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Abstract

Previous data suggest that probability judgments can often be
fairly realistic, but production of probability intervals pro-
motes extreme overconfidence bias (Juslin & Persson 2002;
Juslin, Wennerholm, & Olsson, 1999; Klayman, Soll, Gon-
zalez-Vallejo, & Barlas, 1999). We present a novel explana-
tion of this format-dependence effect in terms of a naive sam-
pling model. The model assumes that people process distribu-
tional information in an unbiased manner, but they are naive
in the sense that they uncritically take sample properties as es-
timates of population properties. A Monte Carlo simulation
demonstrates that the model predicts format dependence, with
extreme overconfidence bias for interval production that prac-
tically disappears for probability assessments for the same in-
tervals. In the last section this novel prediction is empirically
verified by data from human participants.

Introduction

Imagine that you are about to ask your banker for advice
about the house installment interest rate next year. In getting
the banker to express his or her belief about future interest
rates you could either ask him or her to produce an interval
in which it is likely that the interest is going to fall next year
or provide an interval and ask the banker to assess the sub-
Jjective probability that the interest will fall within that inter-
val. These two formats are merely different ways to express
a belief (or a subjective probability distribution) about the
interest rate next year; in the following referred to as infer-
val production and interval assessment, respectively. The
decision about what question-format to choose appears triv-
ial, but as we shall see — it may be one of the more impor-
tant personal financial decisions you make.

The realism or calibration of probability judgments varies
with the assessment format, so called format-dependence
(Juslin & Persson 2002; Juslin, Wennerholm & Olsson,
1999; Klayman, Soll, Gonzéalez-Vallejo, & Barlas, 1999).
People often make fairly realistic assessments of the prob-
ability of events occurring/facts being true, such as “What is
the probability that Burma has more than 10 million inhabi-
tants?”. Interval production (“Give the smallest interval
within which you are 90% certain that the interest will fall
next year.”) in general produces extreme overconfidence

bias, see Figure 1. For example, often across 100% inter-
vals, about 40% of the true values fall within the intervals
(i.e. rather than the 100% required for realism).

We present a new explanation of this phenomenon with a
naive sampling model and test a prediction derived from the
model. The “naivety” stands for the assumption that people,
in making these intervals, uncritically take sample proper-
ties as estimates of population properties (see Fiedler, 2000;
Kareev, Arnon, & Horwitz-Zeliger, 2002, for similar ideas).
With a Monte Carlo simulation we demonstrate that applica-
tion of this naive sampling process indeed produces more
overconfidence for production than assessment of intervals.
Thereafter, we verify that empirical data discloses the same
basic pattern in a task with the corresponding structure.
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Figure 1: Format dependence with different formats applied
to the same subjective probability distributions. With the
half-range (two alternatives, forced choice-50-100% scale)
format there is close to zero over/underconfidence, with the
full-range (no choice, 0-100% scale) format there is mar-
ginal overconfidence, and with the interval production for-
mat there is extreme overconfidence. Reproduced from Jus-
lin and Persson, (2002).

