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Abstract 

The abilit y to focus on the largest disk of a pyramid at the 
outset and to define largest-disk subgoals constitute two 
essential aspects in most known strategies and models of 
problem solving with the Tower of Hanoi.  Yet, those abiliti es 
are typicall y assumed by existing accounts.  This paper 
presents a distributed model, which learns to focus on the 
largest disk of a pyramid and set subgoals to move largest 
disks.  The model exhibits a capacity to solve 4- and 5-disk 
Tower of Hanoi versions optimall y and to evolve toward 
more competent behavior.  Moreover, the fit between this 
analysis and the data from Anzai & Simon (1979) is excellent.  
The present model provides a new interpretation of those 
data:  the subject’s learning is due to the acquisiti on of task-
specific afff ordances and of difference-reduction strategies 
that are affordance-driven.  The above analysis defines a new 
class of Tower of Hanoi strategies – based on a problem 
solver’s capacity to define and use task-specific affordances. 
The mechanisms proposed by the model can be used to 
examine the distributed nature of learning and problem 
solving in other tasks as well . 

 

Introduction 
This paper presents a distributed model of the development 
of problem solving strategies with the Tower of Hanoi 
puzzle.  Problem solving strategies constitute a central 
theme in the study of adaptive cogniti ve behavior: However, 
cogniti ve science has been preoccupied mostly with their 
identification and with the elucidation of their role in 
problem solving (e. g., Altmann & Trafton, 2002; Karat, 
1982; Simon, 1975), rather than with their origin. 
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Figure 1:  The Tower of Hanoi Task:  Initial State. 
 

The Tower of Hanoi is a classical task in cogniti ve 
science.  It begins with a state where a pyramid (or stack) of 
k disks is stacked on one peg (the source peg).  The disks 
vary in size, as shown in Figure 1, which uses a five-disk 
version of the task with the disks standing on the source peg 
A.  The pyramid needs to be transferred to another peg (the 

goal peg) by moving only one disk at a time and by placing 
only a smaller disk on top of another one. 

When solving that puzzle, considering the largest disk of 
the pyramid at the outset constitutes a strategicall y useful 
approach because the movement of that disk is the most 
constrained:  the task rule stating that a disk can go on top of 
another one only if it is smaller prevents bigger disks from 
being stacked on top of smaller ones, limiti ng their moving 
options.  More generall y, setting largest-disk subgoals - 
subgoals to move the successively largest disks of a 
pyramid to the goal peg (first the largest, then the next-
largest, etc.) - offers a productive avenue to solve the 
puzzle, due to the constraints placed by the task rules on 
those disks.  

The abilit y to consider the largest disk of a pyramid and 
its bigger disks represents a given for major strategies and 
problem solving models of the Tower of Hanoi task.  For 
example, most known strategies set largest-disk subgoals. 
This is certainly true of the recursive subgoaling strategy 
(e.g., Altmann & Trafton, 2002; Anderson, Kushmerick & 
Lebiere, 1993; Simon, 1975).  Given a pyramid of disks, 
that strategy assigns pegs beginning with the largest disk, 
and proceeds with the next largest until the smallest disk is 
moved.  However, even models that are meant to be simpler 
– that is, not based on recursive properties – often require 
the abilit y to focus on the largest disk of a pyramid.  For 
example, Simon (1975)’s perceptual strategies operate by 
identifying the largest disk not yet on the goal peg and by 
defining successive steps to get that disk to that peg.  Karat 
(1982)’s problem solving model is also largest -disk driven – 
the model sets the subgoal to send to the goal peg the 
largest-disk not already on that peg, applying general search 
heuristics (e.g., avoiding to move the smallest disk twice in 
a row) until that goal is attained.  

Even though most known strategies and models start out 
with a largest-disk emphasis, data do exist suggesting that 
the abilit y to focus on the largest disk of a pyramid may not 
always be present at the outset:  it develops through 
interactions with the task instead.  The problem solving 
protocol from Anzai & Simon (1979) provides a nice 
ill ustration.  The participant in that study exhibited the 
capacity to focus on the largest disk of a five-disk pyramid 
toward the end of her first problem solving attempt only – 
not spontaneously at the beginning – and in a state where 
that disk was the only one on the source peg, not at the 
bottom of the stack.  Moreover, she used largest-disk 
subgoals during her second problem solving attempt – not in 
the first one. 
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If the abilit y to focus on largest disks develops through 
experience with the task, then several questions arise:  What 
are the mechanisms underlying this development?  Do they 
shape the acquisition of a largest-disk focus exclusively or 
other aspects of problem solving as well during that learning 
process? What happens to those mechanisms once the 
abilit y to set largest-disk subgoals is acquired?  Do they 
simply disappear, or do they still play a role in the definition 
of new strategies?  Those are key issues for research seeking 
to understand strategy acquisition and the emergence of 
problem solving competence. 

