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Abstract 

Why/AutoTutor is a tutoring system that helps students 
construct answers to qualitative physics problems by holding a 
conversation in natural language.  Why/AutoTutor provides 
feedback to the student on what the student types in (positive, 
neutral, negative feedback), pumps the student for more 
information, prompts the student to fill in missing words, 
gives hints, fills in missing information with assertions, 
identifies and corrects bad answers and misconceptions, 
answers students’ questions, and summarizes answers.  In 
essence, constructivist learning is implemented in a mixed-
initiative dialog.  Why/AutoTutor delivers its dialog moves 
with an animated conversational agent whereas students type in 
their answers via keyboard.  We conducted an experiment that 
compared Why/AutoTutor with two control conditions (Read 
textbook, nothing) in assessments of learning gains.  The 
tutoring system performed significantly better than the two 
control conditions on a test similar to the Force Concept 
Inventory. 

AutoTutor and Why/AutoTutor 
Why/AutoTutor is the most recent tutoring system in the 
AutoTutor series developed by the Tutoring Research Group 
at the University of Memphis.   Why/AutoTutor was 
specifically designed to help college students learn 
Newtonian qualitative physics (Graesser, VanLehn, Rose, 
Jordan, & Harter, 2001), whereas the previous AutoTutor 
systems were on topics of introductory computer literacy 
(Graesser, Person, Harter, & TRG, 2001; Graesser, P. 
Wiemer-Hastings, K. Wiemer-Hastings, & Kreuz, 1999) 
and military tactical reasoning (Ryder, Graesser, 
McNamara, Karnavat,  & Pop, 2002).    

The design of AutoTutor was inspired by three bodies of 
theoretical, empirical, and applied research.  These include 
explanation-based constructivist theories of learning 
(Aleven & Koedinger, 2002; Chi, deLeeuw, Chiu, 
LaVancher, 1994; VanLehn, Jones, & Chi, 1992), intelligent 
tutoring systems that adaptively respond to student 
knowledge (Anderson, Corbett, Koedinger, & Pelletier, 
1995; VanLehn, Lynch, et al.,2002), and empirical research 
that has documented the collaborative constructive activities 
that routinely occur during human tutoring (Chi, Siler, 
Jeong, Yamauchi, & Hausmann, 2001; Fox, 1993; Graesser, 

Person, & Magliano, 1995; Moore, 1995; Shah, Evens, 
Michael, & Rovick, 2002). The process of actively 
constructing explanations and elaborations of the learning 
material allegedly produces better learning than merely 
presenting information to students. This is where human 
tutors excel in scaffolding learning, because they guide the 
students in productive constructive processes and 
simultaneously respond to the student’s information needs.   

Surprisingly, the dialog moves of most human tutors are 
not particularly sophisticated from the standpoint of today’s 
pedagogical theories and those theories implemented in 
intelligent tutoring systems (Graesser et al., 1995).  Human 
tutors normally coach the student in filling in missing pieces 
of information in an expected answer and they fix bugs and 
misconceptions that are manifested by the student during the 
tutorial dialog.  Human tutors rarely implement bona fide 
Socratic tutoring strategies, modeling-scaffolding-fading, 
and other intelligent pedagogical techniques (Collins, 
Brown, & Newman, 1989).  The argument has been made 
that it is the conversational properties of human tutorial 
dialog, not sophisticated tutoring tactics, that explain why 
normal human tutors facilitate learning (Graesser et al., 
1995).  More sophisticated pedagogical techniques will no 
doubt increase learning even further.  Why/AutoTutor was 
designed to simulate the dialog moves of normal human 
tutors who coach students in constructing explanations.    

Why/AutoTutor helps students learn by presenting 
challenging problems (or questions) from a curriculum 
script and then engaging in mixed initiative dialog that 
guides the student in constructing an answer.  An example 
question is “Suppose a boy is in a free-falling elevator and 
he holds his keys motionless right in front of his face and 
then lets go.  What will happen to the keys?  Explain why.”  
Another example question is “When a car without headrests 
on the seats is struck from behind, the passengers often 
suffer neck injuries. Why do passengers get neck injuries in 
this situation?”   Such questions are designed to require 
about a paragraph of information (3-7 sentences) to answer.  
However, initial answers to these questions are typically 
only 1 or 2 sentences in length, even though students have 
more knowledge that is relevant to an answer.  This is where 
tutorial dialog may be particularly helpful. AutoTutor 
engages the student in a mixed initiative dialog that assists 
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in the evolution of an improved answer and that draws out 
more of what the students know.  AutoTutor provides 
feedback to the student on what the student types in 
(positive, neutral, negative feedback), pumps the student for 
more information (“What else?”), prompts the student to fill 
in missing words, gives hints, fills in missing information 
with assertions, identifies and corrects erroneous ideas and 
misconceptions, answers the student’s questions, and 
summarizes answers.  A full answer to the question is 
eventually constructed during this dialog.     