A Naive Sampling Model

Consider assessment of a Subjective Probability Distribu-
tion (hereafter SPD) for an unknown quantity, for example,
a decision maker’s belief about the population of Burma. If
the decision maker can retrieve the exact population figure
from long term memory the SPD will represent precise
knowledge; otherwise a plausible range of population fig-
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ures will have to be inferred from other facts that are known
about Burma. The decision maker’s belief is summarized by
the SPD in Figure 2A, where the xxth fractile of the SPD is
the population figure Y at which the subjective probability
that the true value equals to or is lower than Y is .xx. Figure
2A could, for example, represent that the decision maker is
25% certain that the population of Burma is equal to or
lower than 25 millions (the .25 fractile) and 75% certain that
it is equal to or lower than 60 millions (the .75 fractile). To-
gether the .25 and .75 fractiles define a .5 interval around
the judge’s best guess in which the judge is .5 confident that
the population of Burma falls.
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Figure 2: Panel A: Probability density function for the dis-
tribution of target values y; in the reference class R cued by
C. The values on the target dimension Y have been standard-
ized to have mean 0 and standard deviation 1. The interval
between the .75" and the .25" fractiles of the population
distribution include 50% of the population values. Panel B:
Probability density function for a sample of 4 exemplars
with the sample mean at the same place as the population
mean. The values on the target dimension Y are expressed in
units standardized against population variance. The interval
between the .75 and the .25™ fractiles of the sample distri-
bution include 39% of the population values. Panel C: Prob-
ability density function for a sample of 4 exemplars with the
sample mean displaced relative to the population mean. The
values on the target dimension Y are expressed in units stan-
dardized against population variance. The interval between
the .75™ and the .25™ fractiles of the sample distribution on
average include 34% of the population values.

With interval assessment the decision maker is provided
with an interval and is required to assess the probability that

the uncertain quantity falls within the interval. For example,
the decision maker in Figure 2A may be asked for the prob-
ability that Burma’s population falls between 25 and 60
millions and if the SPD in Figure 2A is expressed without
error the probability judgment is .5.

Interval production requires the decision maker to state
the smallest central probability interval which he or she is
xx certain includes the true value. If the decision maker in
Figure 2A is asked for a .5 interval the answer should be
“between 25 and 60 millions”. Formally, the two methods
are merely different ways of eliciting the same SPD and
should produce the same result. The format dependence in
Figure 1 suggests that interval production is particularly
prone to overconfidence. Previous research has, however,
compared formats that involve assessment of one tail of the
distribution (“What is the probability that the population of
Burma’s exceeds 75 millions?”) to production of intervals
that involve both tails of the distribution (Juslin et al.,
1999). In this study we directly compare interval production
to interval assessment. Both formats involve a pre-stated
interval and both tails of the distribution. To the best of our
knowledge these formats have not been compared before. If
the explanation of format dependence implied by the naive
sampling model is correct, we predict a format-dependence
effect also for interval production and interval assessment,
something that is tested in the last section. The algorithm for
application of the naive sampling model to interval produc-
tion and interval assessment is described next.

Frequentistic algorithm. The naive sampling model sug-
gests that the SPD for the quantitative value y of an object T
is assessed by retrieval of n similar exemplars X;...X; from
memory, where the sample distribution is directly translated
into the required response format:

1. Reference class. One or several facts (cues) about 7 are
retrieved from memory, jointly referred to as cue set C, de-
fining a reference class Rc of objects in the environment.
Keeping with our example, faced with the question about
Burma’s population the decision maker may retrieve that
Burma (7) lies in Asia (C), which in turn defines a reference
class (Rc) of Asian countries.

2. Sample. A sample of n exemplars X; from reference
class Rc with known values y; are retrieved from memory
providing a sample distribution. In our example the decision
maker may retrieve the populations of n Asian countries
(other than Burma) which provide a sample of populations
for countries similar to Burma (i.e., in this example the
similarity refers to the property of being an Asian country).

3. Naive estimation. The sample distribution of X; is di-
rectly taken as an estimate of the population distribution:

a. Interval assessment. Provided event E, the subjective
probability P is m/n, where m is the number of retrieved
exemplars JX; satisfying E. In our example, event £ may be
to have a population between 25 and 60 millions. The deci-
sion maker may retrieve (say) 4 Asian countries with known
populations, 1 of which has a population between 25 and 60
millions, thus reporting probability P = 1/4 = .25.

b. Interval production. Provided a probability interval .xx,
the (1-.xx)/2 fractile in the sample defines the lower limit of
the interval and the .xx + (1-.xx)/2 fractile defines the upper
limit of the interval, where the two fractiles together define
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the .xx interval for y. When the decision maker in Figure 2A
is required to provide his .5 probability interval for the
population of Burma he or she may again retrieve 4 Asian
countries, 1 (25%) of which has a population equal to or
below 25 millions and 3 (75%) of which have a population
equal to or below 60 millions. The .25 and the .75 sample
fractiles suggest a .5 interval of 25 to 60 millions.