The above questions remain open.  For example, analyses 
of Anzai & Simon (1979)’s problem solving protocol 
(Anzai & Simon, 1979; VanLehn, 1991) have not made 
clear the exact mechanisms behind the subject’s abilit y to 
develop a focus on the largest disk.  Moreover, the 
characterization of largest-disk subgoals in the second 
episode of that protocol has been described as occurring 
along with the Selective Search strategy identified in the 
first episode (Anzai & Simon, 1979), but this 
characterization has been questioned: Selective Search 
requires no subgoaling or planning and should produce brief 
comments, not verbal indicators showing that the subject is 
struggling (VanLehn, 1991). 

The above observations suggest that models are needed to 
explicate the mechanisms behind the origin of a largest-disk 
focus, the setting of largest-disk subgoals, and the possible 
contribution of those mechanisms to the definition of 
problem solving strategies.  Such a model is presented in 
what follows.  It proposes that largest-disk focus and 
largest-disk subgoals develop from affordance-driven 
behavior, which also shapes other aspects of problem 
solving during that development. This hypothesis is 
suggested by the fact that inexperienced users tend to rely 
on affordances during task performance (Norman, 1988; 
1993).  A major purpose in building the present model is to 
explore the viabilit y of the view that there exists optimal 
problem solving strategies that are affordance-driven.  
Given that this model seeks to account for largest-disk 
subgoaling – a capacity often associated with optimal 
problem solving strategies – it should be possible to define 
and observe optimal problem solving strategies structured 
around the affordance-driven mechanisms proposed here. 

A Sketch of The Model 
This section presents the main aspects of the model.  They 
fall i nto three categories:  affordances, difference-reduction 
strategies, and learning mechanisms. 

Affordances 
The concept of affordances refers here to perceived 
properties regarding the use of Tower of Hanoi objects 
(especiall y single disks and stacks of disks) – following 
Norman (1988)’s definition of affordances:  
 

“…The perceived and actual properties of the thing, 
primaril y those fundamental properties that determine 

just how the thing could possibly be used....” (Norman, 
1988, p.9) 

 
In the model, move affordances – the property of 

movabilit y (perceived and actual) of Tower of Hanoi objects 
– constitute an essential concern for problem solvers 
because task rules restrict the move of certain objects (e.g., 
large disks) and facilit ate that of others (e.g., the smallest 
disk). 

Two classes of affordances are distinguished in the 
analysis:  general and task-specific.  The former refers to 
general properties that offer common, non task-specific 
operational clues, while the latter emerges in relation to task 
constraints, providing operational clues that integrate such 
constraints.  An example of a general affordance is a move 
property attributed to disks:  an unblocked disk affords 
moving.  That affordance – called “Move: Movable_Disk” 
hereafter – is based on knowledge that is not task-specific:  
a small , unblocked object that can be grabbed affords 
moving.  Three examples of task-specific affordance are that 
a stack of disks affords emptying under task rules (“Empty: 
Disk_Stack” ), that the largest disk of a stack affords moving 
the least (“Largest_Disk” affordance), and that a small , 
movable disk affords moving more than a bigger, movable 
disk (“Relative_Move” ).  Those affordances emerge as the 
task constraint that requires moving only smaller disks on 
top of bigger ones is being followed. 

The above classes of move affordances play an essential 
role in the model.  One of their functions is to “externalize” 
a problem solver’s internal, memorized task rules.  For 
example, the Move: Movable_Disk affordance externalizes 
the internal rule to move only one disk at a time because the 
former embodies the latter:  by following the property that 
an unblocked disk affords moving and by moving that disk, 
one also follows the task rule to only move one disk at a 
time.  In other words, using the affordance applies the task 
rule.  Another important function of affordances in the 
model is that they give rise to affordance-driven strategies 
that reduce differences toward the task goal – providing a 
measure of progress.  For example, the Empty: Disk_Stack 
affordance supports the discovery of a strategy consisting in 
making a move that contributes to emptying the stack.  Such 
a strategy provides a way to get closer to the task goal. 

