout
analysis tools will need to incorporate different cognitive
strategies for different layouts. The two strategies presented
here could be used in such a tool.

Predicted and Observed
Eye Movements

The a priori predicted and the observed eye movements will
now be compared. Figure 5 shows the predicted and
observed eye movements from one trial with an unlabeled
layout, and from one trial with a labeled layout. The figure

gives an idea of the similarities and differences between (a)
the predicted and the observed and (b) unlabeled search and
labeled search. Table 1 summarizes comparisons between the
predicted and observed eye movements which will be
elaborated in this section, starting with patterns that persisted
across all layouts, not just unlabeled and labeled.

Table 1. A summary of the predicted and observed eye
movements. Pluses indicate correct predictions.

Eye Movements Predicted Observed

Across All Layouts
Fixations per trial (+) 7.9 7.4
Fixation duration (+) 228 ms 264 ms
Number of scan paths One Many
Anticipatory fixations (+) Yes Yes
Respond to layout onset (+) Yes Yes
Ignore white space (+) Yes Yes
Ignore shape (+) Yes Yes
Overshoot the target Yes Rarely
For Unlabeled Layouts
Fixations per group 1.1 2.1
Groups revisited per trial 4.4 0.7
Items examined per fixation (+) 2.6 2.4
For Labeled Layouts
Use group labels (+) Yes Yes
Groups revisited per trial 1.2 0.29
All Layouts

Fixations Per Trial. As can be seen in Figure 4, the
models and the participants made a similar number of
fixations per trial. The model overestimates the number of
fixations per trial for unlabeled layouts, with an AAE of
18.0%. The model predicts an additional 1.1 fixations per
trial, perhaps due to overshooting the target. If 1.1 fixations
are removed from each trial, the AAE drops to 5.4%. The
model accurately predicts the number of fixations per trial for
labeled layouts, with an AAE of 5.1%.
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Figure 4. The average number of fixations predicted

(dashed lines) and observed (solid lines) for each trial,
as a function of the target group.
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Figure 5. Fixations predicted (top) and observed (bottom) from one trial with an unlabeled layout (left) and one trial
with a labeled layout (right). In the predicted, the circles represents the foveal region. In the observed, the diameters
of the circles represent the fixation duration. The unlabeled layout fixations are predicted by the noisy-systematic
strategy. The labeled layout fixations are predicted by the two-tiered systematic strategy.

Fixation Duration. When searching for the target,
the models average one fixation every 228 ms (SD = 64).
The average fixation duration observed when participants
searched the layouts was 264 ms (SD = 146). The average
fixation duration was a little longer for unlabeled layouts
(283 ms, SD=152) than for labeled layouts (238 ms,
SD=134).

Scan Paths. Figure 6 shows the most common orders
in which the models and the participants searched the
layouts. The models search the groups in the same order for
most trials. Participants searched in many different orders.
They started in group A but then followed numerous
different paths.
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Predicted
Unlabeled: 70% 12% 0% 1%
Labeled: 75% 0% 0% 0%
Observed
Unlabeled: 17% 5% 30% 12%
Labeled: 6% 7% 19% 12%

Figure 6. The predicted and observed order in which
groups were searched when starting on a six group-
layout. The percentages indicate how often each
path was taken. Paths over 10% are in bold.

Anticipatory  Fixations. The models predict
anticipatory fixations, which are eye movements from the
precue to the layout before the layout appears. Hornof and
Kieras (1999) demonstrate that people make such eye
movements. Participants exhibited anticipatory fixations. In
48% of the observed trials, a fixation started within 100 ms
(before or after) the onset of the layout, before an eye
movement could be prepared in response to the stimuli. The
destination of these fixations is more regular for unlabeled
layouts, typically to the second or third item in the layout.

Respond to Layout Onset. The models predict that
an eye movement will occur in response to the layout onset.
This fixation starts, on average, 287 ms after the layout
appeared (SD = 28). Participants appeared to respond
similarly, starting a fixation an average of 235 ms (SD =
117) after onset of the layout, which is roughly the time
required to respond to a visual stimuli.

Ignore White Space. In the models, all fixations are
to screen objects. No fixations land on the white space
between the objects. Similarly, participants rarely fixated the
white space. Ninety-nine percent of all fixations were within
1° of visual angle of a screen object.

Ignore Shape. The models move the eyes based on the
physical structure of the layout and do not prefer items
shaped like the target. These predictions build on menu
models that explain search time data without considering the
shape of menu items (Hornof & Kieras, 1997; Hornof &
Kieras, 1999). Other menu models rely on the shape of
menu items when shifting attention (Anderson et al., 1998;
Byrne, 2001). Participants were minimally influenced by the
shape of items. Items that had one or two letters-in-position
in common with the target were only 5.7% more likely to
receive a fixation than items with no letters-in-position in



common with the target.

Target Overshoot. The models tend to overshoot the
target: They foveate the target, continue searching with one
eye movement, and then move the eyes back to the target.
The overshoot results from timing characteristics of the
EPIC architecture and is not specific to these models.
Participants rarely overshot the target. They did so on 6.9%
of the trials.