The following dialog excerpt from a tutoring ses sion on 
conceptual physics illustrates some of AutoTutor’s dialog 
features. 

 
AutoTutor (SEED QUESTION):   When a car without 

headrests on the seats is struck from behind, the 
passengers often suffer neck injuries. Why do 
passengers get neck injuries in this situation?   

Student: The passenger experiences a backward 
acceleration, while the car moves forward. 

AutoTutor (PUMP):   And can you add to that?  
Student: This is because the passenger experiences a force 

opposite in direction to the force on the car. 
AutoTutor (POSITIVE FEEDBACK):   Um, yes, correct!   
AutoTutor (HINT):   When the neck provides a large force, 

what within the neck would get damaged?      
Student: the spine 
AutoTutor (NEUTRAL NEGATIVE FEEDBACK): umm   
AutoTutor (PROMPT):  I think you can get this.  Damage 

within the neck will occur in the ligaments and the 
. . . . . ? [spoken with rising intonation and 
accompanied with a prompting hand gesture] 

Student: muscles 
AutoTutor (POSITIVE FEEDBACK):   Brilliant!   
AutoTutor (PROMPT RESPONSE):  ligaments and the 

muscles. 
AutoTutor (DIALOG ADVANCER):  Let’s keep going.  
AutoTutor (HINT):   Additionally, when there is no headrest 

present in the car, what accelerates the head of the 
passenger?      

Student: the impact from behind 
AutoTutor (PROMPT):  I am sure you can get this.  The 

head of the passenger will be accelerated by the 
passenger's . . . . .?   [spoken with rising intonation 
and accompanied with a prompting hand gesture] 

Student: car 
AutoTutor (NEGATIVE FEEDBACK):   Wrong!   
AutoTutor (PROMPT RESPONSE):  by the passenger's 

neck.  
[moving ahead 22 turns in the dialog] 

AutoTutor (QUESTION PROMPT):  Do you perhaps have 
any general conceptual physics questions?  

Student: no 
AutoTutor (FINAL ANSWER PROMPT):  How would you 

answer my first question, having gone over what 
we've just talked about?  

Student: The passengers get neck injuries because the neck 
needs to exert a large force on the head equal to the 

force on the body. When struck, the body will 
continue to move in the direction of motion of the 
car, while the car exerts a force on the passenger's 
body in the opposite direction.  The force of the 
neck on the head must equal the force of the head 
on the neck, and the force on the neck's smaller 
mass often results in torn muscles and ligaments. 

AutoTutor (POSITIVE FEEDBACK):   Great!   
AutoTutor (SUMMARY):  To recap, when a car is struck 

from behind, the force of impact will cause the car 
to experience a large forward acceleration. The car 
seat is attached to the car and will also have the 
same large acceleration. When the car is hit from 
behind, the seat will exert the same acceleration to 
the torso of the body. In order for the head to go 
along with the torso, it will need to be accelerated 
at the same rate as the torso. Since the head has no 
acceleration being applied to it by a headrest, the 
neck gets stretched damaging its muscles and 
ligaments in an attempt to produce the required 
large acceleration. 

 
Figure 1 shows the interface of Why/AutoTutor.  The 

major question is selected and presented in the top-right 
window.  This major question (e.g., involving a boy 
dropping keys in a falling elevator) remains at the top of the 
web page until it is finished being answered by a multi-turn 
dialog between the learner and Why/AutoTutor.  The 
students use the bottom-right window to type in their 
contributions for each turn, with the content of both tutor 
and student turns being reflected in the bottom-left window.  
The animated conversational agent resides in the upper-left 
area.  The agent uses either an AT&T or a Microsoft Agent 
speech engine to speak the content of AutoTutor’s turns 
during the process of answering the presented question.  