Difference-Reduction Strategies 
The difference-reduction strategies considered in the model 
are elementary.  They specify necessary but not suff icient 
steps toward the task goal to reflect the lack of task-specific 
knowledge in inexperienced problem solvers:  naïve 
subjects do not know how to define strategies that will t ake 
them from the initial state to the goal state.  Three examples 
of preliminary difference-reduction strategies used in the 
model are Empty (Disk_Stack), Don’t -Block strategies and 
Move (Largest_Disk):  Empty (Disk_Stack) seeks to get 
closer to the task goal by trying to move the currently 
movable disk of the stack that needs to be transferred to the 
goal peg.  It is a preliminary strategy because it does not 
specify all the necessary steps to reach the task goal.  It also 
involves an affordance – the property that the stack affords 
emptying. 

487



Don’t -Block strategies reduce differences toward the task 
goal by avoiding blocking a peg or a disk with another disk.  
For example, certain strategies in the model avoid blocking 
the goal peg or the top disk of the stack with the smallest 
disk 1.  Other Don’t -Block strategies – called Parity 
strategies – seek to move the smallest disk 1 optimally when 
1 belongs to a structure blocking the top disk of the stack or 
its destination. Those strategies help empty the stack in 
relation to the parity of the blocking structure to which 1 
belongs.  For example, one such strategy blocks the top disk 
of the stack with Disk 1 when 1 is part of a two-disk 
structure (Disks 1 and 2) on another peg (e.g., the top disk 
of the stack is on peg A and 1 and 2 are on B):  that move is 
optimal to avoid blocking the top disk of the stack with Disk 
2. The Don’t -Block difference-reduction strategies are 
preliminary:  they do not guarantee the successful transfer of 
the stack to its goal peg.  They are based on move 
affordances – e.g., on the general concern that placing an 
obstacle at a location corresponding to a destination for an 
object may restrict the move affordance of that object. 

Finally, Move (Largest_Disk) sets the goal to move the 
largest disk of the stack to the goal peg as a way to get 
closer to the task goal.  It is based on the Largest_Disk 
affordance mentioned earlier.  It emerges from Don’t -Block 
and Empty (Disk_Stack) strategies and refers to the ability 
to set largest-disk subgoals. 

The Critical Role of Empty (Disk_Stack) 
Empty (Disk_Stack) represents the main strategy in the 

early phase of problem solving in the model.  It selects the 
top disk (dT) of the initial stack to move in priority.  As a 
result, it leads to the acquisition of subgoals that seek to 
preserve the ability of dT to move, such as avoiding 
blocking dT with another disk in order to empty the stack 
(“Don’t_Block (d T)” subgoal).  Those subgoals constraint 
the move options offered to the disks occupying the other 
pegs. 

Learning Mechanisms 
Observing the outcome of effective or possible moves 
constitutes an essential learning mechanism in the model. 
For example, learning that a stack of disks affords emptying 
occurs by observing that effective moves do empty that 
stack.  Learning an Empty (Disk_Stack) subgoal such as 
Don’t_Block (d T) takes place by considering possible move 
options for disks present on other pegs (e.g., in the third 
state with dT on peg A, Disk 1 on B, and Disk 2 on C, 1 or 2 
can be moved to peg A, but such moves would block dT.)  
Other learning mechanisms in the model recode existing 
knowledge into simpler forms – e.g., simplifying the 
definition of a series of moves in relation to affordances.  
The Parity strategy example mentioned earlier – learning to 
move Disk 1 on top of dT on peg A when 1 and 2 are on B – 
illustrates that mechanism.  Initially, the model defines the 
moves of Disks 1 and 2 by assigning a peg for Disk 2 first – 
based on the relative move affordance of those disks:  a peg 
is chosen such that Disk 2 does not block dT on peg A.  That 
choice sends 1 over dT on peg A, but allows the top disk of 
the stack to move later on, so the sequence of moves for 

Disks 2 and 1 is recoded by taking the perspective of the 
movable disk:  In order to empty the initial stack, Disk 1 
should block dT when it belongs to a two-disk blocking 
structure. 