Unlabeled Layouts

Fixations Per Group. While searching through an
unlabeled layout, the model averages 1.1 fixations per group
(SD = 0.4) up until the final group, and then 1.3 fixations
in the target group (SD = 0.7). Participants tended to stay
in a group longer, averaging 2.1 fixations per group (SD =
0.9) up until the target group was reached, and then 2.4
fixations within the target group (SD = 1.0).

Groups Revisits. When searching an unlabeled
layout, the model revisits an already-examined group an
average of 4.4 times per trial (SD = 6.5). Thirty-nine
percent of the time the model moved to a group, it was a
revisit. Participants required fewer revisits. Participants
averaged 0.7 revisits per trial (SD = 1.9), and typically
found the target on the first visit. Only 16% of the time
that a participant moved to a group was it a revisit.

Items Examined Per Fixation. When searching the
unlabeled layouts, the noisy-systematic model examines two
or three items with each fixation because (a) two or three
items land in EPIC’s fovea simultaneously and (b) in EPIC,
the text of all foveated items moves to visual working
memory in parallel. One of the most interesting
confirmations of the model provided by the eye tracking data
is that participants also examined two or three items with
each fixation. This is derived from the fact that participants
averaged 2.1 fixations per group, there are five items per
group (5 + 2.1 = 2.4), and participants typically found the
target on the first visit to a group.

Labeled Layouts

Use the Group Labels. For labeled layouts, the model
searches the group labels until the target group is found, and
then searches within the target group. This two-tiered
search is the primary difference between the strategies for
unlabeled layouts and for labeled layouts. The eye tracking
data clearly demonstrate that participants used a two-tiered
search strategy for labeled layouts. The strategy is evident
when examining the eye movement data superimposed on
the stimuli (as in Figure 5) and in that, up until the target
group was reached, 64% of all groups were visited with a
single fixation, and 80% of all fixations were recorded
within 1° of visual angle of a group label.

Group Revisits. When searching labeled layouts, the
models averaged 1.2 revisits per trial (SD = 1.5), roughly
one extra revisit per trial. Participants used many fewer,
usually finding the target group with a single pass of the
group labels, averaging only 0.29 revisits per trial (SD =
0.7). Perhaps the model predicted more revisits because the
target overshoot also occurred while searching group labels;
after the target group label was found, the eyes typically
continued to the next group, and then returned directly to

search in the target group.

Discussion

The eye movement data confirm many aspects of the
cognitive strategies and the visual-perceptual and oculomotor
processing built into the models. The models accurately
predict that a useful visual hierarchy motivates a two-tiered
search, that multiple items are examined with a single
fixation, and that the search strategy for this task ignores
shape. The models accurately predicts initial fixations, and
the timing and numerosity of fixations.

The eye movement data also reveal aspects of the models
that can be improved. These a priori predictive models of eye
movements can be reused in an explanatory mode, and rebuilt
based on the following lessons learned for predictive
cognitive modeling of visual search.

Lesson #1: Noise enters the process at several
different levels. The models introduce one major element
of noise--randomly skipped over and missing items while
searching, which lead to revisits. This behavior contributes
to accurate predictions of fixations-per-trial and search times,
but poor predictions of fixations-per-group and revisits.
There were more sources of noise in the human data. It was
common for participants to make one, two or three fixations
per group, whereas the models typically made just one.
Additional fixations drove up the search time. Additional
noise increased the number-of-groups effect. It remains to be
seen what sources of noise will need to be included in
predictive models.

Lesson #2: Search strategies are partially
precompiled and partially filled in  during
execution. It is very interesting to see that participants
consistently used the group labels in labeled layouts--a
precompiled global strategic decision made before starting the
search--and yet took many different paths through a layout,
even from trial to trial--revealing a least-commitment,
flexible, local strategic decision made during the search. The
global search order imposed by the next-group feature in the
models is wrong, and should perhaps be replaced by
heuristics such as in the any-nearest production used in
some menu models to move the eyes to any object near the
current fixation (Byrne, 2001). However, even in the flexible
planning of the search path, a high-level control maintained
some order, avoiding paths that would lead to a long jump
between the first and third columns.

Lesson #3: Cognitive architectures need a tight
coupling between visual-perceptual and
oculomotor processing. EPIC may need a faster
interaction between visual-perception and oculomotor
processing so that the architecture does not overshoot the
target when running the strategies discussed here. This is a
good result. The modeling has informed the development of
the architecture.

Conclusion

This article presents computational cognitive models that
predict the eye movements that people will make when
searching a hierarchical visual layout. The predictions were
evaluated with observed eye movements. All told, the
models and the observed data provide a very interesting



explanation of how people conduct a hierarchical visual
search, many ideas for how to improve these and future
predictive models of visual search, and suggestions for
improving cognitive architectures.

This research contributes to the synergistic relationship
between cognitive modeling and eye tracking: Eye tracking
data are best-understood in the context of models that
simulate visual perception and oculomotor processing, and
models of these processes can be improved with detailed
analysis of eye tracking data.
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