The computational architectures of Why/AutoTutor and 
earlier versions of AutoTutor have been discussed 
extensively in previous publications (Graesser, Person et al., 
2001; Graesser, VanLehn, et al., 2001; Graesser, Wiemer-
Hastings et al., 2001), so this paper will provide only a brief 
sketch of the components.  Why/AutoTutor was written in 
Java and resides on a Pentium-based server platform to be 
delivered across the web.  The software residing on the 
server has a set of permanent databases that do not get 
updated throughout the course of tutoring. These include (a) 
the curriculum script repository consisting of questions, 
answers, and associated dialog moves, (b) lexicons, 
syntactic parsers, and other computational linguistics 
modules, (c) a question answering facility, (d) a corpus of 
documents, including a text book on conceptual physics, 
and (e) latent semantic analysis (LSA) vectors for words, 
curriculum content, and the document corpus.  

Why/AutoTutor uses LSA as the backbone for 
representing world knowledge about conceptual physics, or 
any other subject matter that is tutored (Graesser, P. 
Wiemer-Hastings, K. Wiemer-Hastings, Harter, Person, & 
TRG, 2000; Olde, Franceschetti, Karnavat, Graesser, & 
TRG, 2002).   
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Figure 1:  Interface of Why/AutoTutor
 

LSA is a high-dimensional, statistical technique that, among 
other things, measures the conceptual similarity of any two 
pieces of text, such as a word, sentence, paragraph, or 
lengthier document (Foltz, Gilliam, & Kendall, 2000; 
Kintsch, 1998; Landauer, Foltz, & Laham, 1998).    
Why/AutoTutor  uses  LSA  to  perform conceptual pattern 
matching operations when we compare student 
contributions to expected good answers and to anticipated 
misconceptions.   An expectation is considered covered if 
the student’s contributions end up matching the expectation 
by some LSA threshold of overlap.   Similarly, a 
misconception is considered present if the student’s input 
matches the misconception by some LSA threshold.   

In addition to the static data modules mentioned above, 
Why/AutoTutor has a set of processing modules and 
dynamic storage units that maintain qualitative content and 
quantitative parameters.  These storage registers are 
frequently updated as the tutoring process proceeds.  For 
example, Why/AutoTutor keeps track of student ability (as 
evaluated by LSA from student Assertions), student 
initiative (such as the incidence of student questions), 
student verbosity (number of words per turn), and the 
progress in having a question answered by virtue of the 
dialog history.  The dialog management module of 
AutoTutor flexibly adapts to the student by virtue of these 
parameters, so it is extremely unlikely that two 
conversations with AutoTutor are ever the same.  

The dialog management module is an augmented finite 
state network.  The nodes in the network refer to knowledge 
goal states (e.g., expectation E is  under focus and AutoTutor 
wants to get the student to articulate it) or dialog states (e.g., 
the student just expressed an assertion as the first turn in 
answering the question).  The arcs refer to categories of 
tutor dialog moves (e.g., feedback, pumps, prompts, hints, 
summaries, etc.) or discourse markers that link dialog 
moves (okay, moving on, furthermore). A particular arc is 
traversed when particular conditions are met (e.g., it is the 
student’s first turn and the student’s assertion is correct). 

Arc traversal is sometimes contingent on outputs of 
computational algorithms and procedures that are sensitive 
to the dynamic evolution of the dialog.  These algorithms 
and procedures operate on the snapshot of parameters, data 
content, knowledge goal states, student knowledge, dialog 
states, LSA measures, and so on, that reflect the current 
conversation constraints and achievements.  For example, 
there are algorithms that select dialog move categories that 
attempt to get the student to fill in missing information in 
expectation E.  There are several alternative algorithms to 
achieve this goal.  Consider one of the early algorithms we 
adopted.  If the student has almost finished articulating 
expectation E, but lacks a critical noun or verb, then a 
prompt category would be selected because the function of 
prompts is to extract single words from students.  The 
particular prompt selected from the curriculum script would 
be tailored to extracting the particular missing word through 
another module that fills dialog move categories with 
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content.  If the student is classified as high ability and has 
failed to articulate most of the words in expectation E, then 
a hint category might be selected.   Fuzzy production rules 
make these selections.   

An alternative algorithm to fleshing out expectation E 
uses two cycles of hint-prompt-assertion.  That is , 
AutoTutor’s selection of dialog movers over successive 
turns follows an ordering:  first hint, then prompt, then 
assert, then hint, then prompt, then assert.  AutoTutor exists 
the two cycles as soon as the student articulates expectation 
E to satisfaction (i.e., the LSA threshold is met).   