The Acquisition of Largest-Disk Subgoals 
The ability to focus on the largest disk and to set largest-

disk subgoals emerges from the previous mechanisms.  
Problem solving begins with a focus on top, movable disks, 
and evolves – mostly by learning from effective and 
possible moves.  Those mechanisms create the Empty: 
(Disk_Stack) affordance, resulting in the definition of the 
Empty (Disk-Stack) difference reduction strategy and of 
Empty (Disk-Stack) subgoals.  A state is then reached where 
the largest disk of the initial stack stands by itself on the 
source peg.  The model acquires the largest-disk affordance 
when that disk is moved to the goal peg.  It then forms the 
strategy to move the largest disk to the goal peg as a way to 
reach the task goal.  That strategy, Move (Largest_Disk), 
now sets priorities for problem solving – taking over Empty 
(Disk_Stack) and its top-disk focus.  After the largest disk 
of the initial stack is moved to the goal peg, the remaining 
disks form a new stack on peg B:  the largest-disk 
affordance produces a focus on the bottom-disk of that stack 
and Move (Largest_Disk) creates a largest-disk subgoal.  
Table 1 illustrates those mechanisms with a four-disk stack.  
Problem solving in that example begins with the Move: 
Movable_Disk affordance and a strategy borrowed from 
Anzai & Simon (1979)’s participant, that allocates a peg for 
Disk 1 by avoiding blocking the goal peg with that disk. 

 
Table 1:  Acquisition of Largest-Disk Subgoals:  An 

Example With Four Disks. 
_____________________________________________________ 
 

Disks on Peg Acquired Knowledge 

State A  B C    
______________________________________________________ 
s1 1,2,3,4  - -  
s2 2,3,4   1 - 1AFF (1), 2DRS (1), 3S: 1, 2  
s3 3,4   1 2  AFF (2), S: 3 
s4 3,4  - 1,2   
s5 4  3  1,2  
s6 1,4 3  2   
s7 1, 4  2, 3 - S: 4, 5 
s8  4 1, 2, 3 - AFF (3), DRS (2) 
s9 - 1,2,3 4  
 

 1AFF:  Affordance (1) Empty:Disk_Stack, (2) Relative_Move, (3):  

Largest_Disk. 
2DRS:  Difference-Reduction Strategies:  (1) Empty (Disk_Stack), 

(2):  Move (Largest_Disk). 
3S Empty (Disk_Stack) subgoals: (1) Select dT to move, (2) Move 

dT to an empty peg, (3) Don’t B lock dT, (4) Unblock dT, (5) Block 
dT with 1 when 1 and 2 form a two-disk structure on another peg. 
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The Emergence of Optimal Problem Solving   
An interesting property of the above model is its ability to 
generate optimal solutions to the Tower of Hanoi puzzle.  
What follows discusses that ability with four and five-disk 
versions of the game.  Two kinds of disk stacks are 
considered: Si is the initial stack – the stack of disks present 
at the beginning state (see Figure 1). ST refers to a 
“transitional” sta ck – a stack that emerges during problem 
solving and that does not constitute a blocking structure for 
existing difference-reduction strategies in the model.  For 
example, when the largest disk 5 is moved to peg C, a four-
disk stack made of Disks 1, 2, 3, and 4 occupies peg B and 
is not a blocking structure.  In addition, two kinds of largest 
disks are considered: dL (Si), the largest disk of the original 
stack (e.g., Disk 5 in Figure 1) standing by itself on the 
source peg, and dL (ST), the largest disk of a transitional 
stack - Disk 4 in the above example. 

Optimal problem solving in the model is achieved in two 
phases which allow the acquisition of – respectively – the 
ability to focus on largest disks and to set largest-disk 
subgoals.  The first phase (“D isk_Stack Phase”) is 
structured around the initial stack, with a focus on working 
with movable disks (e.g., the top disk of the stack), using 
Empty (Disk_Stack) as the main difference-reduction 
strategy. More precisely, that phase allows optimal moves 
through affordances – general and task-specific – and 
preliminary difference-reduction strategies, following the 
earlier specification of the model:  problem solvers begin 
with a general affordance (Move: Movable-Disk), discover 
that the stack affords emptying, and use the Empty 
(Disk_Stack) difference-reduction strategy.  The focus on 
the largest disk of the stack emerges during that phase with 
inexperienced problem solvers.  This is achieved through 
the mechanisms described in the previous section, which 
allow optimal moves until the state is reached where the 
largest disk of the stack is moved to the goal peg – isolating 
the largest disk as a key disk to move. 