The cognitive processes are essentially the same with both
assessment formats: A sample of similar observations are
retrieved from memory and directly expressed as required
by the format, as a probability (proportion) for interval as-
sessment and as fractiles of the SPD for interval production.
There is no bias in the process, only naivety in the sense that
sample properties are taken as unbiased estimators of popu-
lation properties. The implication is that only sources of
error that are explicitly represented are considered.

Format-dependence. For infinite sample size the algo-
rithms for interval assessment (Steps 1, 2, 3a) and interval
production (Steps 1, 2, 3b) produce identical results: at
small sample sizes they do not! Direct (or naive) use of the
sample distribution to assess probability (3a) provides a
relatively unbiased' estimator of probability (population
proportion), but direct use of the sample distribution to pro-
duce intervals (3b) generates severely biased and too narrow
intervals for small samples. Specifically, the naive sampling
model implies that with interval assessment there are two
reasons why the interval may not include the population of
T (i.e., why E is not happening), both of which need to be
considered when the probability assessment is made: a) The
sampling error directly manifested in the sample, some
countries within R¢ satisfy the event E, others do not. For
sampling with replacement sample proportion P is an unbi-
ased estimate of population proportion p (the expected value
of P is p). b) The constrained population: By definition, T
(e.g., Burma) is never a member of Rc (Asian countries
other than Burma: if the population of Burma is known
there is no need for an inference!). The fact that R always
excludes T adds a bias to the expected long run proportion
that is not explicitly represented in the sample and thus not
represented in the probability judgment. Considering error
source a in the probability judgment but not source b pro-
duces a minor overconfidence bias with interval assessment.

With an .xx probability interval we normatively expect the
event E to happen with probability .xx (e.g., we expect a
proportion .9 of the values to fall inside the .9 interval). In
regard to interval production there are four contributors to
why E may not occur, only one of which is explicitly mani-
fested in a sample: a) The sampling error directly mani-
fested in the sample, some countries within R satisfy event
E, others do not. With correctly estimated fractiles (e.g.,
large n) this occurs with probability 1-.xx for a .xx probabil-
ity interval. This is illustrated in Figure 2A, where the pro-
portion of values falling inside the interval is .5 and the er-
ror rate is .5. b) The constrained population (as detailed

! The qualification “relatively” unbiased refers to error source b,
constrained population, discussed below that applies to the present
application and adds a minor bias in the assessments. In the general
case and under standard assumptions, of course, sample proportion
is an unbiased estimate of population proportion.

above). ¢) The sample variance underestimates the popula-
tion variance. The sample interval needs to be corrected by
n/(n-1) to become an unbiased estimator of the population
interval. Even if the sample mean coincides with the popula-
tion mean a failure to acknowledge this bias adds to the er-
ror rate. Figure 2B plots the expected probability density
function for sample size 4, with the constraint that the sam-
ple and the population means are the same. In this case (as-
suming normal distributions) the .5 sample interval includes
.39 of the true values (i.e., the error rate is .61 rather than
.5). d) Dislocated sample distribution. At small sample size,
the interval itself is likely to be dislocated relative to the
population distribution. For example, at sample size 4 the .5
sample interval is expected to include 39% of the true val-
ues, only if the sample interval has not been dislocated by
sampling error relative to the population distribution. The
Monte Carlo simulations presented below suggest that if we
take this sampling error into account, the sample interval
only includes 34% of the true values.