Other processing modules in AutoTutor execute various 
important functions: speech act classification, linguistic 
information extraction, evaluation of student assertions, 
selection of the next expectation to cover, and speech 
production with the animated conversational agent.  It is 
beyond the scope of this paper to describe these modules.     

Previous Empirical Studies of Tutorial 
Learning 

One-to-one tutoring is a powerful method of promoting 
knowledge construction, as has been shown through 
available empirical studies (Bloom, 1984; Cohen, Kulik, & 
Kulik, 1982; Corbett, 2001).  The vast majority of the tutors  
in these studies of human tutoring have had moderate 
domain knowledge and little or no training in pedagogy or 
tutoring; the tutors were peer tutors, cross-age tutors, or 
paraprofessionals, but very rarely accomplished tutors.  The  
unaccomplished human tutors enhanced learning with an 
effect size of .4 standard deviation units (called sigmas), 
which translates to approximately an improvement of half a 
letter grade (Cohen et al., 1982).  The accomplished human 
tutors produced effect sizes of 2 sigmas according to Bloom  
(1984), although the magnitude of this effect should be 
questioned due the relative small number of studies that 
have looked at accomplished tutors.   

 In the arena of computer tutors, intelligent tutoring 
systems with sophisticated pedagogical tactics but no 
natural language dialog produce effect sizes of 
approximately 1 sigma (Corbett, 2001; VanLehn et al., 
2002).   Previous versions of AutoTutor have produced 
gains of .4 to 1.5 sigma (a mean of .7), depending on the 
learning measure, the comparison condition, the subject 
matter, and version of AutoTutor (Graesser, Moreno, et al., 
2003; Person et al., 2001; VanLehn & Graesser, 2002).  
This places previous versions of AutoTutor somewhere 
between an unaccomplished human tutor and an intelligent 
tutoring system.  It might be noted, however, that one recent 
evaluation of physics tutoring (VanLehn & Graesser, 2002) 
remarkably reported that the learning gains produced by 
accomplished human tutors via computer mediate 
conversation were equivalent to the gains produced in two 
computer tutors with natural language dialog 
(Why/AutoTutor and Why/Atlas, a system developed at the 
University of Pittsburgh).   The effectiveness of different 
tutoring systems clearly requires additional research.  

Present Study of Why/AutoTutor 
We conducted an experiment that assessed learning gains of 
Why/AutoTutor, compared with two comparison conditions.  
Those assigned to the AutoTutor Condition learned 
conceptual physics by participating in a tutorial dialog with 
Why/AutoTutor for approximately 3-4 hours.  Those in the 
Read-textbook condition read textbook chapters on the 
same Newtonian physics topics covered by Why/AutoTutor, 
for a comparable amount of study time; the textbook was 
Hewitt’s Conceptual Physics (1998).  There was also a no-
material Control  condition in which the subjects did not 
receive any material on conceptual physics. The participants 
were 67 college students enrolled in a college physics 
course at Ole Miss, Rhodes College, and the University of 
Memphis.  The participants were randomly assigned to the 
three conditions, except that twice as many subjects were to 
be assigned to the AutoTutor condition as in the two 
comparison conditions. Learning gains were assessed by 
administering a pretest and a posttest that consisted of 
multiple choice questions.  The questions were extracted 
from or were similar to those in the Force Concept 
Inventory (Hestenes, Wells, & Swackhamer, 1992).  
Another method of assessing learning was the quality of 
their answers to an additional sample of qualitative physics 
questions, but these data are not reported in the present 
study.   

The experiment included two sessions, approximately 2-3 
hours each, one week apart.  The first session consisted of a 
pretest followed by a learning phase, while the second 
session began with the learning phase and ended with a 
posttest.  Two different test versions (A, B) were 
counterbalanced across conditions as pre and post tests.  
Each test has a multiple choice part and a conceptual 
physics essay part.  There were 40 multiple choice items 
pulled from the Force Concept Inventory (FCI) in each 
version, A and B.  There were 4 conceptual physics 
questions in each of the two versions of the test.   