The second phase is focused on the largest disks of 
transitional stacks (“Largest_Disk Phase”).  The  ability to 
set largest-disk subgoals – sending the largest disks of a 
transitional stack to the goal peg – emerges at the beginning 
of that phase, by means of the processes seen earlier.  
Problem solving evolves using both largest-disk subgoals 
and strategies focused on movable disks (e.g., not blocking 
the top disk of the stack). 

Tables 2 and 3 present an overview of the major 
similarities and difference in optimal problem solving with 
4- and 5-disk Tower of Hanoi versions. The mechanisms 
learning to the acquisition of the Empty (Disk_Stack) and of 
the Move (Largest_Disk) strategies define the similarities.  
Problem solving with 4 and 5 disks differs in two ways.  
Regarding the first move of the smallest disk 1, the optimal 
strategy with four disks can be characterized as not blocking 
the goal peg with the smallest disk 1 – Don’t -Block (PG, 1) 
in Table 2.  With 5 disks, Disk 1 moves to the goal peg – 1- 
to-PG in Table 3.  Moreover, optimal problem solving with 5 
disks involves the use of the Parity strategies mentioned 
earlier – in both the Disk_Stack and the Largest_Disk 
phases.  In that case, optimal problem solving in the second 
phase is such that the top-disk-driven Empty (Disk_Stack) 

strategies are still present and used – if applicable– even if 
the ability to focus on the largest disk and to set largest-disk 
subgoals has been acquired. 
 

Table 2:  Optimal Problem Solving With 4 Disks. 
 

Issue Disk_Stack Phase Largest_Disk Phase 
1st Move Don’t Block P G, 1 N/A 
Strategy 
Disk Focus 
Learning 

Empty (Disk_ Stack) 
Movable  
DL (Si) focus 
DL (Si) to PG 

DL (ST) to PG  
DL, Movable 

DL (ST) focus 
DL (ST) to PG  

 
Table 3:  Optimal Problem Solving With 5 Disks. 

 
Issue Disk_Stack Phase Largest_Disk Phase 
1st Move 1-to-PG N/A 
Strategy 
Disk Focus 
Learning 

Empty (Disk_Stack) 
Movable  
DL (Si) focus 
DL (Si) to PG 

DL (ST) to PG  
DL, Movable 

DL (ST) focus 
DL (ST) to PG  
Parity Strategies 

 

A Test of the Model’s Fit 
Anzai & Simon (1979) report a case of almost optimal 
problem solving with a five-disk version of the Tower of 
Hanoi:  their subject’s second attempt at the task (see the 
verbalizations corresponding to the first ten states in the 
Appendix.)  The authors characterize that episode as 
implicating “the goal -peg strategy” (Anzai & Simon, 1979) 
– a strategy that assigns the successive largest disks of the 
initial stack to the goal peg.  I will now provide an overview 
of the argument explaining how the present model accounts 
for the problem solving behavior observed in that episode. 

The problem solver in the above study is not entirely 
novice, her first attempt at the task having resulted in the 
discovery that the largest disk of the initial stack (Disk 5) 
should be moved to the goal peg first (C), and that Disk 4 
should not go to C.  All the moves and verbalizations of that 
first attempt can be characterized by using the mechanisms 
from the present model – reflecting affordance-driven 
behavior motivated by the priority to empty the disk stack 
(Guimberteau, 2003). 

In the second episode, the subject changes her first move, 
placing Disk 1 on the goal peg because the peg allocation 
chosen for Disk 1 in the first episode – Disk 1 not blocking 
the goal peg – did not lead to the goal state:  That move is 
optimal.  The affordance-driven mechanisms presented here, 
augmented with her learning (Disk 5 to Peg C, Disk 4 not to 
C, Disk 1 to C on first move, and the affordance-related 
knowledge from her first episode) are able to predict the 
subject’s problem solving behavior.  After the first move, 
her problem solving unfolds through Empty  (Disk_Stack):  
a move of the smallest disk 1 to avoid blocking the open 
disk of the stack leads the subject to notice that she should 
have blocked that open disk with 1 instead, to clear a peg 
occupied by the two smallest disks (fifth state of Episode 2, 
see lines 31 and 32).  She learns here a Parity strategy from 
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the Don’t Block family:  with two blocking disks on a peg 
destined for the open disk of the stack, blocking the open 
disk with Disk 1 is optimal.  Her problem solving behavior 
develops afterwards through a refinement of that insight.  It 
is first applied in the tenth state to three blocking disks - not 
blocking the open disk in that case.  It is later applied to the 
goal peg - instead of the open disk of the stack:  she blocks 
the goal peg with Disk 1 that is part of a two-disk blocking 
structure (state 14), but does not block that peg with Disk 1 
belonging to a three-disk blocking structure (state 18). 