The naive sampling model implies that because only the
first source of error is explicitly represented in the sample,
only the first contributor to the error-rate is taken into ac-
count in the interval production. At small sample sizes this
produces extreme overconfidence. In the next section, we
verify our intuitions with a Monte Carlo simulation applied
to a data-base identical to the source of the data presented in
the empirical section (see Juslin, Winman, & Hansson,
2003, for further discussion of the naive sampling model).

A Monte Carlo Simulation

The target variable estimated by the participants in the ex-
periment reported below is population of a country. The
database was defined by the 188 countries listed in the
United Nations database (2002). The simulations were per-
formed as follows: A country was sampled at random as the
target country 7 with a population y. The continent of a
country was used as the cue C. A sample of n exemplars X;
was sampled without replacement from the reference class
Rc of exemplars from the same continent as 7' (excluding 7).
For the probability intervals 100, 75 and 50 the fractiles of
the sample distributions were used to generate an .xx inter-
val for the value of y, as detailed by Steps 1, 2 and 3b®. The
proportion of intervals that included the true value was re-
corded. To obtain predictions for interval assessment the
intervals produced in the first simulation were taken to de-
fine the events (the event being that the population of T falls
within the interval). For each interval and 7" a new and inde-

With finite sets of data when a distribution of values cannot be
directly divided into fractiles there exist different methods for cal-
culating these by approximating a continuous distribution. The
present analysis relied on the empirical distribution function with
interpolation. This method has the property of discriminating be-
tween limits of the intervals for the fractiles and small samples
employed in this study. It is calculated as follows; Let n be the
number of cases, and p be the percentile value divided by 100. (n-
1)p ((n-1) times p) is expressed as (n-1)p=j+g where j is the inte-
ger part of (n-1)p, and g is the fractional part of (n-1)p. The fractile
value is calculated as x;;; if g=0 and as Xj;; + g(Xj+2 - Xj+1) if g>0.
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pendent sample of n exemplars X; was obtained and the pro-
portion of retrieved X; falling within the interval was used to
compute a probability, as described by Steps 1, 2, and 3a
above. The proportion of target countries included by the
intervals and the mean probability assigned to the same in-
tervals were calculated for the three different intervals. The
averages in Figures 3 A-B are based on 2 million iterations.
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Figure 3: Panel A: Proportion of correct target values in-
cluded in the intervals for the three different confidence
levels with different sample size (n). The dotted line repre-
sents perfect calibration. Panel B: The probability ratings
for each interval with different sample size (n).

The simulations in Panel A of Figure 3 reproduce the
large overconfidence typically found in interval production
tasks. For example, with sample size 3 only half of the tar-
get values are included by the 100% intervals. There is also
as expected an effect of sample size, with smaller sample
sizes leading to larger overconfidence. Panel B shows the
subjective probability ratings for each interval. As can be
seen these ratings coincide quite well with the actual pro-
portions in Panel A. There is a moderate tendency towards
overconfidence for the 100% intervals because the target
country is prevented from inclusion in the sample of coun-
tries used to calculate the proportion included in the interval
(this is the reason why we stated that naive interval assess-
ment is “relatively” unbiased as compared to the severely
biased naive interval productions, see Footnote 1).

Experiment

The experiment transposes the database used in the Monte
Carlo simulation into a general knowledge task introduced
to human participants. Because interval assessment has not
previously been empirically investigated the purpose was to
see if the patterns predicted by the naive sampling model

hold empirically. The procedure was basically the same as
in the simulation in that one group of participants (the P-
group) produced 50, 75 and, 100 probability intervals for
randomly selected countries from the database. Another
group of participants (A-group) made subjective probability
assessments for the intervals produced by the P-group.

Method

Participants

Forty undergraduate students (no specialized skill in geo-
graphical or statistical knowledge were required for partici-
pation), twenty in each group, (16 female and 24 male) with
an average age of 24.8 for the A-group and 25.5 for the P-
group, attended. The participants were paid 99 SEK (app. 10
US $) each and the task lasted about 1-1% hour.