During the learning phases, participants received either 
Why/AutoTutor (N=32), Read-textbook (N=16), or Control 
(N=19).  The learning phase of Why/AutoTutor covered 10 
conceptual physics questions, such as the example in Figure 
1.  Each problem took approximately 20 minutes to answer, 
as the student and AutoTutor collaborative answered the 
questions.  The participants in the Read-textbook condition 
read the textbook for an approximately equivalent amount 
of time, as estimated by the tutoring sessions reported in 
VanLehn and Graesser (2002).  VanLehn and Graesser 
(2002) cover additional details about the tests, learning 
materials, and methodology.      

We computed the proportion of multiple choice questions 
that were answered correctly on the pretest and posttest.  
Table 1 presents the means and standard deviations (SD) of 
the pretests and posttests  in the three conditions.  The right 
column in table includes adjusted posttest scores that 
statistically control for the pretest score; standard errors are 
in parentheses.     
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An ANOVA was conducted on the scores, using a 3x2 
factorial design, with condition as a between-subject 
variable and test phase (pre versus post) as a repeated 
measures variable.  There was a statistically significant 
condition by test phase interaction, F(2,64) = 12.28, p < .01, 
MSerror =   .005.  The pattern of means clearly showed more 
learning gains from pretest to posttest in the Why/AutoTutor 
condition than the other two conditions.  An ANCOVA was 
statistically significant when we analyzed the posttest 
scores, using the pretest scores as a covariate, F(2,63)= 
14.81, p < .01.  The adjusted posttest scores showed the 
following ordering among means: Why/AutoTutor > Read-
textbook = Control.  The effect size (sigma) of the learning 
gains of Why/AutoTutor was .75 when its pretest served as 
a control, .61 when the posttest Control mean served as the 
control, and 1.22 when the posttest Read-textbook mean 
served as the control.  These effect sizes are comparable to 
the intelligent tutoring of systems on physics reported by 
VanLehn et al. (2002).  
  

Table 1: Proportion Correct on Pretests and Posttests  
 

Condition Pretest 
Mean 
(SD) 

Posttest 
Mean 
(SD) 

Adjusted 
Posttest  

(Std. 
Error) 

AutoTutor 0.597 
(.170) 

0.725 
(.153) 

0.727 
(.016) 

Read-
textbook 

0.566 
(.126) 

0.586 
(.114) 

0.610 
(.022) 

Control 0.633 
(.172) 

0.632 
(.153) 

0.608 
(.020) 

   
Two alternative measures of learning gains were 

computed to show differences between conditions.  First, 
the simple learning gains were computed as Posttest-Pretest.  
A one-way ANOVA performed on the simple learning gains 
showed significant differences among conditions, 
F(2,64)=12.28, p < .01, MSerror = .010.  As shown in Table 
2, and confirmed in follow up planned comparisons, there 
was the following ordering of means: Why/AutoTutor > 
Read-textbook = Control.  Second, we computed the 
normalized gain score, a standard that often has been used to 
report learning gain proportions: [(Posttest-Pretest) / (1-
Pretest)].  An ANOVA performed on the normalized gain 
scores showed the same significant effect, F(2,64)=13.17, p  
< .01, MSerror = .008, and ordering of means.   

 
Table 2: Learning Gains Proportions 

 
Condition Simple 

Learning 
Gains (SD) 

Normalized Gain 
Score (SD) 

AutoTutor 0.128 (.111) 0.303 (.279) 
Read-
textbook 

0.020 (.068) 0.033 (.168) 

Nothing -0.001 (.100) -0.109 (.337) 

Conclusions  
These results of the present study on qualitative physics 
follow previous trends in AutoTutor research that have 
continually shown it to be an effective learning tool 
(Graesser, Moreno, et al., 2003; Person et al., 2001).   
Why/AutoTutor consistently outperformed its comparison 
conditions in three alternative comparisons that were 
considered (pretest for Why/AutoTutor, Read-textbook 
control, and a no learning material Control).   These results 
are compatible with the claim that there is something about 
tutorial dialog in natural language that promotes learning in 
these constructivist learning environments.   

We are currently exploring what it is, more precisely, that 
accounts for the learning gains (VanLehn & Graesser, 
2002).  Is it the dialog facility, the responsive feedback, the 
student’s active construction of information, the 
construction of explanations, or some other factor that is 
responsible for learning gains?  Perhaps the same amount of 
learning might occur if we have them simply study the 
explanation and answer for each question.  Now that we 
know that learning does occur, we can dissect the potential 
causes of learning in subsequent research.    
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