The present account produces an excellent fit.  It predicts 
the 31 overt moves observed in the episode and 59 of the 62 
protocol segments. Two statements not predicted by the 
model are a comprehension monitoring statement - “I 
wonder if I’ve found something new” (line 71 of the 
episode) – and an activity statement – “This is my way of 
doing it” (line 74).  The third, not predicted, segment is a 
move questioning – “What?” (line 44) – which is, however, 
consistent with the affordance-driven behavior proposed by 
the present model.  That statement occurs after a move of 
the smallest disk to the goal peg:  there should not be any 
questioning of that move if it is driven by one of the Parity 
strategies from the model.  It is li kely that the subject – 
trying to remove the two smallest disks 1 and 2 to unblock 
the largest disk to move it to the goal peg – is focusing on 
Disk 2 first because it is the larger of the two blocking 
disks.  She has explicitl y exhibited that behavior in her first 
problem solving episode.  That preoccupation with Disk 2 is 
consistent with the present model:  it is based on the relative 
move affordance seen earlier – the fact that a larger disk 
should be considered first because it affords moving less 
than a smaller disk.  Moreover, that focus on Disk 2, not on 
Disk 1, can be reconciled with a top-disk account by saying 
that the subject infers a blocking pattern for the smallest 
disk  – the same way she has been using Parity strategies so 
far:  moving Disk 1 such that it blocks the goal peg is 
optimal when Disk 1 is part of a two-disk blocking structure 
on another peg. 

We can estimate the model’s fit by the total number of 
moves and verbal segments accounted for divided by the 
total number of observed moves and verbal segments, 
following similar practices (e.g., Newell & Simon, 1972; 
VanLehn, 1991).  Using that calculation, the analysis fits 
[(31 – 0) + (62 – 3)] / 93 or 96% of the protocol – an 
excellent outcome. 

A New Class of Optimal Tower of Hanoi 
Strategies 

A comparison of the present model to existing optimal 
Tower of Hanoi strategies from the cogniti ve science 
literature (Simon, 1975) reveals that the model offers a new 
class of problem solving strategies.  Three classes of 
optimal strategies have been identified so far (Simon, 1975): 
Goal-Recursion, Perceptual (Basic and Sophisticated) and 
Move-Pattern.   Goal-Recursion is the recursive subgoaling 
strategy mentioned earlier that sets largest-disk subgoals 
(Altmann & Trafton, 2002; Anderson & Lebiere, 1998; 
Simon, 1975).  The Basic Perceptual strategy (Simon, 1975) 
identifies the largest disk dL not yet on the goal peg, 

emptying up first the source peg, then the goal peg, from 
disks smaller than dL. The Sophisticated Perceptual strategy 
(Simon, 1975) clears the largest blocking disk from both the 
source and the goal pegs until no such blocking disk exists 
to move dL.  The Move-Pattern strategy is based on cycling 
patterns – e.g., relying on a pattern between the moves of 
the smallest disk and the parity of the moves, and on a peg 
assignment cycle for the smallest disk in relation to the 
parity of the total number of pegs!  None of the above 
classes are structured around affordances.  Two of those 
classes – Goal-Recursion and Perceptual – are based on 
means-ends analysis, but those difference-reduction 
strategies are not affordance-driven.  In other words, the 
present model embodies a new class of problem solving 
strategies for the Tower of Hanoi task. 