Materials and Apparatus

The experiment was carried out on a PC. A database of 188
world countries listed in the United Nations database (2002)
where used as stimuli. For the P-group a computer program
picked countries randomly from the database. For the A-
group the intervals produced by the P-group were used as
stimuli.

Design and Procedure

A randomized between-subject (P vs. A) complemented
with a within-subjects control design was used (As ex-
plained below, the A-group also performed interval produc-
tions after they had made their interval assessments). The
interval productions for both groups were made under three
different probability levels; .5, .75 and 1.0 and the order of
these levels were varied within each group. Half of partici-
pants in each group produced intervals in an ascending .5-
.75-1.0 (blocked) order; the second half produced them in a
descending (blocked) order).

The participants carried out the tasks independently with-
out feedback. Each participant assessed 40 intervals on each
probability level resulting in a total of 120 intervals in the
interval production task. The participants in the A-group
made the same number of judgments. For the P-group the
computer generated questions in the following format, for
example:

Produce the (smallest) interval within which you are 75%
certain (probability 0.75) that the population of Burma falls:
Between_X and_Y millions

For the A-group the program generated the following state-
ment, for example:

The population of Burma lies between X and_ Y millions.
Assess the probability that the statement above is correct?
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

where X and Y defined an interval previously produced by a
participant in the P-group. The program accessed the data-
base in the following way: Each participant in the P-group
received an independent different random sample of coun-
tries. The A-group assessed probabilities on the already
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produced intervals of these samples so that Participant 1 in
the A-group made probability assessments on intervals pro-
duced by Participant 1 in the P-group, and so on. All of the
120 intervals were presented in random order for the A-
group. For the P(within)-group the program accessed the
database in the same manner as for the P-group. In this way
each of the participants’ in the A-group and P(within)-group
assessed and produced intervals for the same countries.

Results

Figure 4 presents the proportion correct (Panel A) and the
interval-range (Panel B) for interval production®. There is
clear difference between the probability intervals, both in
the proportions falling within the interval and the interval
ranges. As predicted by the naive sampling model, the in-
tervals are sensitive to distributional information and in-
crease for higher probabilities.
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Figure 4: Panel A: Mean proportion of correct population
figures included in the produced intervals for the three prob-
ability levels (with 95% confidence intervals, N=40). The
dotted line is the proportions required for perfect calibra-
tion. Panel B: The interval-range plotted for each probabil-
ity for the groups creating the intervals in ascending vs. de-
scending order (N=10).

The over/underconfidence score ou is calculated as
r—c=ou for interval productions where r is the probabil-
ity level (i.e. 50, 75, & 100) and c is the proportion of true
population figures falling in the interval. For interval as-
sessment the over/underconfidence is computed »—c=zou,
where r is the mean probability assessment and ¢ the pro-

3 The interval-range was calculated proportionally to population
size by dividing the difference between the upper and lower limit
with the midpoint of the intervals.

portion of true population figures falling within the interval.
In both cases overconfidence bias is represented by a posi-
tive score, underconfidence bias by negative score and good
realism or calibration is represented by a zero score.

Figure 5A summarizes how the response formats influence
the participants’ over/underconfidence in their judgments.
For comparison with data, the over/underconfidence biases
predicted from the Monte Carlo simulation of the naive
sampling model in are presented in Figure 5B.
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Figure 5: Panel A: Mean over/underconfidence bias for the
two different assessment methods (with 95% confidence
intervals, N=20). P=interval production, A=Interval assess-
ment, and P(within) = Interval productions by the A-group
after the interval assessments. Panel B: over/underconfi-
dence scores for the different assessment methods produced
by the naive sampling model at different sample size n.