Skilled Learning  
One virtue of this new model li es in its capacity to shed 

an entirely new light on the case of skill ed learning 
displayed by Anzai & Simon (1979)’s participant.  The 
subject’s four strategies – Selective Search, Goal-Peg, 
Recursive Disk-Subgoaling and Pyramid-Subgoaling – can 
be re-characterized through affordance-driven learning, with 
excellent fits (Guimberteau, 2003).  That capacity is well 
ill ustrated by the example of the subject’s third strategy: 
Recursive Disk-Subgoaling plans the move of each disk of 
the initial stack, beginning with the largest at the bottom and 
continuing with the next-largest until the top disk is reached 
(see Figure 2).  That strategy and the mechanisms behind its 
discovery can be described in the present model without 
invoking recursion:  the subject moves up the initial stack of 
disks to select disks to move, and she assigns pegs by 
repeating the application of a move relation that has been 
recoded from a blocking relation.  The discovery involves 
looking for ways to use the stack of disks by moving up, 
instead of moving down – a defining characteristic of the 
Empty (Disk_Stack) strategy applied so far. 

The above example emphasizes that successive 
subgoaling – subgoals applying to successively smaller 
disks – does not necessaril y reflect recursive subgoaling – 
subgoals resulting from a strategy that decomposes a 
problem into smaller versions of itself.  In that respect, the 
model offers valuable insights for common research 
practices in cogniti ve science that tend to infer recursive 
strategies based on the observation of successive subgoals. 

 

3
2
1

A B C

 
79 So, if there were three… yes now it gets diff icult. 
80 Yes, it’s not that easy….  
81. … This time, 1 wil l… 
82. Oh, yeah, 3 will have to go to C first. 
83. For that, 2 will have to go to B. 
84. For that, um… 1 will go to C. 

 
Figure 2: The Recursive Subgoaling Strategy:  First Instance 

(Anzai & Simon, 1979). 
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Discussion 
The model described here proposes that a central aspect of 
Tower of Hanoi problem solving – the ability to focus on 
and to use the largest disk of a pyramid – assumed to be 
elementary in most existing models (e.g., Karat, 1982) – is 
structured around the acquisition and use of task-specific 
affordances.  An implication of this characterization is that 
an explanation of strategy change in inexperienced problem 
solvers needs to consider the above mechanisms. 

The fact that the model is able to develop problem solving 
competence through affordance-driven mechanisms, starting 
from simple Empty (Disk_Stack) and Don’t_Block 
strategies, is noteworthy as well.  Those new mechanisms 
provide fresh insights regarding learning and strategy 
acquisition in Anzai & Simon (1979)’s protocol 
(Guimberteau, 2003).  This suggests that they have the 
potential to shed new light on the nature and the origin of 
strategies discovered by problem solvers.  Two remaining 
tasks regarding the development of this model are its 
implementation and its experimental study.  I am currently 
working on those two issues. 

 The present analysis offers a process model of Tower of 
Hanoi problem solving based on affordances.  Previous 
research has emphasized the essential role played by 
external representations in cognition (e.g., Zhang & 
Norman, 1994) – leaving out the question of affordance-
related mechanisms that underlie problem solving with that 
task.  The processes put forward in the research can be used 
to examine the distributed nature of learning and problem 
solving in other task as well. 

In summary, the model proposed here suggests that the 
ability to focus on the largest disk of a pyramid during 
problem solving with the Tower of Hanoi task develops 
from affordance-driven strategies.  Moreover, it is possible 
to identify a new class of optimal strategies based on the 
above model – accounting for the development of problem 
solving competence at early stages with the Tower of Hanoi 
task, and offering insights regarding the development of 
more complex strategies. The new class of affordance-
driven strategies identified in this research is valuable to 
help shed new light on learning and problem solving. 
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Appendix – Second Problem Solving Episode 

of Anzai & Simon (1979) – Verbalizations 
Corr esponding to the First Ten States 

 
25. Let’s see… I don’t think 5 will move.  
26. Therefore, since 1 is the only disk I can move, and 

last I moved it to B, I’ll put it on C this time … 
from A to C. 

27. So naturally, 2 will have to go from A to B. 
28. And this time too, I’ll place 1 from C to B.  
29. I’ll place 3 from A to C.  
30. And so I’ll place 1 from B…to C.  
31. Oh, yeah! I have to place it on C. 
32. Disk 2…no, not 2, but I placed 1 from B to 

C…Right?  
33. Oh, I’ll place 1 from B to A.  
34. (Go ahead.) 
35. Because…I want 4 on B, and if I had placed 1 on C 

from B, it wouldn’t have been able to move.  
36. 2 will go from B to C. 
37. 1 will go from A to C. 
38. And so, B will be open, and 4 will go from A to B. 
39. So then, this time… It’s coming out pretty well…  
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