As predicted, there is significant difference between in-
terval production and interval assessment in that the interval
production leads to more overconfidence (P vs. A, Figure
5A, F(1,38); 8.98, MSE=0.03, p=0.004). In order to verify
that this effect is not confined to a between-subjects com-
parison, the A-group performed their own interval produc-
tions after they had completed their interval assessments (P-
(within) in Figure 5A). The same pattern is verified also in
the within-subjects comparison: when the A-group produced
intervals; they, so to speak, fell back and became signifi-
cantly more overconfident when they made their interval
productions as compared to the interval assessments (A vs.
P(within)), Figure 5A, F(1,38); 10.73; MSE=0.02, p=0.002).
The difference between the two interval production groups
(P vs. P(within) in Figure 5A) is not significant
(F(1,38)=.06, MSE=.046; p=.812). The main conclusion is
that the format-dependence effect can be demonstrated both
in a within- and a between-subjects comparison, but also in
a within-items comparison. The same pattern is seen in Fig-
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ure 5B: With interval productions the naive sampling model
produces high overconfidence bias but much more accurate
calibration with the interval assessment format.

Discussion

In this paper we provide a tentative explanation of format
dependence in subjective probability calibration with a na-
ive sampling model: Naive use of sample properties provide
a relatively unbiased estimate of probability, but a severely
biased estimate of intervals. Moreover, as predicted if peo-
ple retrieve sample distributions, the interval-ranges show
that the participants appropriately make wider or narrower
intervals for the different probability levels, suggesting that
they do retrieve distributional information (Figure 4B).

As for the format dependence we find, as in earlier studies
(Juslin et al., 1999; Juslin et al., 2002; Klayman et al.,
1999), that the response format has profound effects on the
conclusions. Interval production suggests extreme overcon-
fidence bias, while subjective probability assessment does
not. The present study shows that this holds also with inter-
val assessment. This phenomenon is reproduced when the
naive sampling model is implemented as a Monte Carlo
simulation (see Figure 3A and Figure 5B). It is obvious that
the empirical data discloses the same basic pattern as the
Mote Carlo simulation of the naive sampling model. How-
ever, the model predicts close to zero average overconfi-
dence bias for interval assessment but the data from the ex-
periment show approximately 0.1 in the average overconfi-
dence bias for interval assessment. This phenomena could
be explained if we assume that there exist a correlation be-
tween the samples retrieved by the participants’ in the two
different groups (i.e. if the different participants in the two
groups retrieved exactly the same samples, that is, a correla-
tion of 1 between retrieved samples there would be no for-
mat dependence). The simulations of the model in this pa-
per, however, only considers zero correlation between re-
trieved samples for the different formats (for a more detailed
discussion and simulations that includes correlations be-
tween samples, see Juslin, Winman & Hansson, 2003).

The sample sizes in turn could be taken to reflect people’s
limited knowledge in a domain, for example, of the popula-
tions in different world countries. One could, of course, ar-
gue that the experiment and the simulation presented in this
paper only tackles one knowledge domain (i.e. geographical
knowledge). We are, however, convinced that the rational
behind the model can be applied to all knowledge domains
containing continues quantities, for example, estimation of
interest-rate, blood-pressure, stock-values, distance, speed
etc. The basic ideas are further easily conjoined with exem-
plar architectures to predict probability judgments that also
take similarity into account (Juslin & Persson, 2002).

According to the explanation proposed by the naive sam-
pling model the overconfidence phenomenon with interval
production is not caused by biased cognitive processing in
any more straightforward or trivial sense (Kahneman, Slovic
& Tversky, 1982). There is no explicit information process-
ing bias, only limited knowledge. In other words, reliance
on small samples which are not corrected relative to popula-
tions generates the overconfidence in interval production.
This view is also inherently more consistent with the obser-

vations that experts (i.e., presumably with larger samples)
are often better calibrated (see Kahneman et al., 1982).

If we return to the opening example about how to query
your banker by now the answer should be straightforward:
you should provide a pre-stated interval and let the banker
assess the probability that the interest falls within this inter-
val. In this way you could steer clear of an extremely over-
confident advice and avoid unexpectedly high house-
installments next year...
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